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INTEGRAL COMPARISON THEOREMS

FOR RELATIVE HARDY SPACES OF SOLUTIONS

OF THE EQUATIONS Δw = Pu

ON A RIEMANN SURFACE

TAKEYOSHI SATO

We consider two partial differential equations of elliptic type Δw =
Pu and Δw = Qu, which are invariantly defined on a Riemann surface R.
M. Nakai showed that the Banach spaces PB, QB of bounded solutions
on R of these equations are isometrically isomorphic under the condition
jR\P — Q I < +oo, where it is assumed that R is of hyperbolic type. Let
PHξ and QHj?, 1 < p < 4- oo, be the relative Hardy spaces of quotients
of solutions of the preceding equations by elliptic measures of R. In this
paper we shall prove that the above condition is also sufficient for PHξ
and QHξ to be isometrically isomorphic. For this purpose we shall
introduce a mapping between the P-Martin and β-Martin boundaries of
/?, and give some properties of this mapping.

1. Introduction. Let R be a hyperbolic Riemann surface and P a
density on R, that is, a non-negative Holder continuous function on R
which depends on the local parameter z = x + iy in such a way that the
partial differential equation

(1.1) Δw = Pu, Δ = d2/dx2 + d2/dy2,

is invariantly defined on R. A real valued function / is said to be a
P-harmonic function (or P-solution) on an open set U of R, if / has
continuous partial derivatives up to the order 2 and satisfies the equation
(1.1) on U.

The totality of bounded P-harmonic functions on R is denoted by
PB(R). Then, PB(R) is a Banach space with the uniform norm

11/11 = sup \f(z)\.
z<ΞR

H. L. Royden [10] considered the pair of differential equations (1.1) and

(1.2) Δa = ρ W ,

where Q is another density on JR, and he proved that, if the densities P
and Q satisfy the condition:

(1.3) c~ιQ<P<cQ
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outside a compact set of R, then there exists an isometric isomorphism
between the Banach spaces PB(R) and QB(R). On the other hand,
concerning this comparison problem M. Nakai [8] gave a different crite-
rion from (1.3) for PB(R) and QB(R) to be isomoφhic and proved the
following theorem: If two densities P and Q on R satisfy the condition

(1.4) ί\P(z) - Q(z)\{Gp(z,w0) + GV{z,wλ)} dxdy<+π
JR

for some points w0 and w{ in 2?, where Gp(z, w) and GQ(z, w) are Green's
functions of R associated with (1.1) and (1.2) respectively, then Banach
spaces PB(R) and QB(R) are isomoφhic.

A. Lahtinen [2] considered the equation (1.1) for densities P which he
called acceptable densities. Acceptable densities can also have negative
values, and so, P-harmonic functions do not obey the usual maximum
principle. He gave generalizations of Nakai's comparison theorem for
acceptable densities and also showed, in [3], that for non-negative densi-
ties Royden's condition (1.3) is a special case of Nakai's condition (1.4).

The P-elliptic measure of R is, by definition, a P-harmonic function
on R which takes the constant 1 at the ideal boundary of R and is denoted
by ep. A quotient of a P-harmonic function on R by ep is called a
e-P-harmonic function. Then, the relative Hardy class, denoted by
PHξ{R), 1 <p < +oo, of e-P-harmonic functions is defined by the way
analogous to that of the Hardy class HP(R) of harmonic functions on R.
Recently, the present author [12] showed existence of an isometric isomor-
phism between the relative Hardy spaces PHξ(R) and QHξ{R), 1 <p <
+ oo, related to the equations (1.1) and (1.2) respectively, when the
densities P and Q satisfy the above Royden's condition (1.3). And, he also
has considered in [11] a comparison problem between the relative Hardy
space PHξ(R), 1 <p < +oo, and the Hardy space HP{R) of harmonic
functions on R under the Nakai's condition (1.4) in which Q = 0.

The puφose of this paper is to extend the theorems cited above to
one in which we assume Nakai's condition (1.4) to be valid: if P and Q
satisfy the condition (1.4), then the relative Hardy classes PHξ(R) and
QHξ{R), 1 <p < + oo, are isometrically isomoφhic. For the sake of this
it is necessary to consider a measurable transformation tPQ: Δ°PQ -> Δ°QP

between subsets Δ°PQ and Δ°QP of P-Martin and β-Martin boundaries of R.
In [12] we have already constructed the measurable transformation tPQ\
Δpρ -» ΔQP between subsets of P-Martin and Q-Martin boundaries of i?,
which will be extended to the transformation tPQ: Δ°PQ -» Δ°QP, that is,
Δ°PQ D Δpg, Δ°QP D ΔQP and tPQ — tPQ on Δ]>Q. For fundamental proper-
ties of P-harmonic functions we refer to the works of Myrberg [5] and
Royden [10].
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2. Reduced functions and mapping of P-solutions to g-solutions. By

a regular region we shall always mean a connected open set in the
Riemann surface R whose boundary is composed of at most a countable
number of analytic curves clustering nowhere in i?. A sequence {Rn} of
relatively compact regular regions in R is called an exhaustion of R if
RnORn+l and R= U?=lRH.

Let K be a relatively compact regular region and / a continuous
function on the boundary dK of K. Then, there is a unique continuous
function u on the closure K of K which is P-harmonic on K and is equal to
/ on the boundary dK of K. This function u is the solution of Dirichlet's
problem on K for boundary value / with respect to the equation (1.1),
which is denoted by Pf

κ. The notation Qf is also understood as above.
And, for a lower semi-continuous or upper semi-continuous function / on
the boundary of K we can also define Pf

κ and Qf by taking a sequence of
continuous functions converging to /, which are P-harmonic and Q-
harmonic on K respectively.

For two densities P and Q, Gp(z, w) and GQ{z, w) are Green's
functions of R with poles w associated with the equations (1.1) and (1.2)
respectively. For a regular region D Green's functions of D with poles w in
D associated these equations are denoted by GP(D, z, w) and GQ(D, z, w)
respectively. We refer to Myrberg [5] for the existence and properties of
Green's function of the equation (1.1).

DEFINITION 2.1. Let K be a relatively compact regular region in R.
We define transformations T*Qf and TgPf of real valued bounded con-
tinuous function/defined on K as follows:

Tκ f(z) = f(z) 4- -
1PQJ\Z) J\Z) ~ 9

and

TξPf{z) =f(z)+4zl (Q{w) - P(w))Gp(K,w, z)f{w) dudυ,

where w — u + iυ.
The next lemma follows directly from Green's formula (C. F. Nakai

[8] and Lahtinen [2]).

LEMMA 2.1. For a continuous function f on the boundary of a relatively

compact regular region K, TfQ(Pf

κ) = Qf on K.
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LEMMA 2.2. Let u be a continuous function on the closure of a relatively
compact regular region K which is P-harmonic on K. Then, it follows that

TP

κ

Qu = TP

κ

Q(P*dκ) = QfauWK on *•

Proof. From the preceding lemma this lemma follows. D

DEFINITION 2.2. For two densities P and Q on R we denote by PQ(R)
the class of all those P-harmonic functions f on R which satisfy the
condition:

(2.1) j\P{z) - Q(z)\Ge(z,wo)\f(z)\dxdy<+<x>

for some point w0 in R, and by QP(R) the class of all those β-harmonic
functions g on R which satisfy the condition:

(2.2) j\Q(z) ~ P(z)\Gp(z9 wo)\g(z)\dx dy<+π

for some point wQ in R.

IΐfGPQ(R) and g G QP(R\ then (2.1) and (2.2) hold at all points of
R by Harnack's inequality. PQ(R) and QP(R) are real linear spaces with
respect to the usual definitions of addition and scalar multiplication of
real numbers.

DEFINITION 2.3 (Nakai [8]). Let / be in PQ(R). Then, the linear
transformation TPQf of f is defined by

(2.3) TPQf(z) =M+^f{P{w) ~ Q(w))Gβ(z,w)f(w)dudv,

where w = u + iv. For g in QP(R)TQPg is defined by

(2.4) TQPg(z) = g(z) + JϊfR(QW ~ PM)GP(z, w)g(w) du dυ.

An open set D in R is said to be regular whenever its boundary dD is
composed of at most a countable number of analytic curves clustering
nowhere in R. Let D = U* = 1 D

n be the decomposition of D into con-
nected components Dn of D, where each Dn is a regular region in R.
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Taking a regular open set D of R in place of the surface R in

Definition 2.2 we define the linear spaces PQ(D) and QP(D) as follows:

f e.PQ{D)'ύ and only if

\P(z) - Q{z)\G*{D\ z, wn)\f(z)\dx dy < + oo
n

for every n, where wn is some point in D\ QP(D) is also defined by the

same way. Then, the linear transformation Γ^/of / i n Pβ(D) is defined

by

Γ£/1 Z>" - Γ^J/, if P 2 Q on /)»;

TP

D

Qf\D«=f, ΪΪPΞΞQσaD",

where/1 E is the restriction of / to the set E.

LEMMA 2.3 (Lahtinen's lemma [2]). Le/ {DJ te αw increasing sequence

of regular open sets of R such that UJlj Dif = i?. For a positive P-solution u

on R and a sequence {ut} of P-solutions ut in PgiD^) such that lim/_ + 00 w

= w απί/ rΛ r̂e exists v in PQ(R) with | wf. | < υ, /Λew ΓPβw w we// defined and

(i) l i m ^ + 0 0 ΓJ^M,. = ΓPβw,

(ii) ΓpρW w Q-harmonic on R.

This lemma was given by Lahtinen in the case that the sequence {£>,}

is an exhaustion of the Riemann surface i?, that is, each Di is relatively

compact regular region in R.

Proof, For any z in R we may suppose that z is in Z>z. Let D\ be the

connected component of Di which contains the point z. Since the sequence

{GQ(DI,z,w)} of Green's functions of regular regions /)/ converges

increasingly to Green's functions GQ(z, w) of R, Lebesgue's bounded

convergence theorem implies that

lim ί (P(w) - Q(W))GQ(D;9 W, Z)M,.(W) du dv

= /" (P(w) - β(w))Gβ(w, z)u(w) du dv,

JR

from which it follows that

lim T&ul(z)= lim T^u,(z) = TPQu(z). D
|-»+00 ί-*+00
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Let i?* be a metrizable compactification of the Riemann surface R

and denote by Δ the ideal boundary of R in this compatification, that is,

Δ = R* — R. Now, we recall properties of the reduced function of a

P-harmonic function on R with respect to a compact subset A of Δ.

A closed subset F of R will be said to be regular if its boundary dF

consists of at most a countable number of analytic curves clustering

nowhere in R. For a positive continuous function u on a regular closed

subset F of JR, let un be a function on the boundary d(Rn — F) such that

un\RnΓ)dF=u\RnndF

and

un\dRnΠ(R-F) = 0.

Then, P-harmonic functions PM*"~F form an increasing sequence, whose

limit is P-harmonic on R — F and denoted by P^~ F . For a compact set A

in Δ there exists a sequence {/]*} of closed sets in i?* converging

decreasingly to A such that the interior of F* contains A and R Π F* is a

regular closed set in R. In the following, for a set i7* in Z?* we shall denote

by F the set F* Π i?.

DEFINITION 2.4 (Martin [4], Brelot [1], Nakai [7]). Let u be a positive

P-harmonic function on R, and let (P)*} be a sequence of closed sets in

R* given as above. Then, the sequence {Pζ~~Fi} converges decreasingly to

a P-harmonic function which is called the reduced function of u relative to

the set A in Δ, and which is denoted by Lp

Au. Similarly, for positive

β-harmonic function v on i?, we have

φ = lim Q*;F>.
I-*+O0

THEOREM 2.4. Let A be a compact subset of the ideal boundary Δ of R

with respect to the compatification /?*. For a positive P-harmonic function u

in PQ(R) we have

TPQ{Lp

Au) = L${TPQu) onR.

Proof. For a sequence {F*} of closed sets in /?* used in Definition 2.4

the sequence of P-harmonic functions P*~Fi converges to Lp

Au as n -» + oo,

and I Pu~Fi |— u f° r e a ° h /, where Ft — F* Π R. Then, Lemma 2.3 gives

that

TPQ{Lpu)= lim 7*f
/ - • +00
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And, since for an exhaustion {Rn} of R we have

lim
«-»+00

and

it follows, from Lemmas 2.2 and 2.3, that

(2.5) T&

where the equality

(2.6) Tjf^fi = T?QF u = u on RnΠ 3fJ

is applied.
By the definitions of TPQ and T*Q¥\ the inequality

GQ(R - Fi9 z9 w) < G<2(z, w), z, w e Λ

implies that

- Q(w)\GQ(z, w)u(w) du do.

where

I

~ VJR

Since q(z) is a potential with kernel GQ(z, w) of the measure

-\P(w) - Q(w)\u(w)dudυ,
IT

as in the case of harmonic Green potentials we can show that L$q — 0 on
R (C. F. Brelot [1]). Then, we have

β R — E SΛR — F.

(TPQUU ~ Q(Tfc*iu)

by which the equality

shows that

(2.7)

lim QR

q;
F> = L%q = 0

lim QfTp^)t = lim gfr//^)*
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Therefore, we have, by (2.5), that

QfeX = L${TPQu). D

DEFINITION 2.5. We denote by PQ(R) the class of all those P-harmonic
functions in PQ(R) whose transformation by TPQ belongs to the class
QP(R), and by Q'P(R) the class of all those β-harmonic functions in
QP(R) whose transformation by TQP belongs to the class PQ(R)

DEFINITION 2.6. We denote by PQ(R) the class of all those P-harmonic
functions u in PQ(R) for which TQPTPQu - u on R, and by QP(R) the
class of all those g-harmonic functions υ mQ'P(R) for which TPQTQPυ — υ
onR.

Later on it will be shown that, if the densities P and Q satisfy Nakai's
condition (1.4), then PQ(R) and QP(R) are not empty.

By the definition, it is evident that PQ(R) C PQ(R) and QP(R) C
QP(R). And, classes P;(Λ), P°(R) (resp. Q'P{R\ Q°P(R)) are Unear
subspaces of PQ(R) (resp. QP(R)). It may be shown that TPQ is an
isomorphism between linear spaces PQ(R) and QP(R), and TQP is its
inverse.

We recall the definition of the P-elliptic (or P-harmonic) measure of a
Riemann surface from the work of H. Royden [10]. For Rn in an
exhaustion {Rn} of i?, let eζ be the P-harmonic function on Rn continu-
ous on its closure which is identically one on the boundary dRn of Rn. For
? > 0 w e have 0 < eζ < 1. Since the maximum principle implies that the
functions eζ form a monotone decreasing sequence of positive P-harmonic
functions, this sequence converges uniformly on each compact set in R to
a non-negative P-harmonic function ep, which is called the P-elliptic (or
P-harmonic) measure of R. Similarly the β-elliptic measure of R is also
defined and is denoted by eQ. The P-elliptic measure ep is either identi-
cally zero or else everywhere positive. In the second case we say that the
pair (/?, P) is hyperbolic provided P ^ 0. The P-elliptic measure ep of R
may be characterized as the largest P-harmonic function on R which is
bounded by 1.

The following theorems give a sufficient condition for the P-elliptic
measure ep to belong to the class PQ{R) and PQ(R).

THEOREM 2.5. // the densities P, Q on R satisfy Nakai's condition
(cf.Nakai[S\):

(2.8) f\P(z) - Q(z)\{Gp(z,w0) + G%z,wλ)} dxdy< +oo
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for some points w0, wx in R, then the P-elliptic measure ep of R belongs to
the class PQ{R) and the Q-elliptic measure eQ of R belongs to the class
QP(R). In this case the transform TPgep is the Q-elliptic measure e@ and
TQPe

Q is the P-elliptic measure ep.

Proof. By the inequality ep < 1 and Nakai's condition (2.8), Lemmas
2.1 and 2.3 imply that

oni?.= lim
«-> + 00

And, (2.8) gives that ep G PQ(R) and eQ G QP(R). Therefore, we have
that ep G P^(R) and eQ G Q'P(R). D

THEOREM 2.6. If the densities P, Qon R satisfy the condition (2.8), then
the P-elliptic measure ep of R belongs to the class PQ(R) and the Q-elliptic
measure eQ of R belongs to the class ^

Proof. This theorem is an immediate consequence of Theorem 2.5. D

3. Relation between the P-Martin and β-Martin boundary. Nakai
[7] studied the Martin theory [4] for the equation (1.1) on a Riemann
surface R and showed that the situation was similar to that of harmonic
case as was treated by Martin. Let i?* be the compatification of R in this
sense, which is called the P-Martin compactification of R. Let ΔP be the
ideal boundary 2?* — R. The P-Martin kernel with origin z0 in R is
denoted by Kp(z, a\ (z, a) G RX R*P, which satisfies that Kp(z0, a) = 1,
a G i?*, and is finitely continuous on R X Δp. For points a{, a2 in i?£ the
distance between them is given by

dP(al9a2)= 2
n=\

sup
z<=Rn

Kp(z,a2)

Kp(z,ax) , a2)

where {Rn} is an exhaustion of R. P-Martin kernel is also written by Kp,
t h a t i s , K p ( z ) = K p { z , a), ( z , a ) G R X Δ P .

Let R* be any metrizable compactification of R and Δ be the ideal
boundary R* — R. The reduced function Lpu of a minimal P-harmonic
function u with respect to a subset A of Δ is equal to u or zero, and there
exists at least one point a in Δ such that Lp

a^u = u on R. (By definition a
positive P-harmonic function u on JR is said to be minimal if u > f for
some non-negative P-harmonic function f on R implies that there exists a
constant a such t h a t / = <xu on R). In this case, the point a is termed the
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pole of u on Δ (C. F. Brelot [1]). The next theorems are fundamental

properties of P-Martin boundary, whose proof we refer to Martin [4],

Brelot [1] and Nakai [7].

THEOREM 3.1. Every minimal P-harmonic function u on R has a unique

pole on the P-Martin boundary Δ P .

THEOREM 3.2. If P-Martin kernel Kζ, a E Δ P , is minimal, then its pole

on Δ P is the point a. If Kζ is not minimal, then L^Kζ — 0.

THEOREM 3.3. For a positive P-harmonic function u on R and a compact

set A in ΔP, there exists a measure μonA such that

L^u(z)=fκp(z,a)dμ(a), z E R.

A point a in Δ P which is the pole of some minimal function on R is

called a minimal point of Δ p . The set of all minimal points of Δ P is

denoted by Δ P 1 . Δ P 0 denote the set of all non-minimal points of Δ P and

it is a countable union of compact sets of Δ P . The next well-known

theorem is important in this paper.

THEOREM 3.4. For any positive P-harmonic function u on R there exists

a unique measure μ on Δ P such that μ ( Δ P 0 ) = 0 and

u(z) = f Kp(z,a)dμ(a), z £ l

•V,
This measure μ is characterized by the relation

Lp

Au{z)=(κp(z,a)dμ{a), z G R,
JA

which holds for every closed subset A oί AP.

This measure is called the canoncial measure of u on the P-Martin

boundary.

DEFINITION 3.1. We define subsets of Δ P , , Δ e , by the following:
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The following two properties on the sets ΔPQ, ΔQP, which have been

shown by Sato [12], are cited with proofs for convenience sake.

LEMMA 3.5. Let w0 be a fixed point in the Riemann surface R. The

function defined on ΔPl by

(3.1) a-*[ \P(z) - Q{z)\G%z, wo)Kp(z, a) dx dy

is lower semi-continuous. Then the set ΔPQ is Borel measurable.

Proof. Let m be the measure defined by

m(E) = jJP(z) - Q(z)\G<*(z9 w0) dx dy

for a Borel measurable subset E of R, where wQ is the fixed point in R.

Since the function (3.1) is represented as follows:

fκQ(z,a)dm(z) = lim [ K^{z, z) dm(a),

this lemma is easily shown by the fact that the function given by

KQ(z,a)dm{z)

is continuous on Δpι. D

By changing the roles P and Q in the preceding proof the measurabil-

ity of ΔQP is shown.

LEMMA 3.6. Let u be a non-negative P-harmonic function on R which

belongs to the class PQ(R), and let μ be the canonical measure in the Martin

integral representation of u. Then, the set ΔPλ — ΔPQ has μ-measure zero,

i.e.

μ(ΔPλ - ΔPQ) = 0.

Similarly, for the canonical measure v of a non-negative Q-harmonic

function v in QP(R), the set ΔQλ — ΔQP has v-measure zero.

Proof. For each positive integer n, let En be a set of all points a in ΔP x

such that

ί\P(z)~Q(z)\Ge(z,wo)Kp(z,a)dxdy>n,
JR
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where w0 is a fixed point in R. Since En is measurable by Lemma 3.5 and,

by Fubini's theorem,

nμ{En) <φjP(z) - Q(z)\G%z,wo)Kp{z,a)dxdy}dμ{a)

< / j / \P(z) ~ (Q)\GQ{z, wo)Kp(z, a) dx dy) dμ{a)
•V. I/a J

= / \P(z) - Q(z)\G<*(z, wo)u{z) dx dy < + oo,
JR

we have

< i / |P(z) - β(z)|Gβ(2, wo)«(z) dx dy
n JR

for every positive integer n. Hence it follows that

μ(APΛ-APQ)=0. D

If a boundary point a of the P-Martin compactification belongs to the

set ΔP£, then the integral

/ \P(z) - Q{z)\GQ{z, wo)Kp(z, a) dx dy

is finite for some point w0 in i?, and the transformation TPQKζ is

well-defined. Similarly, for b in ΔQP the transformation TQPK$ is defined.

Since TPQKζ is a non-negative g-harmonic function on i?, Harnack's

inequality implies that, if TPQKζ vanishes at one point, it vanishes

identically.

LEMMA 3.7. For a fixed point w0 in the Riemann surface R the function

of a in ΔPQ given by

a^f \P(z) - Q(z)\Gp(z, wo)TPQKζ{z) dx dy

is measurable on ΔPQ. Then, the set Δ'PQ is measurable in ΔPX.

Proof. Since the function

is measurable on the product space R X R X ΔPQ, the function
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{z,a)^TPQKp

a{z)

= Kp(z, a) + ̂ jW) ~ QU))GQ(ζ, z)Kp{ξ, a) dξ dη

is a measurable function of (z, a) in R X ΔPQ, where ζ = £ + I'TJ. From
the measurability of the function

(z, α) -*\P(z) - Q(z)\Gp(z, wϋ)TPQKp

a{z),

our theorem follows. D

LEMMA 3.8. Let u be a positive P-harmonic function in PQ(R), and let μ
be its canonical measure in the Martin representation. Then, we have

TPQu(z)=j^ TPQKp(z)dμ(a), z E R.

Proof. For a point z in R, let Fz be the function defined by

Fz(w, a) = (P(w) - Q(w))G<*(w9 z)Kp(w, a)

for (w, a) in R X ΔPQ. Since Lemma 3.6 shows that ΔPλ — ΔPQ has
μ-measure zero, it follows that

\Fz(w, a)\dμ(a)> dudv
Q J

= j\P(w) - Q(w)\GQ(w, z)u(w) dudv < +00,

where w — u + iv. Then, Fubini's theorem shows that Fz is an integrable
function on R X ΔPQ with respect to the product measure of the area
measure on R and the canonical measure μ of w, from which it follows, by
Fubini's theorem, that

TPQu(z) = f Kp(z,a)dμ(a)

U Kp(w)dμ(a)\dudv

XGp(w, z)Kp(w, a) dudυj dμ{a)

f TPQKp(z)dμ(a), zGR.
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LEMMA 3.9. Let u be a positive P-harmonic function in PQ(R) and let μ

be its canonical measure in the Martin representation. Then, the set ΔPQ —

Δpg has μ-measure zero: μ(ΔPQ — Δp β ) = 0.

Proof. Let φ be the function defined by

φ(a) = ί\P(z) - Q(z)\Gp(z,w0)TPQκ;(z)dxdy, a G ΔP β,
R

where w0 is a fixed point in R. Let Fn be the measurable set in Δ p ρ given

by

FH= {a G ΔPQ: φ(a) > n)

for each positive integer n. Then, we have

= fjQ(z) - P(z)\Gp(z, wo)U TPQKp

a{z) </ju(α)J dx dy

= f \Q(z) - P(z)\Gp(z, wo)TPQu(z) dxdy<+n,
R

where the last equality is obtained by Lemma 3.8. Since, for any positive

integers,

n=\

we obtain this theorem by the preceding inequality. •

THEOREM 3.10. Let u be a positive P-harmonic function in PQ(R), and

let μ be its canonical measure in the Martin representation. Then the set

Δ p x — Δp e has μ-measure zero: μ(Δ P x — Δp^) = 0.

Proof. Lemmas 3.6 and 3.9 give this theorem by

Δp.i ~ &PQ = (Δ P f l - Δp β ) U ( Δ p e - Δ'PQ). D

Now, we define a subset of Δ Λ 1 on which the canonical measure

representing a positive P-solution in PQ(R) is distributed.
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DEFINITION 3.2. We define subsets Δ°PQ, Δ°QP of Δf

PQ, Δ'QP by

Δ°PQ = [a G Δ'P β: TQP{τPQKζ)(z0) > 0 for some point z0 in i?},

Δ°ρp = { έ G Δ ^ : Γ P β (Γ ρ p^:f)(z 0 ) > 0 for some point z0 in i?}.

The definitions of Δ°PQ and Δ^p are independent of the point z0 in i?,

for a non-negative P-harmonic function vanishes identically whenever it

vanishes at one point in R.

LEMMA 3.11. For a fixed point w0 in the Riemann surface R the function

of a E Δ'PQ given by

a -* TQP{TPQKp

a){w0)

is measurable on Δp^. Then the set ί£PQ is a measurable subset of Δpx.

Proof. In the same way as that in the proof of Lemma 3.7, we may

show this lemma. D

LEMMA 3.12. For a point a in ΔPQ with TPQKζ > 0 there exists only one

point b in ΔQX such that

onR.
M. \S Li M ^S Li N \J f U

For a point b in ΔQP with TQPK§ > 0 there exists only one point a in

Δpι such that

onR.

Proof. Let b be a pole on the ideal boundary ΔQ of the minimal

P-harmonic function Kζ, that is, Lp

b^Kζ = Kζ on R. Then, it follows

from Theorem 2.4 that

(3.2) Lfb)(TPQKp

a ) = TPQ{L[b)Kζ) = TPQKζ onR.

Since the positive β-harmonic function TPQKζ is represented by the

canonical measure v on ΔQ y.

TPQKζ{z) = fκ<*(z9 b) dv{b), zGR,

Theorem 3.4 shows that

Lfb)(TPQKζ) = v{{b}) X K$ onR,
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by which (3.2) gives that

(3.3) TPQKζ = TPQKζ(z0) X Kg on i ί ,

where b is in ΔQ λ.
The uniqueness of poles of Kζ on Δ^ is shown easily by the equality

(3.3). D

DEFINITION 3.3. Since Lemma 3.12 shows that the β-harmonic func-
tion TPQKζ, a E Δ°PQ, is minimal, we may define a transformation

/ * : Δ 0 ^ - ύPQP

by assigning to a point a in Δ°PQ a point b in ΔQP such that

TPQKζ = TPQKζ(z0) X Kg o n * ,

where it is easily seen by

TQPKg = TQPKg(z0) X Kζ onR

that the point b is contained in Δ°QP.
Similarly, a transformation

r . aQP -> ZΛpρ

is defined by assigning to a point b in Δ^p a point a in Δp^ such that

TQPK<? = TQPK?(z0) X Kζ onR.

THEOREM 3.13. The transformation tPQ: ££PQ -* ϊ£QP is one-to-one and
onto, and the transformation tQP: Δ°QP -» Δ°PQ is its inverse.

Proof. If a point b in ΔQ , is the pole on ΔQ of Jff, a G Δpβ, then the
point a is the pole on ΔP of JSΓ .̂ Hence we have, for a in Δp^,

(3.4) TQPK%{a) = TQPK%{a)(z0) X Kp

a on R.

If tPQ(a) = tPQ(a') for points a, ar in Δ°Pβ, then it follows that Kζ = Kζ
on R, and so, a — ar.

And, the equality (3.4) implies that tQP(tPQ(a)) = a,a<Ξ Δ°PQ. D

To investigate relations between the sets Δp^ and Δ^ p we have to give
a proof of the measurability of the transformations tPQ, tQP (cf. Sato [11;
12]). For this purpose we identify ideal boundaries Δ p , ΔQ of R with
subsets of the product space of the real lines, respectively. Let {wt} be a
countable dense set of R. To a point a in ΔP (resp. b in Δ^) we assign a
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point mP(a) (resp. mQ{b)) of the product space Π ^ ! /, (/, is the real line
for all positive integers i) whose ith coordinate is Kp(wi9 a) (resp.
KQ(wi9 b)) for each i. Then, the mappings

are continuous and one-to-one and also their inverse mappings

nip1: m P (Δ P ) ->Δp,

m^λ:mQ(ΔQ) ^ ΔQ

are continuous. Therefore the mappings

mP: Δp^mp(ΔP),

mQ:ΔQ-*mQ(ΔQ)

are homeomoφhisms.
For a point mP(a), a E Δpβ, we assign the point in m^(A^P) whose

ith coordinate is KQ(wi9 tPQ{a)) for each /; this mapping will be denoted
by

Similarly, the mapping

is defined by changing the roles of P and Q, that is, for a point mQ(b),
b E Δ°QP, we assign the point in mP(bPPQ) whose ith coordinate is
Kp(wi9 tQP(b)) for each /. It is evident that sQP is the inverse mapping of

THEOREM 3.14. The transformations

tPQ:Δ%^Δ«QP and t°p; A°QP -> Δ%

are measurability preserving.

Proof. Since the ith coordinate of the point sPQ © mP(a), a E Δ°PQ,
which is

a - K°(wt, tpQ{a)) = {TPQKp

a{z0)YX X TPQKζ{Wi),
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is measurable on Δ°PQ for each /, the mapping

1 = 1

is measurable. Therefore, the relation

implies that the mapping tPQ is measurability preserving, for YYI~Q is
continuous on mQ(Δ°QP). D

THEOREM 3.15. Let u be a positive P-harmonic function in the class
PQ(R), and let μ be its canonical measure on ΔPy

u(z) = [ Kp(z,a)dμ(a), z E R.

Then, the set ΔPλ — Δ°PQ has μ-measure zero:

μ(APΛ-ΔPPQ)=O

and the equality

(3.5) TPQKp(z0) X TQPK%{a)(z0) = 1

is true almost everywhere on Δ°PQ with respect to the measure μ.

By changing roles of P and Q we have also the similar for a
β-harmonic function v in Q°P(R).

Proof. To see that

TQP{TPQu)(z) = [ TQP(TPQKp)(z) dμ(a), z G R,

let Fz(w, a) be the function given by

(w, a) -(Q(w) - P(w))Gp(w, z)TPQKp

a{w),

where z is any fixed point in R. Then, we have, by Lemmas 3.8 and 3.9,
that

f\f \F2(w,a)\dμ(a)\dudv
J R [JΔ'PQ J

= fR \Q(w) - P(w)\Gp(w, z) jjf TPQKp(w) dμ(a)\ du dυ

= f\Q(w)-P(w)\Gp(w,z)TPQu(w)dudυ< +oo.
JR
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Therefore, Fubini's theorem implies that

TQP{TPQu){z) = TPQu{z)

) - P(w))Gp(w, z)TPQu(w) du dv

j^fU F2(w,a)dμ(a)\dudvU

XGp(w, z)TPQKζ{w) dudυi dμ{a)

= f TPQ{TPQKp

a)(z)dμ{a).
ΔpQ

Since the definition of tPQ shows

- TPQKζ(z0)TQPK%(a){z0) X Kζ on R,

we have, by TQP(TPQu) = u which was given in Definition 2.6, that

(*) = jf0 TPQKp(z0)TQPKβQ(a)(z0) X Kpdμ(a).

Hence, it follows from Theorem 3.4 that

almost everywhere on Δ°PQ with respect to the measure μ and Δ'PQ — Δ°PQ

has μ-measure zero. Then, we have μ(Δ P 1 — Δ°PQ) = 0 by Theorem
3.10. ' D

By the Martin integral representation, for the P-harmonic measure ep

oί R there exists a unique measure χP supported by Ap x such that

ep(z) = [ Kp(z,α)dχP(α), z G R,
JΔpΛ

which is called the P-harmonic measure on the P-Martin boundary. The
β-harmonic measure χQ on ΔQ λ is defined similarly.
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COROLLARY 3.16. Let P and Q be densities on R which satisfy Nakaί's

condition (2.8) for some points w0 and wλ in R and let the pair (R, P)

be hyperbolic. Then the set ΔPl — Δ°PQ is of P-harmonic measure zero:

Xp(Δpt\ — Δ°PQ) = 0, and the equality (3.5) is true almost everywhere on

Δ°PQ with respect to χP.

Proof. This is an immediate consequence of Theorem 3.15 by Theo-

rem 2.6. D

The measurable transformation tQP: Δ°QP -> Δ°PQ assigns in an obvious

way a measure v on Δ°QP to a measure μ on Δ°PQ; v is defined for every

measurable set E in Δ°QP by v(E) = μ(tQP(E)). It is written by v - μ o tQP.

THEOREM 3.17. Let u be a positive P-harmonic function in the class

PQ(R)9 and let v denote the Q-harmonic function TPQu. Let μu and μΌ be the

canonical measures in the Martin representations ofu and v9 respectively:

u(z) = f Kp(z,a)dμu(a),

v(z) =

Then, μv is absolutely continuous with respect to the measure μu ° tQP and

satisfies that

(3.6) dμv(b) = TPQKp

QP{b){z0) dμu o tQ
p(b), b E Δ°QP.

Proof. By Lemma 3.8 and Theorem 3.15, the definition of tQP gives

that

v(z) = TPQu(z)=fo TPQKp

a(z)dμu{a)

= ί KQ(z, b)TPQKfr(h){z0) dμu

which shows that the measure on ΔQ x given by

v{E) = f TPQKfr(h)(z0) dμu o
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for each measurable set E in ΔQλ is a canonical measure representing the

β-harmonic function v. From uniqueness of canonical measures repre-

senting a non-negative β-harmonic function (Theorem 3.4) it follows that

μv is absolutely continuous with respect to μu° tQP and that the relation

(3.6) holds. D

COROLLARY 3.18. Let (R, P) be a hyperbolic pair. Under NakaVs

condition (2.8) the Q-elliptic measure χQ is absolutely continuous with respect

toχP° tQP and

dχQ(b) = TPQKfQP(b)(z0)dχP o tQ
p{b), b G Δ°QP.

Proof. By Theorem 2.6 we can take ep and eQ for u and υ in Theorem

3.17. D

4. Integral comparison theorems. Now we consider two L ^-spaces

Lp(Δ°PQy μ) and LP(Δ°QP, v) for 1 </? < + oo, where μ and v are measures

on Δpρ and Δ°QP respectively. For functions φ in LP(Δ°PQ9 μ) and ψ in

L ^ Δ g p , P) the norms of φ and ψ are denoted by llφl|£ and ^

respectively:

W'ϊ •
Also, we shall consider the sets of all essentially bounded measurable

functions on measure spaces (Δ°PQ, μ) and (Δ°QP, v), which are denoted by

L°°(Δp£, μ) and L°°(ΔOQP, V) respectively. For functions φ in L0O(Δ0

PQ, μ),

ψ in L°°(Δ°QP, v) the norms of φ and ψ are denoted by || φ || £ and II ψ II £:

= ess.suρ{|φ(έi)|: a G Δ°PQ),

= ess.sup{|ψ(6)|: b G Δ°QP).

THEOREM 4.1. Let u, v and μu, μυ be same functions and measures as

those in Theorem 3.17. Then, the Banach spaces LP(ΔO

PQ, μu) and

LP(Δ°QP, μv) are isometrically isomorphic, where 1 </? < +oo.

Proof. By assigning for φ in LP(Δ°PQ, μu) the function tPQ(φ) given by

i^(φ)(b) = [TQPKQ(z0)}X/p X φ(/β'(A)), if 1 < p < +oo;

= +oo,
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we can define a transformation

If 1 <p < + oo, Theorems 3.15 and 3.17 show that, for φ in LP(Δ°PQ, μu),

\\ϊPΰ(ψ)fP = j / o k(tQP(b))\P X TQPK?(z0)

\ψ(a)f

and, if p= +oo, then evidently | | ί P β (φ) | |£ =
Similarly, we can define the inverse of tPQ, which is denoted by tQP,

and can show that

for 1 <p < +00. D

COROLLARY 4.2. Let (R, P) be a hyperbolic pair. Under Nakaί's
condition (2.8) the Banach spaces Lp(Δ0

PQ,χP) and Lp(Δ0

QP,χQ) are
isometrically isomorphic, where 1 < p < + oo.

Proof. Corollary 3.18 shows this as Theorem 3.17 implies Theorem
4.1. D

L. L. Nairn [6] has developed the theory of Hardy classes and relative
Hardy classes of harmonic functions in the harmonic space context and
established the structures of Hardy classes and relative Hardy classes in
terms of the Martin boundary and fine limits. To apply her results to our
case of the harmonic space given by the differential equation (1.1) on the
Riemann surface R, we reform the definition of relative Hardy class and a
theorem due to Nairn, which gives the structure of Hardy class.

Let u be a positive P-harmonic function on R. The quotients f/u of
P-harmonic functions / by the P-harmonic function u are called u-P-
harmonic functions.

DEFINITION 4.1. A real valued w-P-harmonic function f/u is in the
relative Hardy class PHζ(R\ 1 </? < +oo, if and only if \f/u \p has a
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w-P-harmonic majorant on R; in the class PH™(R) if and only if \f/u | is

bounded on R. In particular, if u = 1 on R (and so, P = 0), then PHP(R\

1 <p < +oo, is the Hardy class of harmonic functions on i?, which is

denoted by HP(R), and PH™(R) is the class of bounded harmonic

functions on R, which is denoted by H°°(R) or HB(R).

THEOREM 4.3. (L. L. Nairn). Let μu be the canonical measure repre-

senting the positive P-harmonic function u in the Martin integral representa-

tion:

u(z) = f Kp(z,a)dμu(a), z E R.

•V.
The relative Hardy class PHP(R), 1 < P < + oo, is a Banach space isomet-

rically isomorphic to the Lp-space Lp(ΔPλ, μu).

The isometric isomorphism in this theorem will be denoted by

THEOREM 4.4. Let u be a positive P-harmonic function in the class

PQ(R), and let v denote the Q-harmonic function TPQu. Then, the relative

Hardy classes PHP(R) and QHP{R), 1 <p < +oo, are isometrically iso-

morphic.

Proof. Since μM(ΔF Λ - Δ°PQ) = 0 and μΌ(ΔQΛ - Δ°QP) = 0 by Theo-

rem 3.15, we can identify Lp{ΔPλ, μu) and Lp(ΔQl, μv) with LP(Δ°PQ, μu)

and LP(Δ°QP, μv), respectively. Thus, denoting the product

by TPQ, where tPQ is the isometric isomorphism defined in the proof of

Theorem 4.1, we obtain the isometric isomorphism

fPQ:PHp(R)^QHp(R). D

In particular, in the case that densities P, Q satisfy Nakai's condition

(2.8) the P-harmonic and β-harmonic measures ep, eQ belong to the class

PQ(R\ Qp(R) respectively, and satisfy TPQep = eQ by Theorem 2.5.
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Then, replacing u and v in the preceding theorem by ep and eQ respec-

tively, we obtain the following:

THEOREM 4.5 (Integral comparison theorem). Let the pair (i?, P) be

hyperbolic. If P and Q satisfy Nakai 's condition (2.8), then the relative

Hardy classes PHξ(R) and QH^(R) with respect to ep and eQ, Kp<

+ oo, are isometrically isomorphic.

Since PHf(R) = RB{R) and QHf(R) = QB(R\ the preceding the-
orem contains the following.

COROLLARY 4.6. (Nakai [8]). Let (R, P) be a hyperbolic pair. If P and

Q satisfy Nakai's condition (2.8), then the Banach spaces PB(R) and

QB(R) with uniform norm are isometrically isomorphic.
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