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ON THE VECTOR FIELDS ON
AN ALGEBRAIC HOMOGENEOUS SPACE

YOSHIFUMI KATO

We construct a holomorphίc vector field V with isolated zeros on an
algebraic homogeneous space X = G/P and show that the Koszul com-
plex defined by V gives much information concerning the cohomology
groups of X. Our results give useful examples to the studies of J. B.
Carrell and D. Lieberman.

1. Koszul complex. Let X be a compact Kahler manifold of dimen-
sion n. We assume the manifold X admits a holomorphic vector field V
whose zero set Z is simple isolated and nonempty. The following complex
of sheaves is said to be the Koszul complex defined by V:

(1.1) 0 - ^ Ω ^ Ω " " 1 ^ >Ω1^Ω° = 0 ^ ^ O ?

where the differential 3 is the contraction map i(V). The structure sheaf of
Z is 0Z = &χ/i(V)Ώ,\ To make the differentials of degree + 1, we sub-
s t i tu ted = Ώ~p:

(1.2) 0-> K~n^K-n+λ ^ ••• ^K°-^0.

For any locally free sheaf φ9 we denote by K(^) the complex obtained by
tensoring ^with (1.2) over 0^. Let %*(<3:) be the cohomology sheaves of
the complex K(Φ). Then, from the assumptions, it follows that %%<$) - 0
for -n < q < 0 and %°(§) -^®&z, whose support is contained in Z.
We abbreviate <5Z = f Θ Θz. The hypercohomology H*(X, K(<»)) can be
calculated by using the double Cech complex C*(%, K{^)) in the usual
manner. See [3]. Corresponding to the natural two filtrations in

), we get the following spectral sequences which converge to

(1.3) fE™

(1.4) "Eξ«

From the above remark, it follows that W(X, K(%)) = 0 for r φ 0 and
H°(X, K{^)) = H°(Z, φz). Note that the space H°(Z, Θz), i.e., in case
*% — 0^, can be interpreted as the ring of complex-valued functions on Z.
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Let f p % and % be locally free sheaves and φ: % X % ^ % a

bilinear map. Then by using the exterior product in K*9 we obtain a

bilinear map

(1.5) φ: Hp(X, K{^)) X H*(*, K{%)) -

Further if we denote by FHP(K(%)) the filtration on HP(X, K{%))

induced from the Έ Γ te rms (1.3), then the map keeps the filtrations

(1.6) φ: Frnr(K{$x)) X FsH«(κ(%)) -* Fr+SH?+«(K(%))

for p9 q, r, s E Z. In particular if we take % = QX, 1 ^ / < 3, and φ:

Θ ^ X Θ ^ ^ Θ ^ the multiplication, we can introduce a natural ring struc-

ture in H°(X, K) which is compatible with the wedge product pairing of

the groups Έ\p-q — Hq{X, Ωp). Further we have the following known

results. See [2], [3].

LEMMA 1. Suppose the manifold X and the vector field V are as above.

Then

(1) In casety' — Θx, all the differentials of(\.3) vanish.

(2) Therefore comparing (1.3) and(\Λ), we have

(1.7) Hp(X,W) = 0 forpφq.

(3) The space H°(Z, Θz) has the canonical filtration induced from the

filtered hypercohomology ring H°( X, K) such that:

(1.8) H°(Z9 Θz) = F_n 3 F_n+X D Ώ F Q Ώ { 0 } ,

(1-9)

(1.10) F

(1.11) //*(X,C)^gr//°(Z,Θz)= 0
p = 0

2. F-equivariant vector bundles. The following definition and re-

sults are in [3],

DEFINITION. We say that a vector bundle & on X is K-equivariant if

the derivation V: Θx -* &x can be lifted to S, i.e., there exists a C-linear

map V: & -» & such that

(2.1) V(f s) = V(f) s+f. V(s)

where/is a local section of 0^ and s that of S.
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Let {/y} be a set of transition matrices of &. Then the set {dftJ f~1}

defines the Atiyah-Chern class c(&) of S in H\X, Horn(&, &) ® Ω1).

And the class i(V)c(&) in H\X, Hom(&, &)) is the obstruction for S to

be F-equivariant. See [3]. If we put ^—Hom{&,S), the cohomology

groups H\X9 Hom(&, &) ® Ω1) and H\X, Hom(&, &)) can be interpre-

ted as the Έj" 1 ' 1 and Έ^-terms, respectively, of the spectral sequence

(1.3). Therefore each F-equivariant vector bundle S defines the hyper-

cohomology class c(&) lying in i7_1H°(Λr, K{Hom{&, &))). Here the class

c(&) is well defined only up to F0H°(X, K(Hom(&, &))) and is called the

hyper-Chern class of S. We denote by σd: Hom(&, &)->βχ,0<d<r~

rank S, the vector bundle homomorphisms defined by the rule:

r

(2.2) det(ί/ + &) = Σ od(&)tr~d, & E Hom(S, S).

The mapping σd is usually called the dth elementary function and is a

polynomial map of degree d. We denote by ed\ F_dH°(X, K) = F_d -»

Hd(X,Ώd) the mapping which induces the canonical isomoφhism

LEMMA 2. 77*e m φ σ̂  determines the classes od(c(S)) and od(c(&))

which belong to Hd{ X, Ωd) and F_dH°{ X, K% respectively. We have:

(1) (~l)dod(c(&)) is the dth Chern class of S and coincides with

(2) Let VZ(ΞH°(Z, Hom(&, S)z) ^H°(X, K(Horn(S, &))) denote

the restriction of V to Z. Then {~\)dod(Vz) belongs to H°(Z, 0Z) and is

equal to (-\)dσd(c(S)).

3. Semisimple Lie algebras. Let Q be a complex semisimple Lie

algebra. We choose a compact form ί and define a ^-operation on g with

respect to t. Let 6 be a Borel subalgebra of g. If we put ί) = 61-! Π b* then ί)

becomes a Cartan subalgebra of g. Let Δ C ί ) | b e the root system of £) in

g. The set Δ is divided into two classes, the positive roots Δ+ and negative

roots Δ_ with respect to b. We denote by Π the set of simple roots

corresponding to Δ + . Then any root φ G Δ can be written as φ =

Σ«GΠ na(φ)a where na(φ) are nonnegative or nonpositive integers accord-

ing to φ E Δ+ or Δ_ . The algebra g has the root space decomposition

(3.1) a = ί)+ Σ $*+ 1 ββ,
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where

For any a E Δ, dim gα = 1, and from the definition of gα it follows that

(3.2) *d(H)(X) =[H, X] = a{H)X, l E g f t , / / G ή .

Let ft be a parabolic Lie subalgebra of g which contains 6. Then there

exists a decomposition of g corresponding to ft.

LEMMA 3. Let g, ft be as above. We put n = {Z E g | (Z, Y) = 0 for all

Y E ft} where (,) w the Killing form of g. 7%e« n zs ί/z£ maximal nilpotent

ideal ofp and also the set of all nilpotent elements in the radical of p. Further

if we define Q{ — ft Π ft*, then we have the decomposition

(3.3) g = n* + gt + n, ft = Qλ + π.

Moreover g, //es zw /Λ̂  normalizers of both n α«J n*.

For any subspace α which is invariant by the adjoint action of ί), we

define the set Δ(α) C Δ as follows:

(3.4) Δ(α) = { O ^ α Eί}* |[i/, X] = α(7/)^for some 0 φ X E α

and any if Eί)} .

The subalgebras g,,π and π* are invariant and we have:

(3.5) Δ ( β l ) = { φ e Δ | « α ( φ ) = O f o r a l l α e Π n Δ ( t ) ) } ,

(3.6) Δ(n) = {φ G Δ + | n α ( φ ) > 0 for all α e Π Π Δ(t))},

(3.7) Δ ( n * ) = - Δ ( n ) .

Let G be a simply-connected complex semisimple Lie group whose

Lie algebra is g. Let B, T and P be the Borel subgroup of G with Lie

algebra b, the Cartan subgroup with Lie algebra ί), and the parabolic

subgroup with Lie algebra ft, respectively. The homogeneous space X —

G/P becomes compact. Further, the space X can be embedded into a

certain projective space by using the representation theory of G. Hence we

call the space X an algebraic homogeneous space. Let Gl9N and TV* be the

Lie subgroups of G corresponding to g,, n and n*, respectively. Then the

group P is the semidirect product of Gx and TV, and, further, P Π N* =

{/}.See[7].

Let N(T) be the normalizer of Γin G. We call the group W = N{T)/T

the Weyl group of G with respect to T. We put Wλ = N(T) Π P/T C W
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and Wx = W/Wv The group N(T) acts on T, ί) and Δ as follows:

(3.8) to cxpH - to"1 = exp(Ad(to)#),

(3.9) (Ad(to)*α)(#) = α f ^

for to G iV(Γ), AT G ί), α G Δ. But if to G Γ, the actions of to are all

trivial. Hence we can regard as the group W acts on T9 ί) and Δ. For

simplicity, we use the same letter to for to, Ar(to) and Ad(to)*.

4. Main results. We first prove the following proposition.

PROPOSITION l.Ifwe act the maximal torus T on X — G/P then the set

Wx = W/W}= N(T)/N(T) Π P is naturally realized as the set of all T

fixed points in X.

Proof. An element g & X is fixed by the action of T if and only if

g~xTg C P where g is a representative of g in G. Since the group g~]Tg is

also a maximal torus of G contained in P, there exists p G P such that

g~]Tg — pTg~K This means gp G N(T). Hence g defines a coset gp in

Wλ. If two fixed points g and g' define the same coset in W] then

gP = g'p'p" for some p,p' G P and p" G iV(Γ) Π P. So g = g' in X If

we take an element to E N(T) then the coset corresponding to to is

ίυ G JF1. Hence the mapping is onto.

Let us consider the following diagram:

(4.1) n*

01

Φ
—>

G
U

01

ψ

G/P

u

TV*

01

to

G/P
u

mN*

u
expZ -* expZ -> toexpZ.

We write an element Z o f n* as Z = 2 a G A ( n * } z a X a with respect to the

basis Xa G gα, α G Δ(n*), of n*. Since the Lie algebra n* is nilpotent, we

have log(exp Z) ^ Z and hence the map φ is one-to-one and onto. Since

iV* Π P = {/}, the mapping ψ is also one-to-one. The left multiplication

of to is clearly one-to-one. Hence we can take the pair

( to7V*,φ~ 1 oψ~ 1 oto~ 1 )asa coordinate neighborhood near to G Wx and

then the functions {za(tΌn*)}a^^(n*) become the local coordinates.
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THEOREM 1. The quotient set Wλ — W/Wχ can be canonically embedded
into^ X — G/P as the set of all T-fixed points, and the pair
(toiV*, φ~] O φ~ι o tυ^1) is a coordinate neighborhood near to E Wx. The
sets toiV*, to E W\ are all T invariant Zariski open sets. In fact if we
multiply exp 7/ EL T on to TV*, the local coordinate t> α (to«*)} α G Δ ( n * } changes
to {£(*>«)< "> za(tΌn*)}a€Ξ^{n*y Further, the space_X is covered with the
family of the open sets toiV*, i. e., X — Um G H /i to TV*.

Proof. The first sentence has been proved. Let to 0 be the element of W
whose length is maximal among all. Then since to^ λNtΌ0 — N*9 too7V* =
NΪΌ0P/P. Namely the set tooN* is the Bruhat cell of maximal dimension
and is a Zariski open set. So toN* = tΌtUQλtΌ0N*9 to E W\ are all Zariski
open sets. Since, for exp Z E TV*,

expH - to exp Z P = to to"1 expi/to expZ to~~]exp( — H)ΪΌ P

= to exp(tυ~ι(H)) expZ exp(-to"1(AΓ)) P

= to exp(Ad(exp(to~1(i/)))z) P

= to exp(Exp(ad(to~1(^)))z) P

and

Exp(ad(to~1(^))) Z E n*,

then

(φ- 1 o ψ-1 o to-λ)(expH to exp Z) = Exp(ad(to~ !(//)))• Z.

If we write Z = 2 a e A ( n * } z f t^α, we have

zaXa

= 2 a(n-ι(H))zaXa= 2 (roa)(H)zaXa
αGΔ(n*) αζΔ(n*)

and, hence,

To prove X — U l ΐ ) G ^ to TV*, we need the following fact. See [6].

Fact. Let 7be a compact Kahler manifold which satisfies H\Y, C) =
0. Then if a complex connected solvable Lie group S acts holomorphically
on 7, it always has a fixed point inside any analytic subvariety that S
leaves invariant.
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The space X satisfies above assumptions and we can take T as S.

Then since roTV* is a T invariant Zariski open set, the complement

Xr = X ~ U m e ^ i to TV* becomes a T invariant sub variety. Hence if Xr is

not empty, it must have a T fixed point. But this is a contradiction. This

completes the proof.

Since the Lie group G acts on X — G/P from the left side, the space

X has many global holomorphic vector fields. For an element H E ί), let

us define a holomorphic vector field VH on X by the rule

(4.2) (Fw/)(g) = lim-J-{/(exp(e/Og) -/(g)},

where g G l and / is a local function near g. Then the above theorem

implies that the vector field VH is expressible on to N* in the explicit form

(4-3) VH= 2 (to 9
a ί) 7

<*eΔ(n*) 0 Z «

If H belongs to the Weyl chambers then 0 ^(toa)(H) E R for all

to E W\ a E Δ(n*). Hence the set of all vanishing points of VH agrees

with Wx and VH vanishes in the first order there.

Let us quote the following fact from C. Kosniowsky [5].

Fact. Let M be a compact complex manifold of dimension n and A a

holomorphic vector field with simple isolated zeros {ζu...,ζk}. Let us

consider the Lie derivative LA\ T£(M) -* Ίf(M) at ζ E {fj,...,^} and

denote by {θ^ξ),... ,#„(£)} i*s eigenvalues. Then we have

for exactlyp indices j , 1 <j < w},

where A^^ = dim #«(.¥, Ω^).

Theorem 2 is well known.

THEOREM 2. Le/ X = G/i5. Then the numbers hp-q are determined as

follows:

(2) hp^p = {to E Wx \(toa)(H) > 0 for exactly p weights a, a E

Δ(π*)}.
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Proof. (1) has been shown in Lemma 1. By using (4.3) we can easily
calculate the eigenvalues of the Lie derivative Lv at the zero point
tυ E W\ In fact they are the values {2(tυα)(//)}ftGΔ(n*). After noting
χp = (—\)p - hp'p, we complete the proof.

THEOREM 3. Let X — G/P. Let & be a homogeneous vector bundle
which is induced from a representation φ: P --» GL(V). Then:

(1) The vector bundle & is VH-equivariant.
(2) The representative (— ̂ )dod{VH z ) of the dth Chern class, 0 < d < r

= rank S, o/S m H°(Z, Θz) tate the value σd(dφ(tΌ'\H))) at to E W^1.
we denote the differential of φ by dφ: p ->

REMARK. For the line bundle case, i.e., r = 1, see E. Akyilidiz [1].

Proof. The vector bundle S is obtained by dividing G X V by the
equivalence relation (g, u) ~ (g/?, φ~1(/>)ϋ) for g E G, /? E P, u E F.
Therefore a local section υ of S can be interpreted as the F-valued
function on some open set U of G which satisfies v(g) — Φ(p)v(gp) for
g, gp E £/, /? E P. Similarly a local function / on ^ can be considered as
the function satisfying/(g) = f(gp)- For these v(g) we define

(4.4) {VHυ)(g) = lim^{v(cxp(eH)g) - υ(g)};

then

- Φ(p)v(gp)}

i-{υ(exp(εi/)gp) - v(gp)}

Hence (VHv)(g) is also a local section of &. On the other hand, let/be a
local function; then

(4.5) {VH(fυ))(g) = lim}{/(exp(ε#)g)t;(exp(εi/)g) - f(g)v(g)}
ε-*0 t

|{(/(exp(ε//)g) -/(g))υ(exp(ε//)g)}

lim 1 {/(g)(υ(exp(εi/)g) - υ
ε^O c
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This means VH is a lifting of VH to S. Hence & is F^-equivariant. Let υ(g)
be a local section of S which takes a constant vector v along the set ϊυiV*.
Then

(4.6) (VHv)(tυ exp Z) = lim - (ι;(exp(ε#)mexpZ) - t?(i

= lim — [φ(tυ~ι exp( — εH)\υ)

v(\ΌΪΌ~1 Qxp(εH)vo exp ZΪΌ~] exp(-εH)tυ)

— υ(tυexpZ))

1
^ lim — ίφ(ft) exp( — εH)ΐΌ)v — v\

ε-0 S ι

- lim-{Exp(-εJφ(tυ-1(//)))t; - υ)
ε-+o ε

= -dφ(tΌ~ι(H))v(tυexpZ).

Therefore if we choose a basis of local sections of & on ΪΌ JV* from these
sections, we can write VH z — —dφ(ΐυ~](H)) by using matrix notation.
So we have

(4.7) det(// - VHZ) = det(// - (-</φ)(ttΓ\H)))

The proof of Theorem 3 is completed.
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