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A REFORMULATION OF THE ARF INVARIANT
ONE mod p PROBLEM AND

APPLICATIONS TO ATOMIC SPACES

PAUL SELICK

A (mod p) atomic space is one whose lowest nonvanishing (mod p)
homology group has dimension 1 and which has the property that all
self-maps which induce isomorphisms on this lowest nonvanishing group
are homotopy equivalences. An atomic space cannot be decomposed, up
to homotopy, into a produce of other spaces and thus is, in some sense,
an atom. In this paper we show that if p is an odd prime and n > 1 then
Ω 3 S 2 w + 1 and the homotopy-theoretic fibre of the double suspension Σ 2:
S2n~ι -> Q2S2n+ι are (mod/?) atomic. Some indecomposability results
are also obtained for the homotopy-theoretic fibre of the degree/? map of
QS2n+\

Introduction. In homotopy theory we can distinguish between the
weak form of the Arf invariant problem which asks if a certain element in
the Adams spectral sequence is an infinite cycle and the strong form
which asks for a 3-cell complex with a nontrivial Bockstein and Steenrod
operation. The strong form implies the weak form and it has been
conjectured that they are equivalent. RaveneΓs negative solution of the
weak form of the problem for p >: 5 shows (somewhat vacuously) that the
conjecture holds in this case. (See [19].) If p = 2, it has been shown that
the weak form of the problem is equivalent to the Kervaire problem. (See
Browder [4].) Barratt and Mahowald have shown that divisibility of a
certain Whitehead product by 2 implies the weak form of the (mod 2) Arf
invariant problem. (See [15], Corollary 2.) In fact it is well-known that
divisibility of this Whitehead product by 2 is equivalent to the strong form
of the Arf invariant problem, although I have been unable to find all the
details in the literature. §1 gives a proof of this equivalence and gener-
alizes the result to odd primes. Throughout this paper, the term Arf
invariant will refer to the strong form.

§2 proves a technical theorem which gives a sufficient condition for a
self-map of a space to be a homotopy equivalence. The main results of the
paper are in §3 where the results of §§1 and 2 are applied to show that
certain spaces are atomic. In particular (after localizing at an odd prime/?)
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we obtain the following:

COROLLARY 3.4. ΏS2n+ι{p] is atomic for all n such that ττ | n ( / ? _ 1 ) _ 2 has

no elements of Arf invariant 1 mod p {where S2n+X{p) is the homotopy-the-

oretic fibre of the pth power map p: S2n+ι -* S2n+1).

COROLLARY 3.5. Ifp > 5 and nφ\ or p then 9,S2n+x{p) is atomic.

THEOREM 3.7. C{n) is atomic for n > 1 {where C{n) is the homotopy-

theoretic fibre of the double suspension Σ2: S2n~ι -> Ω2S2n+ι).

THEOREM 3.8. Ω 3 5 2 w + 1 is atomic for n>\.

I. A reformulation of the Arf invariant one problem. Let p be a

prime. In this section H*{X) will denote H*{X; Z/pZ) and all spaces

and maps will be assumed to have been localized at p. Let Pn{k) —

Sn~x Uk en, n>2, where k: Sn~ι -» Sn~ι is of degree k. Homotopy with

Z/kZ coefficients is defined by πn{X; Z/kZ) = [Pn{k\ X]. Many of its

properties can be found in [16]. If g: X-* Y, we let Cg denote the

homotopy-theoretic cofibre of g.

Given/: Sm~ι -> S 0 in 7τ^_,, m > 1, since/is torsion we can extend/

t o / : Pm{pr) -> S° for some r. Of course,/is not uniquely determined by

/. We say that ^in(p-\)-2 ^ a s a n βl^ment of (strong) Arf invariant 1 mod p

if there exists Cy in which the Steenrod operation Pn (respectively: Sq2")

acts nontrivially, where/ E ^2«(/>-i)-2

Let C{n) denote the homotopy-theoretic fibre of Σ 2 : S2n~λ -*

ί2 2 S 2 π + . C{n) is 2np — 4 connected. Let/denote the composite

S2np-3-> C{n) -> S2n~ι

where the first map is a generator of π2np_3{C{n)) =Z/pZ. It is well

known that / = 0 ** there exists an element of Hopf invariant 1 in

-\)-\' ( S e e [!°]> Proposition 5.4, P 300.)

Note. Here, and elsewhere, "equals" means equals within the set of

homotopy classes of maps.

Suppose that n ¥= I and that in addition if p — 2, n Φ 2 or 4 so that

fφ 0. Notice that if p = 2 t h e n / = [ι2n-\> hn-\l

THEOREM 1.1. The following are equivalent:

(a) /' = PS for some g
(b) There exists h: P2np~2{p) -> Ω 2 5 2 w + 1

 JMCΛ /Λαί h*Φ0on H2np_2.

(c) 7Γ2^(/7_1)_2 ΛΛS α« element of Arf invariant 1.
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Proof. Let Jk( X) denote the fcth stage of the James construction on X.
That is, Jk(X) = Xk/~ where

Let 6' be the statement
(b') There exists A: P2np~2(p) -> Ω / ^ S 2 * ) such that A ^ O o n

b <̂  b r: There is a fibration

due to James [13] for p — 2 and Toda [23] for p > 2. So the pair
Jp(Ω 2S 2"+ 1, ΩJp_x(S2n)) is 2«p - 2 connected and thus b <* b'.

a => b': There is a fibration

S2n~ι ^ΏJp_x(S2n)

due to James [13] for/? = 2 and Toda [23] for/? > 2. From the definition
of/the composite

S2np-3 ^S2n-\*Q2S2n+\

is null homotopic. Because of the connectivity of the pair
(Ω 2 S 2 π + ι , QJp^x(S2n)) it follows that

S2np-3 iS2n-\ l^Qjp_{(S2n)

is null homotopic. Therefore p(ig) = i#(pg) — i#(f) — 0. Thus there
exists h: P2np'2(p) -> Qjr,«1(Sf2fI) such that

S2np-1 ^

Ig lh

S2n~ι ΐ* QJp_x(S2n)

is homotopy commutative. We must show that Th ¥= 0.
Suppose to the contrary that Th = 0. Then there exists W\ P2np~2(p)

-» S 2 "" 1 such that h = IΛ. SO /(g - q/) = ig - iaj = /g - A/ = 0. Thus
Σ 2 ( g - q / ) = 0. But

ker Σ 2 : *2np-3(S2"-*) - π2np_3(Ώ2S2^)
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is Z/pZ, generated by /. So g — aj — λf for some λ. Multiplying by p

gives pg — p(hj) = pλf= 0. Also, p(aj) = 0 since multiplication by p

kills Im j#. Therefore pg = 0. But pg — /and so we have a contradiction.

Thus Th φ 0 in ^ ^ ( Ω S 2 ^ " 1 ; Z / P z ) J t follows from the mod p

Hurewicz isomorphism (see Neisendorfer [16], Theorem 3.8) that T*h* ¥= 0

on H2np_2. Since T* is an isomorphism on H2np_2, h* Φ 0 on H2np_2.

V =* c: Let Λ7: P 2 ^ ' ^ / ? ) -» /^.X^2") be the adjoint of Λ.

ί Z/pZ q — 2kn, k < p

H*(Ch) = Z/^Z ήf = 2ιip - 1

[ 0 otherwise

Let x be a generator of H2n(Ch,). Then x ^ 1 φ 0. We show x^ φ 0.

The map of homotopy-theoretic fibrations

induces a map of cohomology Serre spectral sequences.

^
c h '

d(xp~] <8> a) = xp. If xp = 0 then there exists e E H2np~2{Ch>) such that

ί/(e) = X77"1 ® β. But then diagram chasing shows that (Ωγ)*(e) = / so

(Ωγ)* is surjective on H2np~2. Therefore (Ωγ)^ is injective on H2np_2. So

* T^Oon H2np_2. But (Ωγ)A factors as

and yW — 0. From this contradiction, we conclude x p ^ 0. So P"x = xp

Let w be the composite

ΣΛ'
ln+\
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where the second map is the adjoint of Jp_x{S2n) -» ΩS 2 l l + 1. We have a
map of homotopy-theoretic cofibrations

P2np{p) - ΣJp_x(S2n) -> Σ Q

II i I

P2np(p) ^ 5 2 n + 1 -> Cw.

Diagram chasing shows that Pn acts nontrivially in Cw so that ̂ 2n(P-\)-2
has an element of Arf invariant 1.

c =>b': Let w': p 2 " ^ - 1 ) - ! ^ ) ^ ^o b e a s t a b l e m a p s u c h t h a t p n

acts nontrivially in Cw/. From the commutative square

m-\

i

we get an induced map of homotopy-theoretic cofibres Pm(k) -> Pm(kt).
Let w" be the composite

We have a map of homotopy-theoretic cofibrations

Since α induces an isomorphism on H2n^p~X)~λ diagram chasing in the
long exact cohomology sequence shows that Pn also acts nontrivially in
Cwn. Since ^2«/>(^2"+1> Z/pZ) is stable, it contains a representative
w: P2np(p) -> 5 2 r t + 1 for w/r. Let w: P2np~\p) -> ΩS 2"+ 1 be the adjoint
of w. For connectivity reasons, w lifts to υ: P2np~\p) -> Jp_λ(S2n). Let F
be the homotopy-theoretic fibre of γ: Jp_λ(S2n) -» Co. Let φ denote the
mod /? Hurewicz homomoφhism. We have a commutative diagram with
exact rows

• •- - v2lip_2(aF: Z/pZ) - τr2,,/,_2(Ω/ ;,_1(S2");Z/^z) - ir2lI/l_2(ΩC t: Z/pZ) - *r2/f/,_3(ΩF; Z/>Z) -

iφ 1Φ iΦ iΦ

( ) ^ H2np_,(ΩF) - 0



436 PAUL SELICK

where the bottom line is the Serre exact homology sequence. Diagram
chasing in the cohomology Serre spectral sequences show that
H2np-2(QCΌ) -» H2np-2φJp_λ{S2n)) is the zero map, so its dual is also
zero. According to the mod p Hurewicz Isomorphism Theorem (see
Neisendorfer [16], Theorem 3.8)
φ: π2np-3(ΩF; Z/pZ) -> H2np_3(ΏF) is an isomorphism and
φ: π2np_2(ΏF: Z/pZ) -> H2np_2(ΏF) is an epimorphism. So diagram
chasing shows that φ: π2ll/,_2(ί2//,_1(Sr211); Z/pZ) -> H2np_2(tiJp^{S2n))
is an epimorphism. This statement is equivalent to (b').

b' => a: Let h: P2UP~2 -> ΏJp_ x(S2n) induce a nonzero map on H2np_2.
Since T* is an isomoφhism onH2np_2, Th Φ 0. However the composite

must be null homotopic for connectivity reasons. So there exists
g: S2np~3 -> S 2 "" 1 such that

S2np-3 ^

ig ih

S2n~λ U ΏJp_}(S2n)

is homotopy commutative. Since multiplication by p kills Im y#,

i#(Pg) = P**(g) = PJ*(h) = ° Therefore Σ2(pg) = 0.
But ker Σ 2 : ιrr2np-3(S2n~λ) -» τr2^_3(Ω2S*n+1) is Z/^Z generated by/. So
pg = λf for some λ E Z/pZ. It remains to show that λ T^ 0. So suppose
λ = 0. Then there exists g: P2np~2(p) -> 5 2 n ~ 1 such that g = g/. Since
(h ~ ig)j = A/ - ig = 0, there exists e: S2np~2 -> ΩJΓ,__,(Sr2fI) such that
h - ig = ec where c: P2np~2(p) -> S2w/?~2 is the map which collapses
S2"^-3 to a point. We have Tec = Th - Tig = Th¥=0. Therefore Te φ 0.
But this implies that the fibration

2n~x

has a cross-section, up to homotopy, and so / induces a split monomor-
phism on homotopy groups. This is a contradiction since/φ 0 but if — 0.
Therefore λ = 0. D

II. Self-maps. The purpose of this section is to prove the technical
Theorem 2.3 which gives a sufficient condition for a map to be a
homotopy equivalence. We begin with some algebraic preliminaries.
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LEMMA 2.1. Let V be either a finite group or a finite dimensional vector

space. Let f: V -> V. Let W — lim^ V. Let θ: V -> W be the canonical map.

Then θ is onto.

Proof. I m / " + 1 C l m / " for all n. Since V is finite or finite dimen-

sional, these images stabilize. For convenience, write our direct system

where Vj—V for all i. Let w G W. Find a representative x for w in Vm for

some m. Pick iV large enough so that Im fN+k — Im fN for all k. Now

/^JC belonging to VNJrm is another representative of w. Since/^x G Im / ^

= Im fN+mJNx = / ^ + W J C ' for some x' G Fo, and 0(x') = w. D

Given an abelian group G, let t(G) denote its torsion subgroup.

LEMMA 2.2. Let G be a finitely generated R-module for some R C Q.

Let f: G -> G. Let H — lim G and let θ: G -> H be the canonical map. Then

(1) coker θ is divisible.

(2) coker θ is a torsion group.

(3)t(H)Clmθ\t(C).

(4) G -* Im θ is a split epimorphism. Further, this splitting can be

chosen to be natural when restricted to t(lmθ).

REMARK. The second statement in (4) means the following:

Let

G' U G'

be commutative. Then there exists s: Imθ -* G and s': Imθ' -> G' such

that θs= \,θ's' = l,and

t{lmθ) ^ G

I |«

t(lmθ') C G'

commutes.
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Proof. Since

G-> 7 7 ^ coker 0 -> 0

is exact,

G® F -> H® F^ cokerθ ® F-» 0

is exact for all F. Thus for any field F, coker 0 ® F = 0 by Lemma 2.1.
Setting F = Z/pZ9 we conclude that /? coker 0 = coker 0. Since this is

true for all p, coker 0 is divisible.
Setting F = g, we get that coker 0 is a torsion group.
To show (3):

Let 77' = lim/r(G) and let 77" = lim G/t(G). Since lim preserves exact-

ness we get

0

0

t(G)

H'

G
lθ
H

0

By Lemma 2.1, r(G) -> /fr is onto, so it suffices to show that t{H) goes to
zero under H -» i//r. But this is clear, since 77", being a direct limit of
torsion-free groups is torsion-free.

To show (4):
Since G is finitely generated, so is Im θ. Therefore

/(lmfl) Θ F

where F is free. So any splitting defined on /(Ini#) can be extended to
Im θ. Thus it suffices to do the case where G is a torsion group.

As in the proof of Lemma 2.1, write the direct system as

G 0 - * G ι - > G 2 - + •• • - > Gn - > ••• -> H

where G, = G for all /. Find N such that Im / ^ = Im fN+k for all k.

I = lmfN -» Go

4/w

fΞlm/".

77 = Im 0 since G is a torsion group. Since Im fN is stable, j is an
isomorphism. Also/*: I m / ^ ^ IτafN+k. In particular /* |7 is injective
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for all k. So fN \r is injective. Since / and Γ are finite groups of the same
order, fN: J * / ' . Thus θ splits.

Observe that our splitting depends upon our choice of N, but is
canonical once N has been chosen. Thus given a diagram

G' C G'

to get naturality, it is merely necessary to use the same N in constructing
the two splittings. Of course, N must be chosen large enough so that both
systems have stabilized. D

Let p be a prime. Let X be a topological space. Let

PI: Hq(X; Z/pZ) -» Hq_2{p^λ)n{X\ Z/pZ)

be the horn-dual of Pn (respectively: Sq£ dual to Sq"). This defines a (left)
^-module structure on H*(X; Z/pZ) where A* is the opposite algebra of
the mod/? Steenrod Algebra A. Let A denote the subalgebra of A
generated by {Pn}™=λ (respectively: generated by {Sq"}^L2) and let A*
denote its opposite algebra. Let Er(X) denote the mod/? homology
Bockstein Spectral Sequence of X and let β ( r ) be the rth Bockstein. Let φ
be the Hurewicz homomorphism and let

r: π*(X) -* π*(Xl Z/pZ) (respectively: H+(X) -> H*(X; Z/pZ))

denote reduction mod p.
We now define some subspaces of PH*(X; Z/pZ)9 the primitives in

the homology of X. Let

Ann H^X Z/pZ)

= [x E PH*(X; Z/pZ) \ x e ker Pj for all Pi E A*}.

Let

£wiH+(X;Z/pZ)

= [x E PH*(X; Z/pZ) \ x E ker Pi for all P£ E i # } .

Let

Jif; Z//?Z) = {x E ̂ ( A ' ; Z//?Z) \x = f*(tn) for some/: 5" -> x).
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Let

MH*(X; Z/pZ)

= [x G Ann H*(X; Z/pZ) \ β{r)x = 0 for all r and either

(1) x = 0; or

(2) x represents a nonzero class in E°°( X) or

(3) x represents a nonzero class in 2?r( X), but

x G Im jβ(r)(Ann #*( JT; Z/pZ)) | for some r).

Let

MSH*(X; Z/pZ) = MH*(X; Z/pZ) Π £ # * ( * ; Z/pZ).

The main result of this section is:

THEOREM 2.3. Lei X be a simply connected space having the homotopy
type of a CW complex of finite type. Let f: X -* X. Suppose that f%
restricted to MSH*(X; Z/pZ) is an injection for all N. Then f(p) is a
homotopy equivalence.

Proof. Following Cohen, Moore, and Neisendorfer [9], §4, let Y
= limrX', the infinite mapping telescope of/. Then 7r^(7) = lim irJiX)

and H*(X) — lim H*(X). Similar statements hold for mod/? homo-

topy and homology.
We have a canonical map θ: X -> Y inducing the obvious maps on

homotopy and homology. Let F be the homotopy-theoretic fibre of
θ: X -* Y. Suppose F{p) is not contractible. Find n such that F(p) is (n — 1)
connected but not n connected. We show that there exists a nonzero x in
MSH*(X; Z/pZ) such that x G Im /*, where i: F-* X. Given such an x9

the hypothesis implies that θ*x φ 0. But this is impossible since x G Im /*.
Thus F(py is contractible and so θ{p) is a homotopy equivalence. Therefore
/(/?) is a homotopy equivalence. So it suffices to show the existence of such
an x.

Case 1. τrn(F\ Z/pZ) Φ 0.
By the mod p Hurewicz isomorphism, Hn(F; Z/pZ) = πn(F; Z/pZ)

Φ 0. Let x — i*(w) for some nonzero w in Hn{F\ Z/pZ). By the Serre
exact homology sequence and Lemma 2.1,

/*: Hn(F; Z/pZ) -» Hn(X/ Z/pZ)
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is injective s o x ^ O . Since

w G SH*(F; Z/pZ) Π Ann H*(F; Z/pZ)

and β(s)w = 0 for all s, x has these properties also. It remains to show

that x satisfies either condition (2) or condition (3) in the definition of

MH*(X;Z/pZ).

If x persists to a nonzero element in E°°(X) we are finished, so

suppose not. Then for some m, x is nonzero in Em(X)9 but x E l m β ( m ) .

We must show that x e β ( m ) (Ann H*(X; Z/pZ)).

Find b E Hn(X) such that order b — pm and rb — x. We adjust b so

that it lies in Im z* as follows:

By Lemma 2.2, find splittings such that

Hn(Y) D t[ίmθt) -+ Hn(X)

ir ir

Hn(Y;Z/pZ) D Im0* - Hn(X; Z/pZ)

commutes. Since b G t(Hn(X))> θ*b G t(lmθ) so i β^^ is defined. Let

V = b- sθ*b. We have

rb' — rb — rsθ^b — x — srθ^b — x — sθ^rb — x — sθ*x — x

since θ*x - θ*i*w = 0. Because pmb - 0, it follows that pmb' - 0. Since

rb' — x and x is nonzero in Em(X), order Z/ = pm. Finally,

so b' — i*a for some a G Hn(F) by the Serre exact homology sequence

Next we adjust α so that order a — order b'.

Since i*(pma) — pmbf — 0, ^ m β = 3^ for some j> belonging to

cokerfl*: Hn+x(X) -+ Hn+x{Y). By Lemma 2.2, cokerfl* is divisible so

y — pmy' for some yf belonging to cokerfl*. Let a' — a — dyf. Then

i*a' = i*a - ijdy' = V τmάpma' = j^wα - pmdy' = ̂ m α - 3y = 0.

Let g be the image of a' under

Sincepmg = 0,g extends to g: P "
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Let un and υn+λ be a basis for H*{Pn+\pm)\ Z/pZ) such that
β(w)t> = u. Then under the composite

Hm{P»+\pm)\ Z/pZ) SSH*(F(p); Z/pZ) ^Hm{X{p)\ Z/pZ)

u goes to x. So if we let x' be the image of v, then

x' E Ann #*(JSΓ; Z//?Z) and β(m)x' = x.

Case 2. πn(F; Z/pZ) = 0.

According to the Universal Coefficient Theorem, (see Neisendorfer
[16], Proposition 1.4), there is a short exact sequence

0 - *n{FiP)) ® Z/PZ - **(F(P); Z/pZ) - Ύoriπ^F^y, Z/pZ) - 0.

So

«*(%„)) ® Z/pZ » W n (F ( / , ) ; Z/pZ) a τrn(F; Z/pZ) = 0.

Therefore πn(F(py) is divisible. Since πn(X(p)) is a finitely generated
Z(;7)-module, it follows that /#: πn(F{p)) -> 7τM(X(/7)) is the zero map. Thus

Since î ĵ is (w — 1) connected but not n connected we can find a nonzero
a in irjίF{p)). By Lemma 2.2, πn(F(p)) is a torsion group so /?*α = 0 for
some s. By replacing a by ps~ιa, we may assume that pa = 0.

Because /#(α) = 0, α = dy for some j> belonging to πn+\(Y(P)). Since
δί/7^) —pa — ̂ ,py — θ#(g) for some g in ^,+ ̂ -y^). Let x be the image
of g under

^ ) \ Z/PZ)

By construction x G SH*(X; Z/pZ). We next show that x G l m ι# and

Let S ί̂/?} denote the homotopy-theoretic fibre of p: Sn -+ Sn. Let k:
pn(p) ~* S"{p} be the inclusion of the ^-skeleton into Sn{p). Let gr and
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y' be the adjoints of g and y respectively. From the homotopy commuta-
tive square

s* C
ip

we get an induced map of homotopy-theoretic fibres b: Sn{p]
We have a homotopy commutative diagram

Ωy'

Pn(p) i i

JrQl

ip

S" £

where the columns are homotopy-theoretic fibrations and the collapse
map, denoted r here, induces reduction mod p on homotopy groups.

(2)

πn+](F{p); Z/pZ) '^ πn+ι(X(p); Z/pZ) β πn+ι(X; Z/pZ)

iΦ iΦ iΦ

Hn+ι(F(p); Z/pZ) U Hn+ι(X{j>); Z/pZ) a Hn+x{X;Z/pZ)

From Lemma 2.1, the long exact homotopy sequence, and the Serre
exact homology sequence, ι# and /* are injective. Also, since we are doing
Case 2, the leftmost map is an isomorphism by the mod p Hurewicz
Isomorphism Theorem.
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From (1) we see that r#(g') = (Ώi)#(bk). In other words, in
%+\(X(P)l Z/pZ), rg — /#(adjoint of bk). Therefore x E Im/* and to
show x φ 0, by diagram chasing from (2), it suffices to show bk Φ 0. But
following (1) across the top, bkj is the adjoint of a, which is nonzero. Thus
x ^ O .

To show x E MH*(X; Z/pZ) it now suffices to show that x repre-
sents a nonzero element in ECC(X). Suppose this is not true. Then there
exists z belonging to Hn+λ(X(p)) such that rz — x and order z < oo. Let s
be the splitting of Lemma 2.2 chosen so that

Hn+ι(Y(P)) => t(imθ,) - Hn+,{X(p))

•I r X r i r

Hn+ι(Y(p); Z/pZ) D I m ^ - Hn+ι(X(p); Z/pZ)

commutes. Since z E t(Hn+λ{X^p))), sθ*z is defined. Let z'" = z — sθ*z.
Since x E Im /*, θ*x = 0 and so

rz' = rz — rsθ^z — x — sθ*x = x.

Also

^^z' = ^^z - θ*sθ*z = ^^z - 0*z = 0

so z' = /*(w) for some w E Hn+ι(F{p)).
We have /̂ rvr = rz' = x = i*ή>(bk). Since i'# is a monomoφhism, this

implies rw — φ(bk). Therefore diagram chasing from

••• ^ H Λ + ι ( F i p ) ) - H H + ι { F ( p ) ; Z / p Z ) - H n ( F ( p ) ) -> •••

shows that j#(bk) = 0. But as noted earlier, y#(6/:) is the adjoint of α,
which is nonzero. This is a contradiction, so x must be nonzero in

D

III. Some atomic spaces. In this section homology is assumed to be
with Z/pZ coefficients unless stated otherwise.

DEFINITION 3.1. Let X{p) be (n - 1) connected. Then X is called
mod p atomic if:

(\)Hn(X) = Z/pZ
(2) f: X -* X such that / induces an isomorphism on Hn{ X) implies

that fip) is a homotopy equivalence.
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X is called atomic if it is mod p atomic for all p.

Clearly X atomic implies that X is indecomposable in the sense that if
X^YXZ then either Y » {pt.} or Z « {pt.}.

Some trivial examples of atomic spaces are Sn and Ω5'2 w + 1. A nontriv-
ial example is given by:

THEOREM 3.2 {Cohen and Mahowald). Ω 2S 2 w + 1 is atomic for n > 1.

Proof. See [5].

REMARK 1. The corresponding statement for n = 1 is that Ω25'3(3) is
atomic. This is also proved in [5].

REMARK 2. If p > 2, Ώ2S2n cannot be mod p atomic since after
localization at/?,

QS2n ^ S2n~λ X ΩSΛn~ι.

From now on we shall assume that/? is odd and we shall take the term
"atomic" to mean mod p atomic for all odd primes p.

THEOREM 3.3. Assume n>\. Then MSHq(ΩS2n+ι{p}) = 0 for q>
2n — 1 // and only if there are no elements of Arf invariant 1 mod p in
π2n(p-\)-2

COROLLARY 3.4. ΩS2n+ι{p} is atomic for all n such that ^in{p-λ)-2

no elements of Arf invariant 1 mod /?. In particular if n φ pk for some k
then Ω5 2 " + \ /?} is atomic. G

Applying the theorem of Ravenel ([19]) gives:

COROLLARY 3.5. Ifp > 5 andn Φ 1 orp then ΩS'2n+1{/?} is atomic. D

Proof of Theorem 3.3. As a Hopf Algebra over the Steenrod Algebra,
is given by the following (see [6]):

- 0 E[alnpk_x] ® <g) Z/pZ[blnpk_2] ® Z/pZ[c2n]
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with the generators primitive and

PC2n = a2n-\->

= P\hnp-2

From this description we see that aln_x and b2np_2 form a basis for

Mff^QS 2 1 1 ^/?}) . It remains to show that blnp_2 e SH*(QS2n+ι{p}) if

and only if there exist elements of Arf invariant 1 mod p in ^2n(p-\)-2-

Suppose first that there exists h: S2np~2 -» ίlS2n+ι{p) such that

K^inp-i) = *2πP-2 L e t Λ ' : S 2 ^ ~ 3 -» Ω2S2n+ι{p} be the adjoint of h.

Let σ* denote the homology suspension. Then σ*h*(ι2np_3) — h*{ι2np_2)

i

Localize at/? and let π: Ω 2 5 2 w + 1 -> 5 1 2 "" 1 be the map constructed by

Cohen, Moore, and Neisendorfer in [7]. According to Cohen, Moore, and

Neisendorfer ([8], Theorem 1.1) π o Σ 2 - p: S2n~ι -> S2n~ι and Σ 2 o TΓ =

/?: Ω 2 ^ 2 ^ 1 -> Ω 2 5 2 " + 1 . Thus we get a map of homotopy-theoretic fibra-

tions

1/

From the far left square we can see that z* induces an isomorphism

on H2np_3 so /*/** ^ 0 on H2np_v Therefore by the Hurewicz iso-

morphism, ih' is a generator of π2np_3(C(n)). Let f = jih*. Since

2 2 : ^ - s ί S 2 " " 1 ) ^77 2 ^_ 3 (Ω 2 5 2 r t + 1 ) is onto, hh' = Σ 2 g for some

g belonging to τr 2 r t / 7_ 3(5 2 / I- 1). Thus / ' = 7 % ' = TΓA;/*' = ττΣ2g = pg.

So there exist elements of Arf invariant 1 mod p in π2n(p_l)_2 by Theo-

rem 1.1.

Conversely if there exist elements of Arf invariant 1 mod p in

^inip-x)-! ^ e n there exists g in πlnp_3(S2n~ι) such that/?g =js where 5 is

a generator of π2np-3(C(n)). The middle square of (*) is a homotopy

pullback and js = pg = πΣ2g, so s and Σ 2 g can be used to define
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a map K: S2np'3 -» Q2S2n+\p}. It is easy to see that if we let
h: S2np~2 -» ΏS2n+ι{p) be the adjoint of W then K{ι2np_2) = blnp_2 so
that b2np_2GSH^S2n+\p}). D

Assuming n > 1, as a Hopf algebra

with the generators primitive. (See [6]). For convenience we will write
these generators as an(j, k), bn(j, k), and cn{k) respectively and when no
confusion is possible, we will drop the n.

From the Nishida relations the actions of β and P* are as follows:

βa(j,k)=b(j,k), ;>1,

βc(k) = a(0,k), * > l ,

βa(0, k) = βb(j, k) = βc(0) = 0,

P\fi(k) = -(c(k-l)Y,

PlΦ) = (» - l)(C(0))',

Since ^(Ω 3^ 2""^ 1) -»H*{C(n)) simply projects off of c(0), we can
deduce the action of β and Pj. in H#(C(n)). We easily calculate that
MHj)ί(Q3S2"+ι) must be contained in the subspace generated by the
elements

(l)α(0,1),

Similarly MH*{C(n)) is contained in the subspace generated by
(l)α(0,l),
(2)b(\,k),k>\.

LEMMA 3.6. Assume n > 1. Then for all k, b{k,\) does not belong to
SH*(&S2n+i) and its image does not belong to SH*(C(n)).
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Proof. If 6(1, k) were spherical in SHJS^S2n+ι) then its image in
H*(C(n)) would be spherical also, so it suffices to prove the second
statement.

Toda ([22]) constructs a homotopy-theoretic fibration

( S e e a l s o [ 2 0 ] , T h e o r e m 1 3 . ) S i n c e H * ( b n ( l 9 k)) = bnp(\, k - l ) f o r k > 2 ,

if 6Π(1, k) G SH*(C(n)) then bnp(l, k - 1) E SH*(C(np)). So it suffices
to prove the lemma for k = 1.

Suppose that 6(1,1) G SH*(C(n)). Because | 6(1,1) |< 2np2 - 4
which is the connectivity of C(np), 6(1,1) lifts to an element in
SH2mp__2(2S2m+\p}) for m = np - 1. But this contradicts Theorem 3.3,
since m is not a power of/?. Therefore 6(1,1) £ SH*(C(n)). D

THEOREM 3.7. C{n) is atomic for n > 1.

Proof. Using Lemma 3.6 we see that MSHq{C{n)) — 0 for q >
2np — 3 so this is immediate from Theorem 2.3. D

THEOREM 3.8. Ω 3 ^ 2 ^ 1 is atomic for n > 1.

Proof. Let/: fi352n+l -> Ω3S2"+ 1 such that/induces an isomorphism
o n H2n_2(Ώ3S2n^1). It is well known that a(0,1) £ S^(ί2 3 S 2 l I + 1 ) by the
non-existence of elements of Hopf invariant 1 in 7r2n(;?_1)_1, the argument
being similar to the proof of the b' =» c step in the proof of Theorem 1.1.
Thus using Lemma 3.6, MSH*(Ώ3S2n+ι) is contained in the subspace
generated by {(c(0)pt)}™=0. So by Theorem 2.3, to show that / is a
homotopy equivalence it suffices to show that f*((c(0))p) =£ 0 for all /
and for all N. But this is easy to see by considering the action of /* on
cohomology with Z(p) coefficients. D

REMARK. F. Cohen, F. Peterson, and the author have recently shown
that Ω3^2"^1 is also mod 2 atomic for n > 1, using different techniques.

For our final application, suppose n > 1 and let D{n) denote the
homotopy-theoretic fibre of π: Ω 2 ^ 2 ^ 1 -> S2n~K Using [8], Lemma 2.1
and the fact that
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we can construct a homotopy-theoretic fibration

The main theorem of [20] asserts that this fibration splits when n = p.

THEOREM 3.9. The homotopy-theoretic fibration

cannot split unless ^in(p-\)-2 contains an element of Arfinvariant 1.

Proof. If the fibration splits then the generator of πlnp-.3(C(n)) lifts to

a map from S2np~3 to Ώ2S2n+ι{p) and this results in the same situation

as occurred in the proof of Theorem 3.3 D
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