ON THE VECTOR FIELDS ON AN ALGEBRAIC HOMOGENEOUS SPACE

Yoshifumi Kato

Abstract

We construct a holomorphic vector field V with isolated zeros on an algebraic homogeneous space $X=G / P$ and show that the Koszul complex defined by V gives much information concerning the cohomology groups of X. Our results give useful examples to the studies of $\mathrm{J} . \mathrm{B}$. Carrell and D. Lieberman.

1. Koszul complex. Let X be a compact Kähler manifold of dimension n. We assume the manifold X admits a holomorphic vector field V whose zero set Z is simple isolated and nonempty. The following complex of sheaves is said to be the Koszul complex defined by V :

$$
\begin{equation*}
0 \rightarrow \Omega^{n} \xrightarrow{\partial} \Omega^{n-1} \xrightarrow{\partial} \cdots \rightarrow \Omega^{1} \xrightarrow{\partial} \Omega^{0}=\theta_{X} \rightarrow 0, \tag{1.1}
\end{equation*}
$$

where the differential ∂ is the contraction map $i(V)$. The structure sheaf of Z is $\theta_{Z}=\theta_{X} / i(V) \Omega^{1}$. To make the differentials of degree +1 , we substitute $K^{p}=\Omega^{-p}$:

$$
\begin{equation*}
0 \rightarrow K^{-n} \xrightarrow{\partial} K^{-n+1} \xrightarrow{\partial} \cdots \stackrel{\partial}{\rightarrow} K^{0} \rightarrow 0 . \tag{1.2}
\end{equation*}
$$

For any locally free sheaf \mathscr{F}, we denote by $K(\mathscr{F})$ the complex obtained by tensoring \mathscr{F} with (1.2) over $\mathcal{\theta}_{X}$. Let $\mathscr{H}^{*}(\mathscr{F})$ be the cohomology sheaves of the complex $K(\mathscr{F})$. Then, from the assumptions, it follows that $\mathscr{H}^{q}(\mathscr{F})=0$ for $-n \leq q<0$ and $\mathscr{H}^{0}(\mathscr{F})=\mathscr{F} \otimes \mathcal{O}_{Z}$, whose support is contained in Z. We abbreviate $\mathscr{F}_{Z}=\mathscr{F} \otimes \mathcal{O}_{Z}$. The hypercohomology $\mathbf{H}^{*}(X, K(\mathscr{F}))$ can be calculated by using the double Čech complex $\check{C}^{*}(\mathscr{Q}, K(\mathscr{F}))$ in the usual manner. See [3]. Corresponding to the natural two filtrations in $\check{C}^{*}(थ, K(\mathscr{F}))$, we get the following spectral sequences which converge to $\mathbf{H}^{p+q}(X, K(\mathscr{F}))$:

$$
\begin{align*}
{ }^{\prime} E_{1}^{p, q} & =H^{q}\left(X, K^{p}(\mathscr{F})\right), \tag{1.3}\\
{ }^{\prime \prime} E_{2}^{p, q} & =H^{p}\left(X, \mathscr{H}^{q}(\mathscr{F})\right) . \tag{1.4}
\end{align*}
$$

From the above remark, it follows that $\mathbf{H}^{r}(X, K(\mathscr{F}))=0$ for $r \neq 0$ and $\mathbf{H}^{0}(X, K(\mathscr{F}))=H^{0}\left(Z, \mathscr{F}_{Z}\right)$. Note that the space $H^{0}\left(Z, \mathcal{O}_{Z}\right)$, i.e., in case $\mathscr{F}=\vartheta_{X}$, can be interpreted as the ring of complex-valued functions on Z.

Let $\mathscr{F}_{1}, \mathscr{F}_{2}$ and \mathscr{F}_{3} be locally free sheaves and $\phi: \mathscr{F}_{1} \times \mathscr{F}_{2} \rightarrow \mathscr{F}_{3}$ a bilinear map. Then by using the exterior product in K^{*}, we obtain a bilinear map

$$
\begin{equation*}
\phi: \mathbf{H}^{p}\left(X, K\left(\mathscr{F}_{1}\right)\right) \times \mathbf{H}^{q}\left(X, K\left(\mathscr{F}_{2}\right)\right) \rightarrow \mathbf{H}^{p+q}\left(X, K\left(\mathscr{F}_{3}\right)\right) . \tag{1.5}
\end{equation*}
$$

Further if we denote by $F \mathbf{H}^{p}\left(K\left(\mathscr{F}_{i}\right)\right)$ the filtration on $\mathbf{H}^{p}\left(X, K\left(\mathscr{F}_{i}\right)\right)$ induced from the ${ }^{\prime} E_{1}$-terms (1.3), then the map keeps the filtrations

$$
\begin{equation*}
\phi: F_{r} \mathbf{H}^{p}\left(K\left(\mathscr{F}_{1}\right)\right) \times F_{s} \mathbf{H}^{q}\left(K\left(\mathscr{F}_{2}\right)\right) \rightarrow F_{r+s} \mathbf{H}^{p+q}\left(K\left(\mathscr{F}_{3}\right)\right) \tag{1.6}
\end{equation*}
$$

for $p, q, r, s \in \mathbf{Z}$. In particular if we take $\mathscr{F}_{i}=\mathcal{O}_{X}, 1 \leq i \leq 3$, and ϕ : $\theta_{X} \times \theta_{X} \rightarrow \theta_{X}$ the multiplication, we can introduce a natural ring structure in $\mathbf{H}^{0}(X, K)$ which is compatible with the wedge product pairing of the groups ' $E_{1}^{-p, q}=H^{q}\left(X, \Omega^{p}\right)$. Further we have the following known results. See [2], [3].

Lemma 1. Suppose the manifold X and the vector field V are as above. Then
(1) In case $\mathscr{F}=\mathcal{O}_{X}$, all the differentials of (1.3) vanish.
(2) Therefore comparing (1.3) and (1.4), we have

$$
\begin{equation*}
H^{p}\left(X, \Omega^{q}\right)=0 \quad \text { for } p \neq q \tag{1.7}
\end{equation*}
$$

(3) The space $H^{0}\left(Z, \theta_{Z}\right)$ has the canonical filtration induced from the filtered hypercohomology ring $\mathbf{H}^{0}(X, K)$ such that:

$$
\begin{gather*}
H^{0}\left(Z, \mathcal{O}_{Z}\right)=F_{-n} \supseteq F_{-n+1} \supseteq \cdots \supseteq F_{0} \supseteq\{0\} \tag{1.8}\\
F_{p} \cdot F_{q} \subseteq F_{p+q} \tag{1.9}\\
F_{-p} / F_{-p+1} \cong H^{p}\left(X, \Omega^{p}\right) \tag{1.10}\\
H^{*}(X, \mathbf{C}) \cong \operatorname{gr} H^{0}\left(Z, \Theta_{Z}\right)=\bigoplus_{p=0}^{n} F_{-p} / F_{-p+1} \tag{1.11}
\end{gather*}
$$

2. V-equivariant vector bundles. The following definition and results are in [3].

Definition. We say that a vector bundle \mathscr{E} on X is V-equivariant if the derivation $V: \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}$ can be lifted to \mathcal{E}, i.e., there exists a \mathbf{C}-linear $\operatorname{map} \tilde{V}: \mathcal{E} \rightarrow \mathcal{E}$ such that

$$
\begin{equation*}
\tilde{V}(f \cdot s)=V(f) \cdot s+f \cdot \tilde{V}(s) \tag{2.1}
\end{equation*}
$$

where f is a local section of \mathcal{O}_{X} and s that of \mathcal{E}.

Let $\left\{f_{i j}\right\}$ be a set of transition matrices of \mathcal{E}. Then the set $\left\{d f_{i j} \cdot f_{i J}^{-1}\right\}$ defines the Atiyah-Chern class $c(\mathcal{E})$ of \mathcal{E} in $H^{1}\left(X, \operatorname{Hom}(\mathcal{E}, \mathcal{E}) \otimes \Omega^{1}\right)$. And the class $i(V) c(\mathscr{E})$ in $H^{1}(X, \operatorname{Hom}(\mathscr{E}, \mathscr{E}))$ is the obstruction for \mathcal{E} to be V-equivariant. See [3]. If we put $\mathscr{F}=\operatorname{Hom}(\mathcal{E}, \mathcal{E})$, the cohomology groups $H^{1}\left(X, \operatorname{Hom}(\mathscr{E}, \mathcal{E}) \otimes \Omega^{1}\right)$ and $H^{1}(X, \operatorname{Hom}(\mathcal{E}, \mathcal{E}))$ can be interpreted as the ' $E_{1}^{-1,1}$ and ${ }^{\prime} E_{1}^{0,1}$-terms, respectively, of the spectral sequence (1.3). Therefore each V-equivariant vector bundle \mathcal{E} defines the hypercohomology class $\tilde{c}(\mathcal{E})$ lying in $F_{-1} \mathbf{H}^{0}(X, K(\operatorname{Hom}(\mathcal{E}, \mathcal{E})))$. Here the class $\tilde{c}(\mathcal{E})$ is well defined only up to $F_{0} \mathbf{H}^{0}(X, K(\operatorname{Hom}(\mathcal{E}, \mathcal{E})))$ and is called the hyper-Chern class of \mathcal{E}. We denote by $\sigma_{d}: \operatorname{Hom}(\mathcal{E}, \mathcal{E}) \rightarrow \mathcal{\theta}_{X}, 0 \leq d \leq r=$ rank \mathcal{E}, the vector bundle homomorphisms defined by the rule:

$$
\begin{equation*}
\operatorname{det}(t I+\mathcal{Q})=\sum_{d=0}^{r} \sigma_{d}(\mathcal{Q}) t^{r-d}, \quad \mathcal{Q} \in \operatorname{Hom}(\mathscr{E}, \mathscr{E}) \tag{2.2}
\end{equation*}
$$

The mapping σ_{d} is usually called the d th elementary function and is a polynomial map of degree d. We denote by $e_{d}: F_{-d} \mathbf{H}^{0}(X, K) \cong F_{-d} \rightarrow$ $H^{d}\left(X, \Omega^{d}\right)$ the mapping which induces the canonical isomorphism $F_{-d} / F_{-d+1} \cong H^{d}\left(X, \Omega^{d}\right)$.

Lemma 2. The map σ_{d} determines the classes $\sigma_{d}(c(\mathcal{E}))$ and $\sigma_{d}(\tilde{c}(\mathcal{E}))$ which belong to $H^{d}\left(X, \Omega^{d}\right)$ and $F_{-d} \mathbf{H}^{0}(X, K)$, respectively. We have:
(1) $(-1)^{d} \sigma_{d}(c(\mathcal{E}))$ is the dth Chern class of \mathcal{E} and coincides with $(-1)^{d} e_{d}\left(\sigma_{d}(\tilde{c}(\tilde{E}))\right)$.
(2) Let $\tilde{V}_{Z} \in H^{0}\left(Z, \operatorname{Hom}(\mathcal{E}, \mathcal{E})_{Z}\right) \cong \mathbf{H}^{0}(X, K(\operatorname{Hom}(\mathcal{E}, \mathcal{E})))$ denote the restriction of \tilde{V} to Z. Then $(-1)^{d} \sigma_{d}\left(\tilde{V}_{Z}\right)$ belongs to $H^{0}\left(Z, \mathcal{O}_{Z}\right)$ and is equal to $(-1)^{d} \sigma_{d}(\tilde{c}(\tilde{E}))$.
3. Semisimple Lie algebras. Let g be a complex semisimple Lie algebra. We choose a compact form t and define a *-operation on g with respect to \mathfrak{t}. Let \mathfrak{b} be a Borel subalgebra of \mathfrak{g}. If we put $\mathfrak{h}=\mathfrak{b} \cap \mathfrak{b}^{*}$ then \mathfrak{h} becomes a Cartan subalgebra of \mathfrak{g}. Let $\Delta \subset \mathfrak{h}_{\mathfrak{k}}^{*}$ be the root system of \mathfrak{h} in g . The set Δ is divided into two classes, the positive roots Δ_{+}and negative roots Δ_{-}with respect to \mathfrak{b}. We denote by Π the set of simple roots corresponding to Δ_{+}. Then any root $\phi \in \Delta$ can be written as $\phi=$ $\Sigma_{\alpha \in \Pi} n_{\alpha}(\phi) \alpha$ where $n_{\alpha}(\phi)$ are nonnegative or nonpositive integers according to $\phi \in \Delta_{+}$or Δ_{-}. The algebra g has the root space decomposition

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{h}+\sum_{\alpha \in \Delta_{+}} g_{\alpha}+\sum_{\beta \in \Delta_{-}} g_{\beta}, \tag{3.1}
\end{equation*}
$$

where

$$
\mathfrak{b}=\mathfrak{h}+\sum_{\alpha \in \Delta_{+}} \mathfrak{g}_{\alpha} .
$$

For any $\alpha \in \Delta$, $\operatorname{dim} \mathfrak{g}_{\alpha}=1$, and from the definition of \mathfrak{g}_{α} it follows that

$$
\begin{equation*}
\operatorname{ad}(H)(X)=[H, X]=\alpha(H) X, \quad X \in \mathfrak{g}_{\alpha}, H \in \mathfrak{h} \tag{3.2}
\end{equation*}
$$

Let \mathfrak{p} be a parabolic Lie subalgebra of \mathfrak{g} which contains \mathfrak{b}. Then there exists a decomposition of \mathfrak{g} corresponding to \mathfrak{p}.

Lemma 3. Let $\mathfrak{g}, \mathfrak{p}$ be as above. We put $\mathfrak{n}=\{Z \in \mathfrak{g} \mid(Z, Y)=0$ for all $Y \in \mathfrak{p}\}$ where $($,$) is the Killing form of \mathfrak{g}$. Then \mathfrak{n} is the maximal nilpotent ideal of \mathfrak{p} and also the set of all nilpotent elements in the radical of \mathfrak{p}. Further if we define $\mathfrak{g}_{1}=\mathfrak{p} \cap \mathfrak{p}^{*}$, then we have the decomposition

$$
\begin{equation*}
\mathfrak{g}=\mathfrak{n}^{*}+\mathfrak{g}_{1}+\mathfrak{n}, \quad \mathfrak{p}=\mathfrak{g}_{1}+\mathfrak{n} \tag{3.3}
\end{equation*}
$$

Moreover \mathfrak{g}_{1} lies in the normalizers of both \mathfrak{n} and \mathfrak{n}^{*}.
For any subspace a which is invariant by the adjoint action of \mathfrak{h}, we define the set $\Delta(a) \subseteq \Delta$ as follows:

$$
\begin{array}{r}
\Delta(\mathfrak{a})=\left\{0 \neq \alpha \in \mathfrak{h}_{\mathfrak{R}}^{*} \mid[H, X]=\alpha(H) X \text { for some } 0 \neq X \in \mathfrak{a}\right. \tag{3.4}\\
\text { and any } H \in \mathfrak{h}\} .
\end{array}
$$

The subalgebras \mathfrak{g}_{1}, n and n^{*} are invariant and we have:

$$
\begin{gather*}
\Delta\left(\mathfrak{g}_{1}\right)=\left\{\phi \in \Delta \mid n_{\alpha}(\phi)=0 \text { for all } \alpha \in \Pi \cap \Delta(\mathfrak{p})\right\} \tag{3.5}\\
\Delta(\mathfrak{n})=\left\{\phi \in \Delta_{+} \mid n_{\alpha}(\phi)>0 \text { for all } \alpha \in \Pi \cap \Delta(\mathfrak{p})\right\} \tag{3.6}\\
\Delta\left(\mathfrak{n}^{*}\right)=-\Delta(\mathfrak{n}) \tag{3.7}
\end{gather*}
$$

Let G be a simply-connected complex semisimple Lie group whose Lie algebra is g. Let B, T and P be the Borel subgroup of G with Lie algebra \mathfrak{b}, the Cartan subgroup with Lie algebra \mathfrak{h}, and the parabolic subgroup with Lie algebra \mathfrak{p}, respectively. The homogeneous space $X=$ G / P becomes compact. Further, the space X can be embedded into a certain projective space by using the representation theory of G. Hence we call the space X an algebraic homogeneous space. Let G_{1}, N and N^{*} be the Lie subgroups of G corresponding to $\mathfrak{g}_{1}, \mathfrak{n}$ and \mathfrak{n}^{*}, respectively. Then the group P is the semidirect product of G_{1} and N, and, further, $P \cap N^{*}=$ $\{I\}$. See [7].

Let $N(T)$ be the normalizer of T in G. We call the group $W=N(T) / T$ the Weyl group of G with respect to T. We put $W_{1}=N(T) \cap P / T \subset W$
and $W^{1}=W / W_{1}$. The group $N(T)$ acts on T, \mathfrak{h} and Δ as follows:

$$
\begin{align*}
\mathfrak{w} \cdot \exp H \cdot \mathfrak{w}^{-1} & =\exp (\operatorname{Ad}(\mathfrak{w}) H) \tag{3.8}\\
\left(\operatorname{Ad}(\mathfrak{w})^{*} \alpha\right)(H) & =\alpha\left(\operatorname{Ad}(\mathfrak{w})^{-1} H\right) \tag{3.9}
\end{align*}
$$

for $\mathfrak{w} \in N(T), H \in \mathfrak{h}, \alpha \in \Delta$. But if $\mathfrak{w} \in T$, the actions of \mathfrak{w} are all trivial. Hence we can regard as the group W acts on T, \mathfrak{h} and Δ. For simplicity, we use the same letter \mathfrak{m} for $\mathfrak{m}, \operatorname{Ar}(\mathfrak{m})$ and $\operatorname{Ad}(\mathfrak{m})^{*}$.
4. Main results. We first prove the following proposition.

Proposition 1. If we act the maximal torus T on $X=G / P$ then the set $W^{1}=W / W_{1}=N(T) / N(T) \cap P$ is naturally realized as the set of all T fixed points in X.

Proof. An element $\bar{g} \in X$ is fixed by the action of T if and only if $g^{-1} T g \subset P$ where g is a representative of \bar{g} in G. Since the group $g^{-1} T g$ is also a maximal torus of G contained in P, there exists $p \in P$ such that $g^{-1} T g=p T g^{-1}$. This means $g p \in N(T)$. Hence \bar{g} defines a coset $\widetilde{g p}$ in W^{1}. If two fixed points \bar{g} and \bar{g}^{\prime} define the same coset in W^{1} then $g p=g^{\prime} p^{\prime} p^{\prime \prime}$ for some $p, p^{\prime} \in P$ and $p^{\prime \prime} \in N(T) \cap P$. So $\bar{g}=\bar{g}^{\prime}$ in X. If we take an element $\mathfrak{m} \in N(T)$ then the coset corresponding to $\overline{\mathfrak{m}}$ is $\tilde{\mathfrak{m}} \in W^{1}$. Hence the mapping is onto.

Let us consider the following diagram:

$$
\begin{array}{ccccccc}
& & G & & G / P & & G / P \\
& & U & & U & & U \tag{4.1}\\
\mathfrak{n}^{*} & \xrightarrow{\phi} & N^{*} & \rightarrow & \bar{N}^{*} & \xrightarrow{m} & \mathfrak{m} \bar{N}^{*} \\
U & & U & & U & & \frac{U}{} \\
Z & \rightarrow & \exp Z & \rightarrow & \frac{U}{\exp Z} & \rightarrow & \mathfrak{m} \exp Z .
\end{array}
$$

We write an element Z of n^{*} as $Z=\Sigma_{\alpha \in \Delta\left(n^{*}\right)} z_{\alpha} X_{\alpha}$ with respect to the basis $X_{\alpha} \in g_{\alpha}, \alpha \in \Delta\left(\mathfrak{n}^{*}\right)$, of n^{*}. Since the Lie algebra n^{*} is nilpotent, we have $\log (\exp Z)=Z$ and hence the map ϕ is one-to-one and onto. Since $N^{*} \cap P=\{I\}$, the mapping ψ is also one-to-one. The left multiplication of \mathfrak{m} is clearly one-to-one. Hence we can take the pair ($\mathfrak{m} \bar{N}^{*}, \phi^{-1} \circ \psi^{-1} \circ \mathfrak{w}^{-1}$) as a coordinate neighborhood near $\mathfrak{w} \in W^{1}$ and then the functions $\left\{z_{\alpha}\left(\mathfrak{m} \bar{n}^{*}\right)\right\}_{\alpha \in \Delta\left(\mathfrak{n}^{*}\right)}$ become the local coordinates.

Theorem 1. The quotient set $W^{1}=W / W_{1}$ can be canonically embedded into $X=G / P$ as the set of all T-fixed points, and the pair $\left(\mathfrak{m} \bar{N}^{*}, \phi^{-1} \circ \psi^{-1} \circ \mathfrak{w}^{-1}\right)$ is a coordinate neighborhood near $\mathfrak{m} \in W^{1}$. The sets $\mathfrak{m} \bar{N}^{*}, \mathfrak{m} \in W^{1}$, are all T invariant Zariski open sets. In fact if we multiply $\exp H \in T$ on $\mathfrak{m} \bar{N}^{*}$, the local coordinate $\left\{z_{\alpha}\left(\mathfrak{m} \bar{n}^{*}\right)\right\}_{\alpha \in \Delta\left(\mathfrak{n}^{*}\right)}$ changes to $\left\{e^{(\mathfrak{m} \alpha)(H)} \cdot z_{\alpha}\left(\mathfrak{m} \bar{n}^{*}\right)\right\}_{\alpha \in \Delta\left(\mathrm{n}^{*}\right)}$. Further, the space X is covered with the family of the open sets $\mathfrak{m} \bar{N}^{*}$, i. e., $X=\bigcup_{\mathfrak{w} \in W^{1}} \mathfrak{w} \bar{N}^{*}$.

Proof. The first sentence has been proved. Let \mathfrak{m}_{0} be the element of W whose length is maximal among all. Then since $\mathfrak{m}_{0}^{-1} N \mathfrak{m}_{0}=N^{*}, \mathfrak{b}_{0} \bar{N}^{*}=$ $N \mathfrak{w}_{0} P / P$. Namely the set $\mathfrak{m}_{0} \bar{N}^{*}$ is the Bruhat cell of maximal dimension and is a Zariski open set. So $\mathfrak{m} \bar{N}^{*}=\mathfrak{w} \mathfrak{w}_{0}^{-1} \mathfrak{m}_{0} \bar{N}^{*}, \mathfrak{m} \in W^{1}$, are all Zariski open sets. Since, for $\exp Z \in N^{*}$,

$$
\begin{aligned}
\exp H \cdot \mathfrak{w} \exp Z \cdot P & =\mathfrak{w} \mathfrak{w}^{-1} \exp H \mathfrak{w} \cdot \exp Z \cdot \mathfrak{w}^{-1} \exp (-H) \mathfrak{w} \cdot P \\
& =\mathfrak{w} \cdot \exp \left(\mathfrak{w}^{-1}(H)\right) \cdot \exp Z \cdot \exp \left(-\mathfrak{w}^{-1}(H)\right) \cdot P \\
& =\mathfrak{w} \cdot \exp \left(\operatorname{Ad}\left(\exp \left(\mathfrak{w}^{-1}(H)\right)\right) Z\right) \cdot P \\
& =\mathfrak{w} \cdot \exp \left(\operatorname{Exp}\left(\operatorname{ad}\left(\mathfrak{w}^{-1}(H)\right)\right) Z\right) \cdot P
\end{aligned}
$$

and

$$
\operatorname{Exp}\left(\operatorname{ad}\left(\mathfrak{w}^{-1}(H)\right)\right) \cdot Z \in \mathfrak{n}^{*}
$$

then

$$
\left(\phi^{-1} \circ \psi^{-1} \circ \mathfrak{m}^{-1}\right)(\exp H \cdot \mathfrak{m} \overline{\exp Z})=\operatorname{Exp}\left(\operatorname{ad}\left(\mathfrak{m}^{-1}(H)\right)\right) \cdot Z
$$

If we write $Z=\sum_{\alpha \in \Delta\left(\mathfrak{n}^{*}\right)} z_{\alpha} X_{\alpha}$, we have

$$
\begin{aligned}
\operatorname{ad}\left(\mathfrak{w}^{-1}(H)\right) \cdot Z & =\left[\mathfrak{w}^{-1}(H), \sum_{\alpha \in \Delta\left(\mathfrak{n}^{*}\right)} z_{\alpha} X_{\alpha}\right] \\
& =\sum_{\alpha \in \Delta\left(\mathfrak{n}^{*}\right)} \alpha\left(\mathfrak{w}^{-1}(H)\right) z_{\alpha} X_{\alpha}=\sum_{\alpha \in \Delta\left(\mathfrak{n}^{*}\right)}(\mathfrak{w} \alpha)(H) z_{\alpha} X_{\alpha}
\end{aligned}
$$

and, hence,

$$
\operatorname{Exp}\left(\operatorname{ad}\left(\mathfrak{m}^{-1}(H)\right)\right) \cdot Z=\sum_{\alpha \in \Delta\left(n^{*}\right)} e^{(\mathfrak{m} \alpha)(H)} z_{\alpha} X_{\alpha}
$$

To prove $X=\bigcup_{\mathfrak{w} \in W^{1}} \mathfrak{m} \bar{N}^{*}$, we need the following fact. See [6].
Fact. Let Y be a compact Kähler manifold which satisfies $H^{1}(Y, \mathbf{C})=$ 0 . Then if a complex connected solvable Lie group S acts holomorphically on Y, it always has a fixed point inside any analytic subvariety that S leaves invariant.

The space X satisfies above assumptions and we can take T as S. Then since $\mathfrak{m} \bar{N}^{*}$ is a T invariant Zariski open set, the complement $X^{\prime}=X-\cup_{\mathfrak{m} \in W^{\prime}} \mathfrak{w} \bar{N}^{*}$ becomes a T invariant subvariety. Hence if X^{\prime} is not empty, it must have a T fixed point. But this is a contradiction. This completes the proof.

Since the Lie group G acts on $X=G / P$ from the left side, the space X has many global holomorphic vector fields. For an element $H \in \mathfrak{h}$, let us define a holomorphic vector field V_{H} on X by the rule

$$
\begin{equation*}
\left(V_{H} f\right)(\bar{g})=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\{f(\exp (\varepsilon H) \bar{g})-f(\bar{g})\} \tag{4.2}
\end{equation*}
$$

where $\bar{g} \in X$ and f is a local function near \bar{g}. Then the above theorem implies that the vector field V_{H} is expressible on $\mathfrak{m} \bar{N}^{*}$ in the explicit form

$$
\begin{equation*}
V_{H}=\sum_{\alpha \in \Delta\left(\mathrm{n}^{*}\right)}(\mathfrak{m} \alpha)(H) z_{\alpha} \frac{\partial}{\partial z_{\alpha}} \tag{4.3}
\end{equation*}
$$

If H belongs to the Weyl chambers then $0 \neq(\mathfrak{m} \alpha)(H) \in \mathbf{R}$ for all $m \in W^{1}, \alpha \in \Delta\left(n^{*}\right)$. Hence the set of all vanishing points of V_{H} agrees with W^{1} and V_{H} vanishes in the first order there.

Let us quote the following fact from C. Kosniowsky [5].

Fact. Let M be a compact complex manifold of dimension n and A a holomorphic vector field with simple isolated zeros $\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}$. Let us consider the Lie derivative $L_{A}: T_{\zeta}^{*}(M) \rightarrow T_{\zeta}^{*}(M)$ at $\zeta \in\left\{\zeta_{1}, \ldots, \zeta_{k}\right\}$ and denote by $\left\{\theta_{1}(\zeta), \ldots, \theta_{n}(\zeta)\right\}$ its eigenvalues. Then we have

$$
\begin{aligned}
\chi_{p}=\sum_{q}(-1)^{q} h^{p, q}=(-1)^{p} \cdot \# & \left\{\zeta_{l} \mid \operatorname{Re} \theta_{l}\left(\zeta_{l}\right)>0\right. \\
& \text { for exactly } p \text { indices } j, 1 \leq j \leq n\},
\end{aligned}
$$

where $h^{p, q}=\operatorname{dim} H^{q}\left(X, \Omega^{p}\right)$.
Theorem 2 is well known.

Theorem 2. Let $X=G / P$. Then the numbers $h^{p, q}$ are determined as follows:
(1) $h^{p, q}=0$ for $p \neq q$,
(2) $h^{p, p}=\left\{\mathfrak{m} \in W^{1} \mid(\mathfrak{m} \alpha)(H)>0\right.$ for exactly p weights $\alpha, \alpha \in$ $\left.\Delta\left(\mathfrak{n}^{*}\right)\right\}$.

Proof. (1) has been shown in Lemma 1. By using (4.3) we can easily calculate the eigenvalues of the Lie derivative $L_{V_{H}}$ at the zero point $\mathfrak{m} \in W^{l}$. In fact they are the values $\{2(\mathfrak{m} \alpha)(H)\}_{\alpha \in \Delta\left(n^{*}\right)}$. After noting $\chi_{p}=(-1)^{p} \cdot h^{p, p}$, we complete the proof.

Theorem 3. Let $X=G / P$. Let \mathcal{E} be a homogeneous vector bundle which is induced from a representation $\phi: P \rightarrow G L(V)$. Then:
(1) The vector bundle \mathcal{E} is V_{H}-equivariant.
(2) The representative $(-1)^{d} \sigma_{d}\left(\tilde{V}_{H, Z}\right)$ of the dth Chern class, $0 \leq d \leq r$ $=\operatorname{rank} \mathfrak{E}$, of \mathfrak{E} in $H^{0}\left(Z, \mathcal{O}_{Z}\right)$ takes the value $\sigma_{d}\left(d \phi\left(\mathfrak{w}^{-1}(H)\right)\right)$ at $\mathfrak{w} \in W^{1}$. Here we denote the differential of ϕ by $d \phi: \mathfrak{p} \rightarrow \mathfrak{g l}(V)$.

Remark. For the line bundle case, i.e., $r=1$, see E. Akyilidiz [1].

Proof. The vector bundle \mathfrak{E} is obtained by dividing $G \times V$ by the equivalence relation $(g, v) \sim\left(g p, \phi^{-1}(p) v\right)$ for $g \in G, p \in P, v \in V$. Therefore a local section v of \mathcal{E} can be interpreted as the V-valued function on some open set U of G which satisfies $v(g)=\phi(p) v(g p)$ for $g, g p \in U, p \in P$. Similarly a local function f on X can be considered as the function satisfying $f(g)=f(g p)$. For these $v(g)$ we define

$$
\begin{equation*}
\left(\tilde{V}_{H} v\right)(g)=\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\{v(\exp (\varepsilon H) g)-v(g)\} \tag{4.4}
\end{equation*}
$$

then

$$
\begin{aligned}
& =\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\{\phi(p) v(\exp (\varepsilon H) g p)-\phi(p) v(g p)\} \\
& =\phi(p) \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\{v(\exp (\varepsilon H) g p)-v(g p)\} \\
& =\phi(p)\left(\tilde{V}_{H} v\right)(g p)
\end{aligned}
$$

Hence $\left(\tilde{V}_{H} v\right)(g)$ is also a local section of \mathcal{E}. On the other hand, let f be a local function; then

$$
\begin{align*}
\left(\tilde{V}_{H}(f v)\right)(g)= & \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\{f(\exp (\varepsilon H) g) v(\exp (\varepsilon H) g)-f(g) v(g)\} \tag{4.5}\\
= & \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\{(f(\exp (\varepsilon H) g)-f(g)) v(\exp (\varepsilon H) g)\} \\
& +\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\{f(g)(v(\exp (\varepsilon H) g)-v(g))\} \\
= & \left(V_{H} f\right)(g) v(g)+f(g)\left(\tilde{V}_{H} v\right)(g)
\end{align*}
$$

This means \tilde{V}_{H} is a lifting of V_{H} to \mathscr{E}. Hence \mathscr{E} is V_{H}-equivariant. Let $v(g)$ be a local section of \mathscr{E} which takes a constant vector v along the set $\mathfrak{m} N^{*}$. Then

$$
\begin{align*}
&\left(\tilde{V}_{H} v\right)(\mathfrak{w} \exp Z)= \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\{v(\exp (\varepsilon H) \mathfrak{w} \exp Z)-v(\mathfrak{w} \exp Z)\} \tag{4.6}\\
&= \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left\{\phi\left(\mathfrak{w}^{-1} \exp (-\varepsilon H) \mathfrak{w}\right)\right. \\
& \cdot v\left(\mathfrak{w} \mathfrak{w}^{-1} \exp (\varepsilon H) \mathfrak{w} \exp Z \mathfrak{w}^{-1} \exp (-\varepsilon H) \mathfrak{w}\right) \\
&-v(\mathfrak{w} \exp Z)\} \\
&= \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left\{\phi\left(\mathfrak{w}^{-1} \exp (-\varepsilon H) \mathfrak{w}\right) v-v\right\} \\
&= \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left\{\operatorname{Exp}\left(-\varepsilon d \phi\left(\mathfrak{w}^{-1}(H)\right)\right) v-v\right\} \\
&=-d \phi\left(\mathfrak{w}^{-1}(H)\right) v(\mathfrak{w} \exp Z)
\end{align*}
$$

Therefore if we choose a basis of local sections of \mathcal{E} on $\mathfrak{m} \bar{N}^{*}$ from these sections, we can write $\tilde{V}_{H, Z}=-d \phi\left(\mathfrak{w}^{-1}(H)\right)$ by using matrix notation. So we have

$$
\begin{align*}
\operatorname{det}\left(t I-\tilde{V}_{H, Z}\right) & =\operatorname{det}\left(t I-(-d \phi)\left(\mathfrak{w}^{-1}(H)\right)\right) \tag{4.7}\\
& =\sum_{d=0}^{r}(-1)^{d} \sigma_{d}\left(-d \phi\left(\mathfrak{w}^{-1}(H)\right)\right) t^{r-d} \\
& =\sum_{d=0}^{r} \sigma_{d}\left(d \phi\left(\mathfrak{w}^{-1}(H)\right)\right) t^{r-d}
\end{align*}
$$

The proof of Theorem 3 is completed.

References

[1] E. Akyilidiz, Doctor thesis, Univ. of British Columbia.
[2] J. B. Carrell and D. Lieberman, Vector fields and Chern numbers, Math. Ann., 225 (1977), 263-273.
[3] J. B. Carrell and D. Lieberman, Holomorphic vector fields and kähler manifolds, Invent. Math., 21 (1973), 303-309.
[4] J. B. Carrell, Chern classes of the Grassmannians and Schubert calculus, Topology, 17 (1978), 177-182.
[5] C. Kosniowsky, Applications of the holomorphic Lefschetz formulae, Bull. London Math. Soc., 2 (1970), 43-48.
[6] A. J. Sommese, Holomorphic vector fields on compact kähler manifolds, Math. Ann., 210 (1974), 75-82.
[7] G. Warner, Harmonic Analysis on Semisimple Lie Groups I, II, Springer Verlag.
Received November 6, 1980 and in revised form July 1, 1981.

NaGoya University
464 Furo-Cho
Chikusaku
Nagoya, Japan

