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ON ORTHOGONAL COMPLETION OF
REDUCED RINGS

R. K. RAI

It was proved by the author earlier that every orthogonal extension
of a reduced ring R is a subring of Q(R), the maximal two sided ring of
quotients oiR and the orthogonal completion of R, if it exists, is unique
upto an isomorphism. Here, in Theorem 2, we prove that the orthogonal
completion of R, if it exists, is a ring of right quotients QF(R) of R with
respect to an idempotent filter F of dense right ideals of R. Furthermore,
it is shown in Proposition 5 that QF(R) is an orthogonal extension of R
if and only if for every q G QF(R), there exists a maximal orthogonal
subset {et\ i E /} of idempotents of Q(R) such that q maps (by left
multiplication) the right i?-submodule of Q(R) generated by q~ ιR U (e,:
/ £ /} into R. Also an orthogonal extension QF(R) is an orthogonal
completion of R if and only if for every iΐ-submodule MR of Q(R)R

generated by a maximal orthogonal subset of idempotents of Q(R) and
for every/ E HomΛ(M, R) there exists a ^ E QF(R) such that/(ra) =
qm for every m E M (Proposition 6). Thus we obtain a necessary and
sufficient condition for a reduced ring to have an orthogonal completion
without any reference to its idempotent which improves earlier known
results derived by Burgess and Raphael. By examples we show that
reduced rings without proper idempotents may also have an orthogonal
completion.

Introduction. Abian [2] showed that the canonical order relation
' < ' of Boolean rings can be defined for reduced rings R (a ring with no
nonzero nilpotent element) by writing a < b if ab — a2 and this order
relation makes R into a partially ordered multiplicative semigroup. Re-
duced rings under this relation ' < ' were studied by Abian [1] and
Chacron [5] to characterise the direct produce of integral domains, divi-
sion rings and fields. Their studies involved the concepts of orthogonal
completeness and orthogonal completion of reduced rings. These two
concepts, on their own merit, were studied by Burgess, Raphael and
Stephenson [3], [4], [11]. They proved that reduced rings which have
enough idempotents (/-dense) or satisfy certain chain conditions have an
orthogonal completion. In this paper we shall provide a necessary and
sufficient condition for a reduced ring to have an orthogonal completion.

In what follows, all rings referred to will have 1, the identity element,
and R will always denote a reduced ring. In a reduced ring i?, every
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idempotent is central and for every subset X of R, right and left annihila-
tors of X in R coincide. A subset X of R is called an orthogonal subset of R
if for every x9 y E X, x φ y implies xy = 0. An element a E R is said to
be an upper bound of an orthogonal subset X of R if xa = x2 for every
x E X An upper bound 0 of X is called a supremum of X in R if for every
upper bound b of X in R, a < b. It is obvious from this definition that a
supremum of an orthogonal subset of i?, if it exists, is unique. We denote
the supremum of an orthogonal subset X in R by supΛ X. It can be easily
proved that an upper bound a of an orthogonal subset X of R is the
supremum of X in R if and only if annΛ X— annΛ(α). Also, for every
orthogonal subset X of R and for every r E i?, supΛ rX = r(supΛ X)
provided supΛ X exists (see Raphael and Stephenson [11], page 347).

A reduced ring R is said to be orthogonally complete if every orthogo-
nal subset X of R has a supremum in R. A reduced ring R D R is an
orthogonal extension of i? if every element of R is the supremum of an
orthogonal subset of R. An orthogonal extension R of R is said to be an
orthogonal completion of R if every orthogonal subset of R has a supre-
mum in i?. It follows easily from this that an orthogonal extension R of R
is an orthogonal completion of R if and only if R is orthogonally
complete. Obviously, every orthogonal extension of a reduced ring is a
reduced ring.

A ring S D R is said to be a ring of right quotients of R if for every
s E S, s"1/? = {r E /?: sr E i?} is a dense right ideal of R and φ " 1 / ? ) 7̂
0. We denote the ring of right quotients of R with respect to the
idempotent filter of all dense right ideals of R by Qr(R). Every ring of
right quotients may be regarded as a subring of Qr(R) in the canonical
way ([8], page 99).

Let Q(R) = {?G Qr(R): DqQR for some dense left ideal D of R).
Then obviously, R C Q(R) It is proved by Wong and Johnson [14] that
Q(R) is a subring of Qr(R) and it is unique (up to isomorphism over R)
maximal two sided ring of quotients of R. Also for every reduced ring i?,
Q(R) is reduced (see Steinberg [12], page 466). It is proved in [10] (page
483) that every orthogonal subset X of R has a supremum in Q(R) and
since Q(Q(R)) = Q(R), Q(R) is orthogonally complete.

For every non-zero element a of a reduced ring i? there exists an
idempotent 0 Φ e E: Q(R) such that armQ(R)(a) = annβ ( / ? )(e) and αe =
efl = #. For a proof of this see Lambek [7], Theorem 6.6.

We denote the injective hull of a right i?-module M by I(M).

LEMMA 1. Let Rbe a ring, S a proper subring of Qr(R) such that R C S
and D a right ideal of R. Then HomR(R/D, I{Qr{R)/S)) = 0 if and only
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// for every x G R and for every q E Qr(R), (D: x) C (S: q) implies

q G S.

Proof. HomR(R/D, I(Qr(R)/S)) = 0

** for every x + D G R/D and for every 0 ¥= q + S E Qr(R)/S

there exists an r G i? such that xr E D and qr & S

<=> for every x & R and for every # G β r ( Λ ) \ J S , there

exists an r G i? such that r G ( I ) : x ) and r &(S: q)

<=> for every Λ: G i? and for every q G βA.(i?)\5', (Z>: x) φ

( 5 : 9 )

<=> for every x G ί and for every q G β r ( i? ) , (Z>: x) C ( S : g)

implies q G 5.

THEOREM 2. Lei R be a reduced ring which admits an orthogonal

completion R. Then there exists an idempotent filter F of dense right ideals of

R such that R = QF(R).

Proof. If R = Qr{R\ then Λ = QF(R) where F is the idempotent

filter of all dense right ideal of R. Hence assume that R C Qr{R) and let

F denote the collection of all those dense right ideals of R for which

H o m Λ ( i ? / A I(Qr(R)/R)) = 0. Then F is an idempotent filter of dense

right ideals of R corresponding to the torsion theory cogenerated by

I(QAR)/R) N o w consider QF(R\ which is a subring of Qr(R). Let

q G QF(R). Then there exists a ΰ G F such that qD C R. Hence D -

(D:\) C(R: q), which by Lemma 1 implies that q G R. Thus QF(R) C

R.

On the other hand, let q G R and suppose 0 φ f G

Hom^Λ/ Γ1/?, J(βΓ(Λ)/Λ)). Let Oφp + R Ef{R/q~xR) Π α ( ^ ) / ^

and α G i? be such that f(a + q~λR) = p + /?. Then for every r G

(tf"1/?: α) = (Λ: qa)J{a + q~λR)r = 0. Hence/?(# : ^α) C ί .

Since q Ei R and a E R, qa, qa + \ E: R. Also, (i?: qrα) = (i?: ήrα +

1). Hence there exist orthogonal subsets X = {xt: i G /}, Y = ( j y : j G /}

of (R : gα) such that qa = sup^ ^ and qa + \ = sup^ X Since /?(i? :

C Λ, pX, pY QR. Hence for every z EX and r G /?,

(suPjf /?X)(rz) = supά(pX)(rz)] (Cor. 1.2, [11])

= sup^ p [ X( rz)] (associativity)

= p(zrz) (orthogonality of X).
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Also, since qa — sup^ X, z(qa) — (qa)z = z 2. Hence [(qa)rz — zrz]2 = 0

and since R is a reduced ring, this implies that (qa)rz — zrz for every

z E: X and r G R. Now consider the dense ideal D = {Σtf/JC/δ,- + r: α, , 6f

G i?, xi G X and r G annΛ X}. For every Σaixibi + r G 2)

/*A + ' ) - Σ(sup£ pX)aιxιbι (Prop. 1.1, [11])

Hence (pqa — sup £ pX)D — 0 proving that sup£ pX = pqa. Similarly,

/?(#β + 1) = sup^ pY. But this implies that p G Λ which contradicts the

fact that /? + R is a nonzero element of Q£R)/R. Hence

Horn R (R/q~ ι R, I(Qr(R)/R)) = 0 proving that q~ιR G F. Therefore q G

QF{R) and hence R — QF(R) as was required to be proved.

As an immediate consequence of this theorem we have the following

result.

PROPOSITION 3. Let R be a reduced indecomposable ring which has an

orthogonal completion R. Let F be an idempotent filter of dense right ideals

of R such that R = QF(R). Then no dense right ideal D G F can be

expressed as a nontrivial direct sum of two right ideals.

Proof. If fl = ΰ 1 θ f l 2 , then e G QF(R) which is defined by

e(dλ + d2) — dx for every dx G Dl9 d2 G D2 is an idempotent of R —

QF(R). If Dx φ 0 Φ D2, then e is a proper idempotent of R. Since R is an

orthogonal completion of R and e G i?, there exists an orthogonal set [er:

i G i?} C J R such that e = sup^ et. But then each e, should be a proper

idempotent of R which is a contradiction since R is indecomposable.

COROLLARY 4. C[0,1], ί&e ring of continuous real values function on the

interval [0,1] has no orthogonal completion.

Proof. Consider the orthogonal subset [fn: n G N} C C[0,1], where

for a typical n G N,fn is given by the following.
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Then supfn is not continuous at 1/2. Hence C[0, l]is not orthogonally
complete. Now suppose C[0,1] has an orthogonal completion R. Then by
Theorem 2 there exists an idempotent filter F of dense ideals of C[0,1]
such that R = βF(C[0,1]). Let / E β(C[0,1]) be the supremum of {/„:
«GJV} a n d M = { g E C[0,1]: g(l/2) = 0}. The Γ'ίQO,1]) = {g E
C[0,1]: /g E C[0,1]} c M. Hence J l ί ε F . Since C[0,1] has no proper
idempotents and M can be expressed as a proper direct sum of ideals of
C[0,1], by Proposition 3 this is a contradiction. Hence C[0,1] has no
orthogonal completion.

Burgess and Raphael [3] proved this result using the properties of
continuous real valued functions over a closed interval.

Theorem 2 provides us a necessary condition for a reduced ring R to
be an orthogonal completion of R. But it fails to provide a sufficient
condition for a reduced ring R to have an orthogonal completion because
for many subrings S of Qr(R) there exist idempotent filters F such that
S = QF(R). The following proposition characterises the nature of
idempotent filters which give rise to an orthogonal extension of R.

In what follows, we shall write sup X for supρ ( Λ ) X. Also, we would
like to remind our reader that for an orthogonal subset X of R, Burgess
and Raphael ([3], Lemma 11) proved that supΛ X = sup ^ whenever
supΛ X exists.

PROPOSITION 5. Let R be a reduced ring and F an idempotent filter of

dense right ideals of R. Then QF(R) is an orthogonal extension of R if and

only if for every q E QF(R), there exists a maximal orthogonal subset (e z:

/ E /} of idempotents of Q(R) such that q maps {by left multiplication) the

right R-submodule of Q(R) generated by q~xR U {ef. i E /} into R.

Proof. Suppose QF(R) is an orthogonal extension of R. Then QF(R)
C Q(R). Let a E QF(R). Then there exists an orthogonal subset {at\
i E /'} of R such that a = sup{α,: i E /'}. Let E = {β : i E /'} be the
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orthogonal subset of central idempotents of Q(R) such that ai9 et — at

and aniiρ^^α,.) = annβ(Λ)(e f.) for every i G Γ (see [7], Theorem 6.6).

Embed E in a maximal orthogonal subset {et: i G /} of idempotents
of β(i?). Then, since

G /'} =

aei = 0 for every / G / \ / ' . Also, since a is the supremum of {at\ i G /'},
α, = α,.^ < <ze, for every / G /'. But, since

we have at — aei9 proving that aei G R for every / G /.
Now if we let M be the right 7?-submodule of Q(R) generated by

q~ιR U {et: i G /} then obviously the left multiplication by q determines
a homomorphism from M into R.

Conversely, suppose for every q G QF(R) there exists a maximal
orthogonal subset {et: i G /} of idempotents of Q(R) such that q maps
(by left multiplication) the right i?-submodule of Q(R) generated by
q~xR U {ef. i G /} into R. Consider the ideal D = {Σe,i?} Π iί. Since
{ey: / G /} is a maximal orthogonal subset of Q(R), annΛ D — 0. Hence
Z) is a dense right and left ideal of R. Since e/s are central in Q(R),
DqQR and therefore q G β(i?). It follows from this that QF(R) C Q(R).

Now, since {ez: i G /} is a maximal orthogonal subset of Q(R), q is
the supremum of the orthogonal subset {qet: i G /} of R. Hence QF(R) is
an orthogonal extension of R. This completes the proof.

The following proposition gives us a necessary and sufficient condi-
tion for an orthogonal extension to be an orthogonal completion.

PROPOSITION 6. Let F be an idempotent filter of dense right ideals of R
such that QF(R) is an orthogonal extension of R. Then QF(R) is an
orthogonal completion of R if and only if for every R-submodule MR of
Q(R)R generated by a maximal orthogonal subset of idempotents of Q(R)
and for every f G HomΛ(M, R) there exists a q G QF(R) such thatf(m) =
qm for every m G M.

Proof. Since QF(R) is an orthogonal extension of R. QF(R) is a
subring of Q(R). Suppose QF(R) is an orthogonal completion of 7?, MR is
an jR-submodule of Q(R) generated by a maximal orthogonal subset {et:
i G /} of idempotents of Q{R) and / G HomΛ(M, R). Then (as in the
proof of Proposition 5) the ideal D - (Σ, etR) Π R = M Π R of R is a
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dense right and left ideal of R. Since f\D E Hom^ΰ^, RR), we can find
a q E Qr(R) such that/(d) — qd for every d G Z>. Let / E /. Then since Z>
is a dense right ideal of R and et E β r(Λ), e"1/) is a dense right ideals of
R. Now, ge, — /(e, ) E β r(i?) and for every r E e^1/),

= f(eι)r-f(eι)r

= 0.

Since e"1/) is a dense right ideal of i?, it follows from this that qei = f(et)
for every i E /. Hence f(m) — qm for every m E M. Further, for every
/ E / and d E 2),

(<?*, - eiq)d=q(eid) ~ et(qd) = f(etd) - ej(d)

= q(deι)-(qd)eί = 0.

(Here we used the fact that e/s are central in Q{R) and that qd E /?.)
Since Z> is a dense right ideal of R, it follows from this that qet — e{q for
every / E /. Therefore, Dq = ((Σ^i?) Π R)q Q R. Thus q <Ξ Q(R) and
hence sup{ge/. / G /} = ̂  sup{ez: / E /} = #• 1 = q. Since (ge-: z E /}
Q R Q QF(R) and QF(R) is orthogonally complete, this implies that
g E QF(R), as was required.

Now we prove the converse. Let {at: i E /'} C i? be an orthogonal
subset and { :̂ / E /'} be the orthogonal subset of idempotents of Q(R)
such that aieι = eiai — at and aniig^^α,) = ann^ ( Λ )(^) for every / E /'.
Let [ef. i E /} be a maximal orthogonal subset of idempotents of Q(R)
containing {et: i E /'} and M — Σ^/^i?. Define/: M -» R by

/(*,) = α, i f / e / '

= 0 otherwise

and extend / by linearity over sums. Then / E HomΛ(M, K). Hence by
our assumption there exists an a E QF(R) such that/(m) = am for every
m E M. Now

tfα, = α ( ^ ) = flί^.fl,) =f(ei)ai = αz

2

and hence at< a for every / E /'. Also, if x E ann ρ ( Λ ) (β^: / E /'} then,
since
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(ae^x — 0 for every i E /. Hence,

ax — aλ.x — α(sup{^: i E I})x = sup{(^)x: / E /} = 0.

Thus aniiρ^ltf,: / G /'} C axmQ{R)(a). Since a is an upper bound of
{at: i E /'}, ann ρ ( Λ )(α) C annβ(Λ){αz: ί E / ] . Hence α is the supre-
mum of {>,: / E / ' } . Since, QF(R) QQ(R) and α E βF(Λ), a =
suPQF{R){ai: * ̂ E ̂ '}• Thus we see that every orthogonal subset of R has a
supremum in QF(R). Since QF(R) is an orthogonal extension of i?, it
follows that QF{R) is the orthogonal completion of R. This completes the
proof.

Combining Propositions 5 and 6 we get the following result.

THEOREM 7. A reduced ring R has an orthogonal completion if and only
if it has an idempotent filter F of dense right ideals of R such that (i) for
every q E QF(R) there exists a maximal orthogonal subset [ef. i E /} of
idempotents of Q(R) such that q maps (by left multiplication)^ the right
R-submodule M of Q(R) generated by q~ιR U [et\ i E /} into R and

(ii) for every R-submodule M of Q(R) generated by maximal orthogonal
subset of idempotents of Q(R) and for every f E Hom^(M, i?), there exists
a q E QF(R) such that f(m) — qm for every m E M.

Thus a reduced ring R has an orthogonal completion if and only if it
has an idempotent filter F of dense right ideals of R such that QF(R)
consists of exactly those elements of Q(R) for which there exists a
maximal orthogonal subset {et: i E /} of idempotents of Q(R) such that
qei E R for every / E /. Also, it follows from this that a reduced ring R is
orthogonally complete if and only if it contains all those elements of
Q(R) for which there exists a maximal orthogonal subset {et: i E /} of
idempotents of Q(R) such that qet E R for every / E /.

As an application of Theorem 7, we prove the following result which
was established in [4] for commutative rings.

COROLLARY 8. Every reduced i-dense ring has an orthogonal comple-
tion.

Proof. Let F be the idempotent filter of all those dense right deals of
R which contain a maximal orthogonal subset of idempotents of R and
consider QF(R). Since all members of F contain a maximal orthogonal
subset of idempotents of i?, QF(R) is an orthogonal extension of R. Now
let MR be any Λ-submodule of Q(R)R generated by a maximal orthogonal
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subset of idempotents of Q(R) and/G HomΛ(M, R). Then, since each
idempotent of Q(R) is the supremum of an orthogonal subset of idempo-
tents of R, it follows that MR contains a maximal orthogonal subset of
idempotents of R and hence a member D of F. Therefore, there exists a
q G QF{R) such that/(</) = qd for every d G D.

Now let m be an arbitrary element of M. Then, since M C Q(R),
m~ιD = (r G /?: mr E D) is a dense right ideal of i? and for every
d' G m~ ιD, md' G D and hence

(f(m) - qm)d' = f(m)d' - (qm)d' = f(md') - q(md') = 0.

Thus/(m) = qm for every m G M and hence by Theorem 7 QF(R) is the
orthogonal completion of /?. This completes the proof.

It follows from this result that every reduced Baer ring has an
orthogonal completion (see [5], Theorems 18).

EXAMPLE 9. For every Λ > 1, let Rn = k[x, y, z] be a polynomial ring
in commuting indeterminates over a field k such that yz — 0. Let R be the
subring of Π^=1 i?t generated by θ ^ = 1 ϋ n and 1 eU™=xRn. Let Z) =
Θ^L, Rn and F be the idempotent filter of ideals of R which contain D.
Since D contains a maximal orthogonal subset of idempotents of R and
hence of Q{R), it follows from Theorem 7 that QF(R) is an orthogonal
extension of ϋ . Also, since every i?-submodule M of Q(R) generated by a
maximal orthogonal subset {/: i G /} of idempotents of β(i?) contains
{ew: « G N} (where en is that element of R C Π ^ Rt whose «th coordi-
nate is 1 and all other coordinates are 0), it follows that D C M. Hence if
g G HomΛ(M, R) then g\D G HomΛ(D, Λ). Let <? G βF(i?) be such
that g(d) — qd for every d G Zλ

Now, let m be an arbitrary element of M. Then as in the proof of
Corollary 8, it can be proved that g(ra) = qm for every m ELM. Hence by
Theorem 7, QF(R) is the orthogonal completion of it. It can be easily
verified that QF(R) = Π ^ i?,. It is also interesting to observe that R is
not /-dense.

Theorem 7 produces conclusive results when applied to reduced rings
without proper idempotents as well. This is done in the next example.

EXAMPLE 10. Let S denote the ring Π~=1 kn[x] where kn = Z/(2) for
every n E N and let M = (x2 + x)^ where x is the element of S all of
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whose co-ordinates are x. Let R be the subring of S generated by

M U {1} U {an: « E N } U {bn: n E N} where

α, = (x + l , x + 1,0,0,0,0,0, ),

α 2 = (0,0, x + l , x + 1,0,0, ),

a3 = (0, 0, 0, 0, x + 1, x + 1, 0, 0, ),

bγ = (x9 0,0, 0,0, 0,0, ),

6 2 = (0, x, x, 0, 0, 0, 0, ) ,

63 = (0, 0, 0, x, x, 0, 0, ),

Every power of an (resp. bn) can be expressed as an + m (resp. bn + rn)

where m E M. Also, anbm £ M, anM Q M and bnM Q M. Hence every

element of i? can be expressed in the form

where α/? j8y E Z/(2) for every /, j , m G M and n = 0 or 1. It can be

easily verified that R has no proper idempotent.

Let D be the ideal of R generated by [an\ n E N } , [bn: n E N } and

let F be the idempotent filter of all those ideals of R which contain D.

Since annΛ D — 0, F is an idempotent filter of dense ideals of R. Let /:

D -» R be an i? homomoφhism. Then since (taking α 0 = 0)

it follows that

and

Let q — sup^ / D N/(#,) + sup^ n /(/>,)• Then, since every element of D is

of the form of

where ai9 βj E Z/(2) and m = Σakrk (or Σbksk) is a finite sum with rk

9s

(or sk's) in R. Hence it follows that f(d) = qd for every d E D. We show
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that either q E R or there exists a proper maximal orthogonal subset
E — {ef. i E /} of idempotents of βmax(JR) such that qE C R.

Since f{bt) + f(at) +f(bi+ι) E R, it is of the form Σaiai + Σβjbj +
m + n and it follows from this that f{at) — a[ai + mi where ra, E M is
such that m^j — 0 for every / =̂ 7 and α E Z/(2). Hence, by Lemma 5 of
[10],

ία,.) = sup(α α/ + m7) = supα α + supm7
i i i i

— sup a\ai + w where m €z M.

Similarly,

j ;^. + supm)
J j

pβjj + mr where m' E M.

Hence,

ήf = supα α/ + swpβjbj + (m + m')
i

where «;, /?/ E Z/(2) and m + m' <ΞM. Thus q = r + rn" where r =
supy α αy + supjβjbj and mr/ = m + m'.

It follows from these discussions that QF(R) is the subring of S
obtained by adjoining elements of the form of supα,^ + sup βfy to R
where ai9 βj E Z/(2) for all i9j. Now using Theorem 7, it can be verified
that QF(R) is the orthogonal completion of R.

This example shows that the existence of proper idempotents in R is
not a necessary condition for R to have an orthogonal completion.
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