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FACTORIZATION THEOREMS FOR DIFFERENT
CLASSES OF ANALYTIC FUNCTIONS IN

MULTIPLY CONNECTED DOMAINS

D. KHAVINSON

This paper consists of four sections. In the first section we give a
survey on the reproducing kernel for harmonic functions in finitely-con-
nected Jordan regions. We also prove a certain version of Fatou's
theorem which we will use in the next sections.

In the second part we construct the generalized Schwarz kernel for
an arbitrary finitely-connected Jordan domain. This kernel reproduces
any continuous single-valued analytic function inside the domain by the
boundary values of its real part. Also, we give an explicit formula for the
real part of this kernel in terms of the harmonic measures.

In the third section we study the Blaschke products in arbitrary
Jordan domains.

The main results are contained in the fourth section. There we prove
factorization theorems for the classes N, N+ , Hp and Ep.

Introduction. It is well known that R. Nevanlinna's and V. I. Smir-
nov's factorization theorems have been very useful for many problems
concerning analytic functions in the unit disc (e.g. see [8], [9], [15], [19]).
Unfortunately, a direct attempt to extend these results to multiply con-
nected domains has been unsuccessful. The fact is that the most natural
function to play the role of the Schwarz kernel in such domains is not
single-valued. Another problem appearing in that case is to define the
Blaschke factor. It is obvious that even in an annulus one cannot find a
single-valued function f(z) satisfying the following properties: (1) f(z)
vanishes only at one given point; (2) f(z) is continuous up to the
boundary; (3) |/(z) | is equal to 1 on the whole boundary of the annulus.

Many papers investigating the classes of analytic functions in multi-
ply-connected domains have appeared. We refer the reader to the survey
by S. Ya. Havinson and G. C. Tumarkin [10] which is quite detailed. The
construction of the "Blaschke products" in finitely connected regions was
suggested by V. A. Zmorovic. The convergence theorem for the products
of that type has been proved by P. M. Tamrazov in [22].

The first attempts to generalize the Schwarz formula to finitely
connected domains had already taken place in the 19th century. (By the
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"Schwarz formula" we understand the integral representation of an ana-
lytic function inside the domain in terms of the boundary values of its real
part.)

The papers [24] and [1] contain many results obtained while trying to
solve this problem. In [5-7] L. E. Dunduchenko and S. A. Kas'yanyuk
have proved the factorization theorem for functions meromorphic in
circular domains, belonging to the Nevanlinna class N there and admit-
ting only finitely many zeroes and poles inside the domain.

They used the analog of the Schwarz kernel which had been suggested
by Zmorovic in [23] for the circular domains.

The most convenient construction of the Schwarz kernel for the
solution of the factorization problem was given by R. Coifman and G.
Weiss in [3]. In that paper they considered domains bounded by analytic
curves. For those domains, they have proved the factorization theorem for
the analytic functions of Nevanlinna's class N. Although the authors
pointed out the possibility of extending their results to the classes 7V+ and
Hp, they did not give explicit statements. Some further investigation in
this direction is contained in T. S. Kuzina's paper [17].

If the boundary of the domain is only rectifiable (without assuming
any smoothness conditions), or, furthermore, if it consists of arbitrary
Jordan curves, the construction of the Schwarz kernel given in [3] cannot
be applied. In this case, it is necessary to start out with the general
reproducing kernel for harmonic functions. Generally speaking, this kernel
is the quotient of the derivatives of the harmonic measures. Such a kernel
has often been used in the theory of harmonic functions (see [18], [2]). To
make its conjugate function single-valued we follow the procedure given
in [3]. As a result, we obtain the factorization representations for the
classes N, N + and Hp in arbitrary Jordan domains and for the classes Ep

in the domains with Jordan rectifiable boundaries.

1. The generalized Green kernel and the Green-Stieltjes integral in
finitely connected domains. Let G be a multiply-connected domain with
the boundary Γ consisting of n disjoint Jordan curves yjm z0 is a fixed point
in G. ω(£,z,G) denotes the harmonic measure of the set E C Γ taken at
the point z E G. Let dμ(ί~) be a finite real Baire measure on Γ. According
to Koebe's theorem (see [9]) there exists a function w = ψ(z) mapping G
conformally onto the circular domain %. Note that ψ(z) is bijective and
continuous up to the boundary Γ. Let z = φ(w) — ψ~\w). w0 = ψ(z0).
Let g{z,ζ), g(w, t) be the Green functions in G and 9C, respectively.
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Consider the following function on % X d%:

- 1 dg(w,t)/dn,
K{W>1) 2*dg(wo,t)/dn,'

where w E K, t E dK and d/dnt is the derivative in the direction of the
inner normal at the point t. Then K(w, t) is harmonic as a function of w
and continuous as a function of t. Note that the harmonic measure
dω(E, w, %) is absolutely continuous with respect to Lebesuge measure ds
on d%, i.e.

Therefore, the function K(w, t) can also be defined as the Radon-Niko-
dym derivative at the point t of the measure (l/2π)dω(E, w, %) with
respect to the measure dω(E, w0, %). Since harmonic measures are con-
formal invariants, then we can transfer the function K(w, t) into G as
follows: Let z E G, ζ E Γ, ψ(f) = /, ψ(z) = w. Then we define

(1.1)
1 dω(E, z,G)

2π
= K(w9t).

In other words, K(z, ξ) is the Radon-Nikodym derivative at the point
ξ of the measure (l/2π)dω(E9 z,G) with respect to the measure
dω(E9 zo,G). Note that in our case this derivative turns out to be a
continuous function of ξ. Also, (1.1) implies that K(z, ξ) is harmonic in G
as a function of z.

Consider the function u(z) defined by

(1-2) u(z)

It is clear that the function u(z) is harmonic in G.

REMARK 1. Let dμ(t) be the measure on dK defined by μ(E) =
μ(φ(E)) for all Baire sets E C dK. Then by (1.1) we have

u(z) = [K(z9 f ) dμ(S) = ί K(w9 t) dμ (t) = u(φ(z)).

We call the integrals (1.2) the GreenStieltjes integrals. We also call K(z,ζ)
the generalized Green kernel in G.
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If u(z) can be represented in the form

(13) u(z) = JΓtf(2, £)/(£) dω(E, z0, G),

where/(f) E L\dω), then we shall call u(z) the Green-Lebesgue integral.

The following two theorems are well known (see [18, 2, 11]).

THEOREM 1.1. Let z — a(τ) be the uniformization mapping of the unit

disc D̂ onto G. § denotes the group of Mδbius transformations of D̂

corresponding to α(τ). Let u(z) be a harmonic function in G. Then the

following statements are equivalent.

(1) I u(z) I has a harmonic majorant in G.

(2) u(z) = u\z) - u\z\ u\z) > 0 in G, i = 1,2.

(3) The function u*(τ) — u[a(r)] is automorphic with respect to § and

representable by the Poisson-Stieltjes integral in 6ϋ.

(4)

'u(z), ι#(z)>0, t
, N has a harmonic majorant in G.

0, w(z)<0,

ώ β sequence of domains such that Gι C G / + 1 , U ^ l j G ' ^ G

αwJ ωι(E, z0, G
1) αr^ ί/ze harmonic measures on dG\ then

Πm / J i / l J ω ^ ^ Z o ^ O ^ C ^ +00.
/-»oo 3C

(6)

Πm J M+ dω'(E, z0, G') < Ca' < +00.

(7) w(z) is representable by the Green-Stieltjes integral in G.

THEOREM 1.2. Let u(z) be a harmonic function in G and let «(τ), § be

the same as in Theorem 1.1. Then the following statements are equivalent.

(1) The function u*(τ) = u[a(τ)] is representable by the Poisson-

Lebesgue integral in D̂ and w*(τ) is automorphic with respect to the group §.

(2) If the sequence {Gι}°° is as in Theorem 1.1., then the integrals

{/ΘCΊ u\ dω'(E9 zo,G
1)} are uniformly absolutely continuous with respect to

the harmonic measure (cf. [11]).

(3) u(z) — u\z) — u2(z) where uι(z) > 0, / = 1,2, and there exist

nondecreasing sequences of bounded harmonic functions {uι(z)}™={ con-

verging uniformly to uι(z) on the compact subsets of G.
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(4) The least harmonic major ants uM(z) of the subharmonic functions
[|w(z)| — M ] + converge to zero uniformly on the compact subsets of G as
M -̂  oo.

(5) u(z) is representable by the Green-Lebesgue integral (1.3).

Let us study the boundary behavior of the Green-Stieltjes integrals.
Let ξ E Γ and let γ̂  be a Jordan half-open arc such that γ̂  E G and ξ

is its endpoint. Let f(z) be any function in G. Assume there exists the
limit A = limz^£. z G γ ?/(z) (finite or infinite). Then following [4] we call A
the asymptotic value of f(z) at the point ζ along γ .̂ If f(z) has the
asymptotic value A at ζ along a certain curve γ̂ ° (it is possible that
A — ±oo) and the asymptotic value along any other curve γ? is either
equal to A or does not exist, then A is called the asymptotic boundary value
of f(z) at ζ. According to the celebrated result of F. Bagemihl, an
arbitrary function/(z) has asymptotic boundary values at all points ζ E Γ
except a certain countable set (see [4]). Let us fix arbitrary points ζt E yi9

i— l,...,w. Define the^generating function μ for the measure dμ as
follows. Let ξ E γ, and ξ.ξ denote the arc of γ, between ξ and ξ oriented in
the same directions as γ/# Then we set

It is clear that jΰ has bounded variation as a function of the parameter

THEOREM 1.3 (P. Fatou's theorem). Let us consider all points ζ0 E γ/?

/ = 1,...,/?, such that there exists a finite or infinite derivative

Then the integral (1.2) has asymptotic boundary values β'(ζ0) at all such
points ξ0 except, maybe, a countable set.

Proof. According to the invariance of harmonic measures and Remark
1 it suffices to prove our theorem for the circular domain %. At first, we
note that if u(w) is representable by the integral (1.2) in % with the
measure dμ, then there exists a Baire measure dv ond% such that
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In reality, the analyticity of d% implies that 3g(w, t)/dnt is harmonic in

the neighborhood of dK and does not vanish in that neighborhood. Then

setting

dμ
W)/9",

for any Baire set £ C R2, we obtain (1.4). Let d% = U " = 1 lj9 where l; are

circles. Let v(t) be the generating function of the measure dv. Fix /. Let

t0 E lr Assume there exists a finite or infinite derivative v'(t0). Let w tend

to t0. Then 3g(w, t)/dnt -> 0 uniformly on all lj9j φ i. Hence,

(i.5) u(w) = ̂  jf a^g(^' 0 ^ ( 0 + o(\)

if w is sufficiently close to tQ. Let gj(w, t) be the Green function of the

simply-connected domain %. bounded by /. and such that %i 3 %. We

define the function rw(t) as follows:

rw(t) is harmonic in %. As w -> ί0, rw(ί) -» 0 uniformly outside a certain

neighborhood of t0. Since Γ W ( / ) Ξ 0 on /z, then according to the

Riemann-Schwarz symmetry principle we can continue rw(t) through li%

Therefore, rw(t) -> 0 as w -»/0 uniformly on all the circles /j symmetric to

/;, j φ /, with respect to /,. Hence, rw(t) -> 0 as w -»ί 0 uniformly in the

whole domain bounded by /y, /j,y φ i. Then 3rw(ί)/3w r "^ 0 uniformly as

w -> t0. But θg^w, O/9«/9 ^ E 3X is the classical Poisson kernel in 9Cf..

Thus, from (1.5) we obtain that

(1.6) u(w) = ̂  I 3 ^ ^ ' ^ '

Assume w -> t0 inside a certain angle in %. Then from (1.6) and the

classical Fatou theorem (see [8, 9, 15, 19]) we obtain that u(w) -> r'(t0).

Since

(jjΰ _ dμ_ dv_ _ _ 3 _ / x dv^ ,/ \

dω~ dp dω~ dnt

8[W°> t] (3g(>v0, t)/dnt) dt ~ V U o j '

then u(w) -* μ'(t0) as w -* t0 inside any angle in %. Applying the above-

mentioned theorem of Bagemihl, we complete the proof.

COROLLARY 1.1. The integrals (1.2) have finite asymptotic boundary

values almost everywhere with respect to harmonic measure.
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COROLLARY 1.2. The representing measure dμfor the harmonic function

u(z) in (1.2) is unique.

Proof. Let us assume there are two measures dμλ, dμ2 such that

u(z) = ίκ(z,ξ)dμx = tκ(z9S)dμ2.

Let do — dμλ — dμ2. Then

(1.7) v(z)=fκ(z,ξ)dσ(ξ)ΞEθ.

According to Theorem 1.3 we obtain from (1.7) that do is singular with

respect to dω. Then, according to the De La Vallee-Poisson theorem,

\dσ/dω\— oo a.e. with respect to do (see [21]). In the proof of Theorem

1.3 we have actually shown that at each point where there exists dσ/dω,

there always exists an asymptotic value of υ(z) equal to dσ/dω. So, a.e.

with respect to dσ there exist asymptotic values of υ(z) equal to ±oo.

This contradicts (1.7).

For the sake of completeness we state and prove the decomposition

theorem for Green-Stieltjes integrals. A similar result for Green-Lebesgue

integrals was proved in [11].

The following lemma is known (see [12], [14]).

LEMMA 1.1. Let {G1}™ be a sequence of domains with smooth boundaries

such that U * , Gι = G, G< C G / + I , dGi = Γ = Uf=1 γj, where γj is ho-

mologous to jj C Γ. Let Gj denote the domain bounded by γj such that

GjD &. Let g\z,ζ), g){z,ζ) be the Green functions of Gι and G},

respectively. Then there exists a constant λ such that for all i9

dgi.jz, zo)/dnz
l λ E ^ 1dgι(z, zo)/dnz

 J

THEOREM 1.4. Let u(z) be representable by the integral (1.2). Let Gj be

a domain bounded by γ such that Gj D G. Fix arbitrary a. E C\G ;,

j = 1,...,Λ. Then

n

u{z) = ΣUJ(Z)>
1

where

(1.8) uJ(z) = cJln\z-aJ\+u'J(z),
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Cj are constants depending only on u(z). If oo & Gp then Cj — 0. For each

j = \9...9n u'j(z) is harmonic in Gj. Moreover, each Uj(z) is representable

by the Green-Stieltjes integral in Gj, Uj(oo) = 0. The functions Uj(z)9

j — 1,...,«, depend only on u(z) and the choice of otj.

Proof. Let the sequence {G'}0? be the same as in Lemma 1.1. Accord-

ing to Green's theorem applied to G\ we obtain

( \ λ f (y\\ 9 i _ L _ 1 A
 λ ί 1 1 duAu{z) — -r— / u{ζ)\ -Γ- In jr. \ as — iτ~ j In TΓ. ~^~ds

7 = 1

where

2v L In —rr—ds.

It is clear that the Uj(z),j= 1,... ,/ι, do not depend on /. Also, they are

harmonic in Gj9 respectively, except, maybe, at infinity (if oo E G ;). In a

neighborhood of oo we have

(1.10) uJ(z) = cJln\z-aj\+u'j(z), j= 1 , . . . , Λ ,

where

9w , .

and u'j(z) are harmonic at 00,7 = 1,...,«. Fix j . According to (1.9) and

(1.10) there exists the constant M such that the inequality

(1.11) \u'j(z)\<\u(z)\ + M

holds near yj. Let dω'(E, z0, G'), dω'j{E, z0, Gj) be the harmonic mea-

sures on 9(7' and ΘGy, respectively. Then, by Lemma 1.1, we have

dω)(E, zQ,Gj)
(1.12) 1 < J. °' J.[ < λ .

dω {E,zo,G')
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Since u(z) is representable by the integral (1.2) in G, then applying p. 5 of
Theorem 1.1 and estimates (1.11) and (1.12), we obtain

[ \u'j\dω)(E,z09G}) < λ ί luldtfiEtZotG*) + M < \CU + M < + oo.
JyJ Jy)

Then applying Theorem 1.1 again we obtain that each Uj(z) is representa-
ble by the integral (1.2) in Gy.

In §4 we will make use of the following.

THEOREM 1.5. Let u(z) be a harmonic function in G. {(?'}?>
dω\E, zo,G

ι) are the same as above. The following statements are equiva-
lent.

(1) The integrals {/aσ/W+(£) dωι{E, zo,G'')} are uniformly absolutely
continuous with respect to the harmonic measure.

(2) u(z) is representable by the integral (1.2) with the measure dμ{ζ) =
F(ξ)dω + dv, where dv < 0 and dv is singular with respect to dω. F(ξ) is
equal to the asymptotic boundary values ofu(z)a.e. with respect to dω on Γ.

(3) u(z) is representable by the integral (1.2) with the measure dμ(ξ) =
Φ(ζ)dω + dvχ, where dvx < 0, Φ(ξ) > 0 and Ψ(ξ) is equal to the asymp-
totic boundry values of u+(z) a.e. with respect to dω.

REMARK 2. The class of harmonic functions characterized by Theorem
1.5 as well as the corresponding class of subharmonic functions was
introduced by I. I. Privalov in [20] for the unit disc. In [16] these classes
were investigated in simply connected domains with rectifiable boundaries.

Proof. (2) => (3). Let F(ξ) - F + (ζ) - F'(ξ). Then

dμ - F+ (ξ)dω + dv- F~(ξ)dω - F+ (ζ)dω + dvu

where dvx < 0.
(3) =» (2). According to the Lebesgue decomposition, we have dvx —

f{ζ)dω + dv, where dv is singular. Since dvx < 0, then /(£) < 0 and
dv < 0. Therefore,

dμ{ζ) = Ψ(ξ)dω +f{ζ)dω + dv = F{ζ)dω + dv.

(2)=>(1). Since

u(z) = Jf *(* , ξ) dμ(ζ) *JτK(z, S)F+ (£) dω = v(z)9
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then u+(z) < υ ( z ) . According to Theorem 1.2 the integrals {jpυdω*}

are uniformly absolutely continuous. Then the integrals {/Γ, w+ dω1} are

also uniformly absolutely continuous. In a similar way one can show that

(1) => (2). The theorem is proved.

2. The Green-Schwarz kernel in finitely connected Jordan domains.
We keep the same notation as in §1. Let K(z,ξ) be the conjugate

harmonic function of K(z, ξ) as ξ E Γ is fixed. Let f(z) — u(z) + iv(z)

be a single-valued analytic function in G such that u(z) is continuous in

G. Then, according to Theorem 1.2, we have

j

Setp(z9 0 = K(z, Π + iK(z9 £). Then

(2.1) f(z) = fu(ξ)p(z9 f) dω(E, zθ9 G).

But if u(ξ) is an arbitrary real-valued continuous functions on Γ, then the

integral (2.1) gives, in general, a multi-valued function in G. We want to

construct the kernel ^(z, ξ) such that for any continuous function ΰ(ζ) on

Γ the function

is analytic and single-valued in G. In the following construction we use the

basic ideas of [3].

Let Γ' = Un

k=]yk, where yk are analytic curves in G and yk is

homologous to yk9 k = 1,... ,n. Let G' C G be a domain bounded by Γ'.

Let ωk(z) be a harmonic measure of yk9 k— 1,...,«, i.e. ωk\Ύk = l,

ωk \γ Ξ O J Y k, and ωk is harmonic in G. ωk are harmonic measures of yk

with respect to G\ k = 1,... ,π.

Let w(z) be a harmonic function in G and let v(z) be its conjugate.

According to the Cauchy-Riemann equations and Green's formula the

conditions for v(z) to be single-valued in G can be written in the following

form:

f dv f du f 9^1
Δ y υ — I - ^ - d s — -\ -z-~ds = - l u - z — d s = 0 , k — 1 , . . , , n — 1 .

From now on we assume γ 1 ? . . . 9yn_ λ lie inside of yn. Let

τ f ώ } ^ , 7 = 1,. . . ,Λ - 1.
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Here, ώk is the conjugate function of ωk. As it is known (see [3]), the

matrix H ^ H / " 1 is symmetric and positive definite. Hence, det||7τ^y|| φ 0.

Therefore, for any harmonic function u(z) in G there exist real numbers

λ,,.. .,λπ_, such that the conjugate function of u(z) — Σ"~λ \jVj(z) is

single-valued in G. Those λ,,...,λ I I_1 are uniquely defined by u(z). By

(2.2) and (2.3) it is also clear that λj9j = 1,... ,n — 1, satisfy the following

equations:

(2.4) "2 χ Λ = - / | £ Λ , Λ:= 1 Λ— 1.
y = l Ύk

THEOREM 2.1. There exists a unique function ^ (z , ξ) continuous on

G X Γ and satisfying the following properties: (1) // ξ E Γ is fixed, then

ty(z9 ξ) is single-valued and analytic in G. (2) If z E G is fixed, then

z0, G) — 0, k — 1,...,« — 1;

(<${z,ξ)d<*(E,zQ,G) = \.
Ύn

(3) Iff(z) = w(z) + zt>(z) w ̂  single-valued analytic function in G and u(z)

is continuous in G, ίΛe«

f(z) - /r^P(2, f)«(f) ^ ω ( £ , *o, <?) + ίf(^o).

WKe 5̂ a// cα// ̂ (z , f) fΛe Green-Schwarz kernel in G.

Protf/. (1) Fix f E Γ. Choose the numbers Λ 1 (£),. . . ,Λ n _ 1 (f) such
that the conjugate function R(z, ζ) of the function

1

is single-valued in G and R(z0, ξ) = 0. In case of u(z) = X^(z, f), from

(2.4) it follows that Ax(ξ)9.. .9An^x(ξ) are continuous functions of ξ.

Setting <3>(z9 ?) = i?(z, f) + iR(z, f), we complete the proof of (1).

(2) Let ΰ(ζ) be an arbitrary real-valued continuous function on Γ.

Consider the following integrals:

(2.5) u(z) = fκ(z9 ξ)U(ξ) dω(Ey z0, G),

ux(z) = jΓΛ(z, £)«(£) d ω ( £ , z 0 , G) - u(z) - ^ λ y ω y (z);
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where

(2.6) λj^jλji^ΰi^dωiE.Zo.G);

(2.7) g (z) = / > ( z , £)«(£) dω(E, z0, G) - uλ(z) + iv}(z)9

Jγ

where υx is the conjugate of uv Then ^(z) is single-valued. Take ΰ(ζ) —

ωn(ξ). Then u(z) = ωn(z). Put λ } = = λn_x = - 1 . Since system (2.4)

has a unique solution, uλ(z) = 1. Hence,

, *o> G)=J Φ(z, ξ) dω(E, z0, G) =

But Λ(z0, f) = 0. So c = 0. Letting ΰ(ζ) = ωΛ(f)? fc < «, and putting

λj = 0,... 9λk — - 1 , λΛ + 1 = 0,... ,λΛ_! = 0, one can easily verify that

(3) Let/(z) = w(z) + /ϋ(z) satisfy our hypothesis. Then system (2.4)

has only a trivial solution. If we plug ΰ(ξ) = u(ξ) into (2.5)-(2.7), then we

obtain that ux(z) = w(z) and/(z) — ̂ (z) + ίϋ(z0).

To prove the uniqueness of ^(z, ξ)9 let us assume there exists another

function ^ ( z , £) satisfying (1)—(3). Take an arbitrary real-valued func-

tion ΰ{ξ) continuous on Γ. Define w, uλ and *% by (2.5), (2.6) and (2.7),

respectively. According to (2) and (3), we have

- [%(z, ζ)ΰ(ξ) dω - [<3>(z, ξ)ΰ(ξ) dω

for all z £ G. Since ΰ(ξ) was an arbitrary continuous function, we obtain

^ ( z , ζ) = ^{z, ζ). The proof is complete.

To compute Re ^(z, ζ) we have to introduce more notation.

At first, let us consider the circular domain %. Let d%= U" = 1 /y ,

and let co, be a harmonic measure of lj. We define the functions Sj(t) on

as follows:

dω.(t)/dnt

S(,^) = Sλ,) = , e * ; j = ! » - 1
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It is clear that Sj(ί) are continuous functions on Γ. Let Γ' = U £ = 1 Vk be

defined in the same way as above. Let w(z) be a harmonic function in %

continuous in %. Let v(z) be its conjugate. Then, according to (2.2), we

have

dω'k r dω'k(τ)/dnτ 3 , , ,
Ads = u(τ) \ " g{rw)ds= - u(τ)

AsT' ^> d%it can be easily seen that

Therefore,

(2.8) w
09

Let G be an arbitrary w-connected Jordan domain, w — ψ(z) is as in §1.

We put

Since both sides in (2.8) are invariant with respect to conformal maps,

then (2.8) still holds for G (u(z) = w(ψ(z)), i.e.

(2.9) Aγv = -fu(ξ)Sk(ξ) dω(E, zo,G).

THEOREM 2.2. Let \\qjk\\n

x~
λ = ( I I ^ I I Γ 1 ) " 1 - Let <$(z, ξ) be the Green-

Schwarz kernel in G. Then

where

(2-10) Λ,α) = -"Σ<7,A(0
k=\

Proof. Let ύ(ζ) be an arbitrary real-valued continuous function on Γ.

Define u(z) in G by (2.5). From (2.4) and (2.9) we obtain

λy = - Λ Σ qJk[sk(ξ)ΰ(S)dω(E9z09G).
k=\ Γ

At the same time, by (2.6), we have
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Therefore,

j{ί) + Δ <ljkSkKί
k=\

for any M. From this (2.10) follows.

ϋ(ζ)dω(E,zo,G)=0

3. The generalized Blaschke products. In the following theorem we

put together the necessary information (most of which is known) concern-

ing zeroes of analytic functions. We keep the same notation as in §§1, 2.

THEOREM 3.1. Let f(z) be a single-valued analytic function in G. Let

{zk}™ be the sequence of its zeroes in G. The following statements are

equivalent:

(1) In \f(z) I has a harmonic majorant in G.

(2) The series Σ™ g(zk, z) converges uniformly on compact subsets of

(3) Let {zl)f=l9j = 1,... ,w, be the subsequences of {zk}°£=ι such that

all cluster points of {zft belong to χ,; {zk}f = W}=1 { z ^ = 1 , {z<}£=1 Π

{zJ

kY£=χ — 0 as i φj. Then the series Σf=ιgj(zJ

k, z)J = 1,... ,Λ, converge

uniformly on the compact subsets of Gj\{zl}f=].

(4) The series 2f=, | ωf.(z^) - δ/y | , / = 1,...,«, j = 1,...,n, converge.

(δ / y is the Kronecker symbol.)

If T — U " = 1 yj is analytic and ζj denotes the closest point to Zj on Γ,

then (1)—(4) are equivalent to the following:

(5) 1 ky-fy|<+oo.

Proof (I) ^ (2) follows immediately from the Green-Jensen formula.

(2) <̂  (3). From Lemma 1.1 it easily follows that the following in-

equalities hold near each Ύj,j— 1,... ,n:

where Cj are certain constants. This implies that (2) <=> (3).

(2) <=> (4). Let us transfer everything into the circular domain %. Let

gj(w, t) be the Green functions of %J9 j — l,...,/i, and wk — ψ(zΛ).

According to the invariance of Green's functions we have
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Since we have already proved that (2) «=> (3), then all series Σf= i gj(wi> w0),
j — 1,... ,n, wJ

k — ψ(z;(), converge as soon as Σf g{wk, w0) < + oo.
According to the equivalence of (1) and (2), and the well-known Blaschke
theorem for the unit disc, we obtain the convergence of the following
series: Σf \wJ

k — t[\, j — 1,...,«. Here, /̂ ' is the closest point to wJ

k

on d%. It is clear that there exists a constant M such that lω^w') —
Vj(w")\< M\w' — w"\ for all w\ w" E %. From this and according to
the fact that all ωy are invariant with respect to the conformal mappings,
we obtain our statement. We note that in the last argument we only used
the analyticity of d%. Therefore, if dG is analytic we obtain that (l)-(4)
are equivalent to (5).

Let flEC,β'GΓ. Following [3] we define the functions

(3.1) ®(z, a) - (z - a)expj-J>(z, ?)ln|f - a\dω(E, z0, G)

(3.2) φ(z, a') = (z - αθexp|-/^(z, f )ln|f - αV«(£, z0, G

In the same way as it has been done in [3], one can show that the function
(3.1) conformally maps G onto the unit disc with slits along circular arcs
centered at the origin. Similarly, the function (3.2) conformally maps G
onto the annulus with slits along circular arcs around the origin.

The proof of the following theorem is almost the same as that for the
corresponding result in [3], so we omit it.

We recall that \\qJk\\Γι = (II^IIΓ ! )" ! ( s e e §2)

THEOREM 3.2. Let the sequence {zk}™ satisfy (l)-(4) of Theorem 3.1.

Let ζ{ — ψ~ι(tJ

k), where t{ are the same as in the proof of Theorem 3.1

(k — 1,.. . , ;y = 1 , . . . , Λ ) . Then the product

converges absolutely and uniformly on the compact subsets of G. ®0(z) — 0
if and only if z G {zk}f. Moreover, if the sequence {G'}%] is the same as in

lim / \hL\%(z)\-Ck\dωi(E,z0,G')=0,
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where

/=1 /=i j=\

Finally, \%0(ζ) | | = exp(Q) α.e. w/ϊ/z respect to dω, k — 1,...,«.

We shall call ®0(z) the generalized Blaschke product.
For the reader's convenience let us recall the definitions of the basic

classes of analytic functions in multiply connected domains. (Details can
be found in [10].)

Let/(z) be a single-valued analytic function in G. {G1}, dGι = F are
as above.

The function/(z) belongs to N(G) (Nevanlinna's class) if

lim I ln + | / | Jω / (£, z0, G
ι) < const < +00.

/-•oo Γ1

We say that/(z) belongs to N+ (G) if the integrals

/ ln + | / | J ω ^ , z o,G

are uniformly absolutely continuous with respect to the harmonic mea-
sure. The function/(z) belongs to Hp(G), p > 0 (Hardy's classes), if

ϊϊrn f \ff rfω'ΪJF, zo,G'') < const < + 00.
f-00 ^Γ'

Finally, the function/(z) belongs to Ep(G), p > 0 (Smirnov's classes),
if there exists the sequence {G1} as above such that Γ1 = 3G; are rectifia-
ble and

lim / I/I ds < const < + 00.

It is known (see [8-10, 15, 19]) that ND N+D Hp and ND Ep for all
p > 0.

COROLLARY 3.1. Iff(z) E N(G), then the Blaschke product correspond-
ing to the zeroes off(z) converges.
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4. Factorization theorems in finitely connected domains. Let G be

an ^-connected Jordan domain.

LEMMA 4.1. Let f(z) E N(G), f(z) E N+(G) or /(z) E Hp(G). Let

® 0(z) be the Blaschke product corresponding to the zeroes off(z). Then the

function W(z) = f(z)/%0(z) belongs to the same class as f(z).

Proof. For the classes N9 N+ the lemma follows directly from the

definitions and Theorem 3.1. Let f(z) E Hp(G). Then according to the

results in [10], f(z) E N+(G). So f ( z ) E N+(G). Moreover, the condi-

tion

f | dω < const < + oo

follows from the fact that

ί \ff dω < const < + oo,
JΓ

since | B0(ξ) |^ = const for all k = 1,...,«. Therefore from the generaliza-

tion of the Polubarinova-Kochina theorem obtained in [10] it follows that

^ ( z ) E Hp. The lemma is proved.

The following theorem extends the result of R. Coifman and G. Weiss

to Jordan domains.

THEOREM 4.1. Let f(z) E N(G). Then f(z) can be represented in the
following form:

(4-1) f(z) = β(2)4,(z)«pjjf 9(z,

5 0 (z) w //*e Blaschke product corresponding to the zeroes of f(z);

dμ(ζ) is a real Baire measure on Γ;

λ7, < / = l , . . . , / ι — 1, are ra*/ numbers such that the numbers

(l/27r)ΔγΛarg<2(z), k— 1,...,Λ, are integers. The converse is also true,

namely, z/(4.1) holds with \jyj = 1,...,«, ŵcΛ /Λα/ (l/2ττ)Δγ Λarg β ( z ) are

integers, then f{z) E
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Proof. Let /(z) E N(G), and let B0(z) be its Blaschke product.
According to Lemma 4.1 φ(z) = f(z)/B0(z) E N(G). Then, by Theorem
1.1, In I f(z) I is representable in the form (1.2), i.e.

where dμ is a real Baire measure on Γ. Consider the function
/Γ ^(z, ζ) dμ(ζ). According to Theorem 2.1 we have

u(z) = Re / > ( z , ξ) dμ = ln|^(z) | - ^ λ,ω,.(z).
Γ 1

Therefore,

Λ7— 1

§"(z) = exp 2 λ y

 w

7 (z>
1

From this (4.1) follows. Since W(z) is single-valued, then

are integers.
Assume (4.1) holds. Then the first two factors are bounded functions

in G. Let us denote the third factor by φ(z). We have

1

- Σ λjωj(S)dω(E,zo,G)
1

So ln|ψ(z) | is representable by the Green-Stieltjes integral. Applying
Theorem 1.1 we obtain that φ(z) E N(G). Therefore,/(z) E N(G).

COROLLARY 4.1. The factor Q(z) can also be represented as

α [ , . . . , α ^ _ ! are arbitrary points on λ l 9 . . . ,λ Λ _,, respectively, andmk9

k — 1,...,« — 1, are integers defined by

/. Since 3F(z) = f(z)/B0(z) is single-valued, then m^ =
(1/2TΓ) A^arg^(z), fc = l,. . .,π — 1, are integers. From (4.1) it follows
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^ Δ ^ a r g β , k = 1,...,/ι - 1, i.e.

n-\

mk ~ Σ ^y\

Hence, λy = 2^=j Qjkmk- Fi χ arbitrary points a'k E γ^, k — 1,...,« — 1.
According to the result in [3], we have

\B(z,a'k)\= e x p j - Σ <ljkωj(z)h k = 15 ?« ~ 1.

So

^ ^ l

Hence,

Λ

From this we obtain our corollary.

THEOREM 4.2. /(z) e N+(G) if and only if (4.1) holds with dμ =
ln|/(£)|dω(2s, z0, G) + ί/̂ , where f{I) is the asymptotic boundary values
off(z), dv < 0 and dv is singular with respect to dω.

Proof. Let/(z) e N+(G). Then (4.1) holds with dμ taken from the
representation of In | ^ ( z ) | by the Green-Stieltjes integral. Since, accord-
ing to Lemma 4.1, W(z) E iV+ (G), then the integrals {/Pln+1 f | ^ωz} are
uniformly absolutely continuous with respect to the harmonic measure.
Therefore, according to Theorem 1.5, we obtain

J [ , z0, G)

where dv < 0 and dv is singular. But

= ln|/tt)|
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on yk. According to Theorem 2.1(2) we obtain

Therefore, we can replace the measure dμ in (4.1) by the measure
dμ' — ln|/(f) \dω + dv. The proof of the converse statement is the same
as in Theorem 4.1.

THEOREM 4.3. /(z) G Hp{G) if and only if (4.1) holds with dμ =
ln|/(f) \dω + dv, where dv<0 and dv is singular with respect to dω.
Moreover,

ί \f(ξ)f dω(E, z0, G) < const < + oo.
Jτ

We omit the proof of this theorem since it can be obtained in the
same way as the proofs of Theorems 4.1 and 4.2. The following theorem
characterizes the Blaschke products (cf. [8, 9, 15, 19]).

THEOREM 4.4. /(z) is representable in the form f(z) = Q(z)B0(z),
where B0(z) is the generalized Blaschke product, Q(z) is the same as in
Theorem 4.1, // and only if there exist real numbers Cl9..., Cn9 Cn — 0, such
that

(4.2) lim

Proof. If/(z) = β(z)J50(z), then (4.2) follows from Theorem 3.2.

On the other hand, let us assume (4.2) holds. Then /(z) G N+(G).
Moreover, the integrals {/Γ, | In |/| | dω} are uniformly absolute continuous
with respect to the harmonic measure. Hence, according to Theorem 1.2,
ln |/(z) | is representable by the Green-Lebesgue integral. Therefore, the
measure dμ in (4.1) is absolutely continuous with respect to dω. Moreover,
on each yk we have In \f(ξ) | = Ck a.e. From this and from Theorem 2.1(2)

Let us now study the factorization problem for the classes Ep.
Let G be a ^-connected domain with the rectifiable Jordan boundary

Γ. Hence, we can talk about ordinary angular boundary values. Moreover,
in that case the singularity with respect to the harmonic measure and the
singularity with respect to the Lebesgue measure ds on T are equivalent.
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We recall that G is called a Smirnoυ domain (G G S) if ln|ψ'(z) | is
representable by the integral (1.3) (cf. [10]). (As above ψ(z) is a conformal
mapping of G onto the circular domain %.)

THEOREM 4.5. Let G E S. Then f(z) G Ep(G\ p > 0, // and only if
(4.1) holds with dμ — In |/(f) | dω + dv, where dv < 0, dv is singular and

[ \f(ζ)fdS< const < +oo.

Proof. Since G G S, ^ ( G ) CiV+(G) for all /? > 0 (see [10]). So our
theorem follows immediately from the Polubarinova-Kochina theorem in
[10].

To investigate the case G £ S we first recall the following generaliza-
tion of the Keldysh-Lavrentjev theorem for multiply-connected domains
proved in [10].

(4.3) f(z) E Ep(G) ~f(z)/WU) e Hp(G).

The following lemma is known (see [10]).

LEMMA 4.2. Let Gy, γy. C Γ, Xy,y = 1,... ,/i, as a t e . Lei ψy(z)

conformal mapping of Gj onto %r Then there exist constants C,, C2

that the inequality

near jjfor all j = 1,... ,/ι.

From (4.3) it follows that ψ'(z) G £,(0). Moreover, since ψr(z) T^ 0
in G we can write the representation (4.1) for ψ'(z) as

(4.4) ψ'(z)

where ύ?μ0 — In | ̂ '(f) | t/co + dv§\ dv§ is a singular measure. Since
= [ψ'VXΓ G ̂ ,(5C) (Γ is rectifiable!), from (4.3) and Theorem 4.5 it
follows that dv0 >: 0.

REMARK. We assume ψ(z) maps the outer curve of Γ onto the outer
curve of dK. So In ψ'(z) is a single-valued function in G.
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THEOREM 4.6. f(z) e Ep(G)9 p > 0, // and only if (4.1) holds with
dμ — In |/(f) I dec + dv, where dv is singular, dv < (l/p)dv0 and

Proof. Let/(z) G Ep(G). Then, according to (4.1), we have

/(z) = ρ(z)50(

where J^ is a singular measure. From (4.4) we obtain

WU)
= β(z)βo(z)exp AS)

X

Therefore, according to (4.3) and Theorem 4.3, we have dv — (l/p)dv0 < 0
and

(4.5) JΓ |̂ , z0, G) < const < + oo.

So J^ <(\/p)dv0. Since

(gy is the Green function of G )> then according to Lemmas 1.1 and 4.2 we
obtain that (4.5) is equivalent to /Γ |/(f) f ds < + oo.

We omit a proof of the sufficiency since it is the same as in Theorems
4.1-4.3.

COROLLARY 4.2. Π0<p<ooEp(G) CN+(G).

Proof, Let/(z) E Π 0 < / 7 < o o£' ; 7(G). Then according to Theorem 4.6 the
singular part dv of the measure dμ in the representation (4.1) for/satisfies
the inequality dv < (\/p)dv0 for all/? > 0. Letting/) tend to oo and using
Theorem 4.2 we complete the proof.

REMARK. From the results in [13] it is seen that the modulus of the
boundary values and the singular measure are really the parameters of the
corresponding classes JV, N + , Hp and Ep.
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