APPROPRIATE CROSS-SECTIONALLY SIMPLE FOUR-CELLS ARE FLAT

STEVE PAX

When X is a set in E^n , we let $X_t = X \cap H_t$ —where H_t is the horizontal hyperplane in E^n of height t. In this note, we prove that a 4-cell B in E^4 , such that each nonempty slice B_t is either a point or a 3-cell, is flat whenever, for all t, B_t is flat in H_t and Bd B_t is flat in Bd B.

1. Introduction and summary. Throughout, we let H_t denote the horizontal hyperplane in E^n at height t, and when X is a set in E^n , we let $X_t = X \cap H_t$. In [10], it is proved that an (n - 1)-sphere S in E^n (n > 5) such that each nonempty slice S_t is either an (n - 2)-sphere or a point has a 1-ULC complement whenever, for all t, S_t is flat in both H_t and S; subsequently, in [9] and [11] (see also [17]), (n - 1)-spheres in E^n (n > 4) with 1-ULC complements were shown to be flat. The necessity of these conditions is discussed in [10] and [12]. Similarly, a 2-sphere in E^3 such that each nonempty slice is a point or a 1-sphere was earlier shown to be flat in [13] and [14] with each relying upon the 1-ULC taming theorem of [3]. In this note, we extend this work to the case n = 4 by solving a similar question for a 4-cell; specifically, we prove the following:

THEOREM. A 4-cell B in E^4 , such that each nonempty slice B_t is either a point or a 3-cell, is flat whenever, for all t, B_t is flat in H_t and Bd B_t is flat in Bd B.

The proof relies upon a condition—first described to us by R. J. Daverman in 1976—under which an *n*-cell in E^n is flat; Lemma 1 presents it. We include a proof because no reference contains the result; when n > 4, it is superceded by the 1-ULC taming theorems of [3], [9], and [11]; yet when n = 4, it has utility. (Daverman has pointed out that its hypotheses are strong enough to make the argument in Chernavskii [7] work too.)

LEMMA 1. Let B be a 4-cell in E^4 . If for each $\varepsilon > 0$ there exists an ε -self-homeomorphism h of E^4 supported in the ε -neighborhood of $E^4 - B$ such that $h(\operatorname{Bd} B) \cap B = \emptyset$, then B is flat.

STEVE PAX

The proof of the theorem involves two other lemmas.

LEMMA 2. Let B be a 4-cell in E^4 , and T a 3-cell in B with Bd $T \subset$ Bd B and Int $T \subset$ Int B such that B is locally flat at each point not in Bd T, Bd T is flat in Bd B, and T flat in E^4 . Then B is flat.

LEMMA 3. Let P be a 4-cell in $E^3 \times I$ such that P_0 and P_1 are points. Suppose P is locally flat at each point of Bd $P - (W \cup P_0 \cup P_1)$ where W is a countable union of 2-spheres in Bd P and suppose that for each 2-sphere S in W, S is contained in a horizontal hyperplane H_q , S is flat in H_q , $S = \operatorname{Fr} P_q$, and S is flat in Bd P. Then P is flat in E^4 .

Lemma 2 may be regarded as giving sufficient conditions for the union of two 3-cells (T and a closed complementary domain of Bd T in Bd B) in E^4 along their boundary to be flat, and so is related to [6] and [15] (see also [8]).

2. Proofs of the lemmas.

Proof of Lemma 1. Let $D = \operatorname{Bd} B$, $e: D \times I \to B$ be a collar on D in B, and let $\{s_i\}$ be a decreasing sequence of numbers from Int I which converges to 0. Use the hypotheses to find a sequence of numbers ε_i and a sequence of ε_i -self-homeomorphisms h_i (i = 1, 2, ...) or E^4 such that $\varepsilon_i < \operatorname{dist}(e(D \times \{0\}), e(D \times \{s_i\})), \varepsilon_{i+1} < \operatorname{dist}(D, h_i(D)), h_i$ leaves $e(D \times \{s_j\})$ fixed for all $j \leq i$, and $h_i(D) \cap B = \emptyset$. Then $\varepsilon_i \to 0$, $h_i(D) \cap h_j(D) = \emptyset$ for $i \neq j$, and $h_i \mid D$ converges uniformly to the identity. Let $q_i \in (0, 1)$ be so close to 0 that $q_i < s_i$ and

$$dist\{h_{i+1}e(d,0), h_{i+1}e(d,q_i)\} < \frac{1}{4} dist\{h_{i+1}(D), h_i(D)\}$$

for all $j \neq i + 1$, and d in D. Observe that the spheres $h_i(D)$ and $h_i e(D \times \{q_i\})$ are all pairwise disjoint and "concentric".

Now use the product structure of $h_{i+1}e(D \times I)$ to find ε_i -self-homeomorphisms F_i of E^4 such that

(1)
$$F_i h_{i+1} e(d, s_i) = h_{i+1} e(d, q_i)$$
 for all d in D .

and

(2)
$$F_i h_i e(d, q_{i-1}) = h_i e(d, q_{i-1})$$
 for all d in D .

Then $F_i h_i e$ embeds $D \times [q_{i-1}, s_i]$ as the annulus between $h_i e(D \times \{q_{i-1}\})$ and $h_{i+1}e(D \times \{q_i\})$. Let $g_i: D \times [1/(i+1), 1/i] \to D \times [q_{i-1}, s_i]$ be a homeomorphism which preserves first coordinates and takes $D \times \{1/i\}$ to $D \times \{q_{i-1}\}$. Now define $G: D \times I \to E^4$ – Int B by

(3)
$$G(d,0) = d$$
 for all d in D

and

(4)
$$G(d, t) = F_i h_i eg_i(d, t)$$
 when $1/(i+1) \le t \le 1/i$ and $d \in D$.

First observe that G is continuous on $D \times (0, 1]$ because each composition $F_i h_i eg_i$ is continuous on $D \times [1/(i + 1), 1/i)]$ and because (1) and (2) force these maps to agree whenever they have common domain; that is,

(5)
$$F_{i+1}h_{i+1}e(d,q_i) = F_ih_{i+1}e(d,s_i) = F_ih_ie(d,s_i).$$

Next observe that G is continuous on $D \times I$ because

dist $(F_i h_i eg_i(d, q), e(d, 0)) \to 0$ as $i \to \infty$.

Finally, G is 1-1 because the images $F_i h_i eg_i(D \times (1/(i+1), 1/i))$ are pairwise disjoint—they lie between different pairs of "concentric" spheres. G is a collar on B, so B is flat [2].

Proof of Lemma 2. Assume the hypotheses. Let G be the decomposition of Bd $B \times I$ into points and arcs of the form $\{x\} \times I$ with $x \in Bd T$, let π : Bd $B \times I \to Bd B \times I/G$ be the decomposition map, and let e: Bd $B \times I/G \to B$ be a collar of Bd B in B pinched at Bd T such that diam $e\pi(\{x\} \times I) \leq \frac{1}{2}\varepsilon$ for all $x \in Bd$ B and such that $e\pi(Bd B \times I) \cap$ T = Bd T. Let K_1 and K_2 denote the closed complementary domains of Bd T in $e\pi(Bd B \times \{\frac{1}{2}\})$. Since B is a 4-cell and since Bd T is flatly embedded in Bd B, $e\pi(Bd B \times \{\frac{1}{2}\})$ bounds a 4-cell with Bd T flatly embedded in its boundary; therefore there exists a homeomorphism h of E^4 fixed on Bd B such that $h(K_1) = K_2$. Set $T_1 = h(T)$ and $T_2 = h^{-1}(T)$; then Bd $T_i = Bd T$, Int $T \subset Int(e\pi(Bd B \times I))$, and each T_i is flat. Also the union of $e\pi(Bd B \times [0, 1))$ and the compact set bounded by $T_1 \cup T_2$ is B.

Now, according to [15], $T_1 \cup T_2$ bounds a flat 4-cell W; hence there exists a $\frac{1}{2}\varepsilon$ -self-homeomorphism f of E^4 supported in the ε -neighborhood of $E^4 - W$ such that $f(\operatorname{Bd} W) \cap W = \emptyset$, which means that f is supported in the ε -neighborhood of $E^4 - B$ and

 $f(\operatorname{Bd} B) \subset (E^4 - B) \cup (\operatorname{Bd} B - \operatorname{Bd} T) \cup \operatorname{Int}(e\pi(\operatorname{Bd} B \times I)).$

Hence, using the pinched collar and the fact that B is locally flat at points not in Bd T, we can produce another $\frac{1}{2}\varepsilon$ -self-homeomorphism g of E^4

STEVE PAX

supported in Int $(e\pi(\operatorname{Bd} B \times I)) \cup (\operatorname{Bd} B - \operatorname{Bd} T) \cup (E^4 - B)$ such that $gf(\operatorname{Bd} B) \subset E^4 - B$. Lemma 1, with h = gf, now shows B is flat. \Box

Proof of Lemma 3. Assume the hypotheses. Let W' be the set of t in (0, 1) such that P is wild at some point of Bd P_t . Let W^* be the closure of W' in I. Then $W^* \subset W' \cup \{0, 1\}$, so W^* is closed and countable.

We want to show that W^* equals the empty set; suppose it does not. Then by the Baire Category Theorem there exists an isolated point q in W^* . In fact q is in W'. Now by using a pinched collar find a 4-cell $R \subset P$ such that Bd $R \cap$ Bd P is a neighborhood in Bd P of Bd $P \cap H_q$, such that R is locally flat modulo Bd $P \cap H_q$, and such that Bd $P \cap H_q = Bd(R_q)$. By hypotheses, Bd $P \cap H_q$ is flat in H_q and Bd P; therefore it is flat in Bd R too. So according to Lemma 2, R is flat. Hence P is locally flat at each point of Bd $P - (W - Bd P \cap H_q)$. It follows that q is not in W', which is a contradiction. Therefore W^* and W' are empty. Hence P is locally flat at each point of Bd $P - (P_0 \cup P_1)$. It follows from [4] that B is flat.

3. Proof of the theorem. Assume the hypotheses, and assume that $B \subset E^3 \times I \subset E^4$ with B_0 and B_1 singleton sets. Let J = [-1, 1]. We want to apply Lemma 1; so let $\varepsilon > 0$ be given. Since B_t is flat in H_t , there exists for each $t \in (0, 1)$ a homeomorphism h_t of $S^2 \times E^1$ onto H_t such that $h_t | S^2 \times J$ is a bicollar on Bd B_t with $h_t (S^2 \times \{1\}) \subset H_t - B_t$. As in [10], there exists a countable set $D \subset I$ such that $s \in I - D$ implies the existence of monotone sequences $\{s(i)\}$ and $\{t(i)\}$ in I converging to t from above and below, respectively, such that $\{h_{s(i)}\}$ and $\{h_{t(i)}\}$ converge to h_t .

Fix t in I - D, and let $p: E^4 \to E^3$ denote projection. The local contractibility of the homeomorphism group of E^3 [5] at the point ph_t shows that for each $\gamma > 0$ there exist an integer k and an isotopy $\{\phi_q\}$ of E^3 such that $dist(\phi_q(x), ph_t(x)) < \gamma$ for all $q \in I$ and $x \in E^3, \phi_1 = ph_{s(k)}$, and $\phi_0 = ph_{t(k)}$. When γ is small enough, an embedding $f_t: (S^2 \times J) \times I \to E^4$ may be defined by the rule

$$f_t((a, b), c) = (\phi_c(a, b), c \cdot s(k) + (1 - c) \cdot t(k)),$$

possessing the following six properties:

$$f_t | (S^2 \times J) \times \{1\} = h_{s(k)}; \qquad f_t | (S^2 \times J) \times \{0\} = h_{t(k)};$$

$$f_t ((S^2 \times \{1\}) \times I) \subset E^4 - B; \qquad f_t ((S^2 \times \{-1\}) \times I) \subset \text{Int } B;$$

$$\text{diam } f_t ((\{s\} \times J) \times \{q\}) < \frac{1}{4}\epsilon \quad \text{for all } s \in S^2, q \in I;$$

and each set $f_t((S^2 \times J) \times \{q\})$, $q \in I$, is contained in a horizontal hyperplane.

Now let $Q = S^2 \times J \times I$. There exists a countable collection $\{F_i\}$ of these embeddings (each F_i equals some f_i) such that the union $\bigcup_{i=1}^{\infty} F_i(Q)$ $\cup \bigcup_{d \in D} H_d$ is a neighborhood of Bd B in $E^3 \times I$. Let K be the set of $q \in I$ for which $H_q \cap F_i(\operatorname{Int} Q) = \emptyset$ for all *i*. K is countable because D and $\{F_i\}$ are, and K is closed because $\bigcup F_i(\operatorname{Int} Q)$ is open.

Let W be the union of the sets $(\operatorname{Bd} B)_t$, $t \in K$; then W is a closed subset of Bd B. Hence, as in the proof of Lemma 2, one may use a pinched collar to find a map $e: \operatorname{Bd} B \times I \to B$ such that e(x, 0) = x for $x \in \operatorname{Bd} B$; e(x, t) = x for $x \in W \cup B_0 \cup B_1$, $t \in I$; diam $(e(\{x\} \times I))$ $< \frac{1}{2}\varepsilon$ for $x \in \operatorname{Bd} B$; $e \mid (\operatorname{Bd} B - W) \times I$ is an embedding; and when $t \in K$, $e(\operatorname{Bd} B \times I) \cap E_t \subset W$. Let P be the 4-cell bounded by $e(\operatorname{Bd} B \times \{q\})$ where q is so close to D that Bd P is contained in the $\frac{1}{4}\varepsilon$ -neighborhood of Bd B. Also, assume without loss of generality that Bd $P \subset \operatorname{Bd} B \cup (\bigcup F_i(\operatorname{Int} Q))$.

P satisfies the hypotheses of Lemma 3 and is therefore flat in E^4 . Hence there exists a $\frac{1}{2}\varepsilon$ -self-homeomorphism g of E^4 , supported in the ε -neighborhood of Bd B such that $g(Bd P) \cap P = \emptyset$. It follows that

$$g(\operatorname{Bd} B) \subset (E^4 - B) \cup (\cup F_i(\operatorname{Int} Q)).$$

So, because $g(\operatorname{Bd} B) \cap B$ is compact and contained in $\bigcup F_i(\operatorname{Int} Q)$, there exists a finite subcollection F_1, F_2, \ldots, F_N , say, of the F_i such that $g(\operatorname{Bd} B) \cap B \subset \bigcup_{j=i+1}^N F_i(\operatorname{Int} Q)$. We assume this subcollection is minimal; consequently, no point of E^4 lies in more than two of the sets $F_i(\operatorname{Int} Q)$, $i = 1, 2, \ldots, N$.

Now, for each i = 1, 2, ..., N, let h_i be a $\frac{1}{4}\varepsilon$ -self-homeomorphism of E^4 supported in $F_i(\text{Int } Q)$, preserving fourth coordinates of E^4 , and satisfying

$$h_i h_{i-1} \cdots h_i g(\operatorname{Bd} B) \subset (E^4 - B) \cup \left(\bigcup_{j=i+1}^N F_i(\operatorname{Int} Q)\right).$$

Each h_i is easily found as the composition of F_i and a homeomorphism of $Q (= S^2 \times J \times I)$ onto itself which leaves Bd Q fixed and only changes J coordinates. Observe that $h_N \cdots h_1 g(\text{Bd } B) \cap B = \emptyset$.

Then because no point is moved by more than two of the h_i 's, $h \equiv h_N \cdots h_1 g$ is an ε -self-homeomorphism of E^4 . Clearly h is supported in the ε -neighborhood of B, so Lemma 1 shows B is flat.

STEVE PAX

References

- [1] F. Benson, A short proof of a Kirby flattening theorem, "Geometric Topology" Springer-Verlag, Berlin and New York, 1975.
- [2] M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc., 66 (1960), 74–76.
- [3] R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc., 101 (1961), 294–305.
- [4] J. C. Cantrell, Almost locally flat embeddings of S^{n-1} in S^n , Bull. Amer. Math. Soc., **69** (1963), 716-718.
- [5] A. V. Chernavskii, Local contractibility of the homeomorphism group of a manifold, Soviet Math. Dokl., 9 (1968), 1171–1174.
- [6] _____, The k-stability of homeomorphisms and the union of cells, Soviet Math. Dokl., 9 (1968), 724–732.
- [7] _____, Locally homotopically unknotted imbeddings of manifolds, Soviet Math. Dokl., 9 (1968), 835–839.
- [8] _____, Homeomorphisms of euclidean space and topological imbeddings of polyhedra in euclidean spaces. III, Math. USSR-Sbornik, 4 (1968), 241–266.
- [9] _____, The equivalence of local flatness and local 1-connectedness for imbeddings of (n-1)-dimensional manifolds in n-dimensional manifolds, Mat. Sb., **91** (133) (1973), 279–286-Math. USSR Sb., **20** (1973), 297–304.
- [10] R. J. Daverman, Slicing theorems for n-spheres in Euclidean (n + 1)-space, Trans. Amer. Math. Soc., **166** (1972), 479–482.
- [11] _____, Locally nice codimension one manifolds are locally flat, Bull. Amer. Math. Soc., **79** (1973), 410–413.
- [12] R. J. Daverman and S. A. Pax, Cross sectionally simple spheres can be wild, General Topology, 10 (1979), 139–146.
- [13] W. T. Eaton, Cross sectionally simple spheres, Bull. Amer. Math. Soc., 75 (1969), 375-378.
- [14] N. Hosay, A proof of the slicing theorem for 2-spheres, Bull. Amer. Math. Soc., 74 (1969), 370–374.
- [15] R. C. Kirby, The union of flat (n 1)-balls is flat in \mathbb{R}^n , Bull. Amer. Math. Soc., 74 (1968), 614–617.
- [16] _____, On the set of nonlocally flat points of a submanifold of codimension one, Ann. of Math., (2) 88 (1968), 281–290.
- [17] T. M. Price and C. L. Seebeck III, Somewhere locally flat codimension one manifolds with 1-ULC complements are locally flat, Trans. Amer. Math. Soc., 193 (1974), 111-122.

Received August 19, 1981 and in revised form January 14, 1983.

Pembroke State University Pembroke, NC 28372