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NORMS ON F( X)

Jo-ANN COHEN

It is well known that if || - -|| is a norm on the field F( X) of rational
functions over a field F for which F is bounded, then || - || is equivalent
to the supremum of a finite family of absolute values on F(X), each of
which is improper on F. Moreover, || - || is equivalent to an absolute
value if and only if the completion of F(X) for || - -|| is a field. We show
that the analogous characterization of norms on F(X) for which F is
discrete is impossible by constructing for each infinite field F, a norm
|l - -l on F(X) such that F is discrete, || X|| < 1, the completion of F( X)
for || - -|l is a field, but || - -|| is not equivalent to the supremum of
finitely many absolute values.

1. Introduction and basic definitions. Let R be a ring and let J be a
ring topology on R, that is, 9 is a topology on R making (x, y) > x — y
and (x, y) — xy continuous from R X R to R. A subset A of R is bounded
for & if given any neighborhood U of zero, there exists a neighborhood V'
of zero such that AV C U and VA C U. 9 is a locally bounded topology on
R if there exists a fundamental system of neighborhoods of zero for &
consisting of bounded sets.

We recall that a norm || - -|| on a ring R is a function from R to the
nonnegative reals satisfying || x|l = 0 if and only if x =0, l|x — y |l =< [Ix||
+ liyll and lIxyll < lIx|l [l yll for all x and y in R. If || - -|| is a norm on
R, for each € > 0 define B, by, B, = {r € R: ||r|| <e¢}. Then {B,: ¢ > 0}
is a fundamental system of neighborhoods of zero for a Hausdorff locally
bounded topology J,.., on R. Two norms on R are equivalent if they
define the same topology. We note further that if || - -|| is a nontrivial
norm on a field X (that is, J, . is nondiscrete), then a subset 4 of K is
bounded for the topology defined by || - - || if and only if 4 is bounded in
norm.

It is classic that, to within equivalence, the only valuations on the
field F(X) of rational functions over a field F that are improper on F are
the valuations v,, where p is a prime polynomial of F[X], and the
valuation v, defined by the prime polynomial X! of F[ X~ '] ([1, Corollary
2, p. 94)). For each valuation v, the function | - -|, defined by | y |, = 27°®
for all y in F(X) is an absolute value on F( X) for which F is discrete. In
[2, Theorem 2] we showed that if || - || is a nontrivial norm on F( X) for
which F is bounded, then || - -|| is equivalent to the supremum of finitely
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many of these absolute values. (This result was also obtained by Kiyek [5,
Satz 2.11].) The analogous question of characterizing those norms | - -||
on F(X) for which F is discrete has been considered in several papers.
(See for example [4, Theorem 4] and [10, Lemma 3]. We note that in each
case the author has actually assumed that F is bounded.) In this paper we
modify a technique of Mutylin [6] to show that such a characterization is
impossible by constructing for each infinite field F, a norm || - -|| on
F(X) for which F is discrete, || X|| < 1, the completion of F( X) is a field
but || - -|l is not equivalent to the supremum of any finite family of
absolute values on F( X). In the process, we also obtain a norm || - -|| on
the polynomial ring F[ X] such that F is discrete and || X|| <1 but || - -||
is not equivalent to the supremum of finitely many absolute values on
F[X]. (For a characterization of all norms on F[X] for which F is a
bounded set, see [3, Theorem 2].)

2. Norms on F(X).

LEMMA 1. Let F be an infinite field and let E be its prime subfield.

(1) If F is finitely generated over E, then there exists a nested sequence
F,, F\, F,,... of subrings of F such that F, is properly contained in F, | for
alln=0,1¢€ Fyand F = U_F,.

(2) If F is not finitely generated over E, then there exists a nested
sequence Fy, F|, F,,... of subfields of F such that F, is properly contained in
F,  ,foralln=0and F= U_F,.

Proof. (1) F is either a finite algebraic extension of Q or there exists a
subfield K of F and an element z in F which is transcendental over K such
that F is a finite algebraic extension of K(z). If F is a finite algebraic
extension of Q, let p,, p,,... be a sequence of distinct positive primes in Z
and for each n, let ¥, be an extension of the p,-adic valuation from Q to F.
Define F, by,

F,= O0({6,1,, 0ps2.---}) ={aEF:v,(a)=0fori=n+1}.

Then 1 € F,, each F, is clearly a subring of F and F, C F,, foralln = 0.
As p,.»/Pn+1 € E, . \FE,, E, is properly contained in F,, for all n = 0.
Finally, if a € F\{0}, then ¢,(a) = 0 for all but finitely many primes p.
Hence F = UY_  F,.

If Fis a finite algebraic extension of K(z), let p,, p;,... be a sequence
of distinct prime polynomials in K[z] and proceed as before.
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(2) Suppose F\ E is a countably infinite set {s,, §,,...}. By induction

on n, we define integers k, k,,... and subfields F,, F,... of F satisfying:
D ko <k, <---;

(1) £, = E(sg, $1,---55;)s

(iit) F, is properly contained in F, , ;.

Let k, =0 and let F, = E(s,). Assume k, k,,...,k, and Fy, F,,... ,F,
have been defined satisfying (i)—(iii). As F is not finitely generated over E,
there exists an integer ¢ such that s, & F,. Let k, ., be the smallest integer
¢ satisfying this property and let F, , = E(so, 5),...,5; ). Properties
(i)—(iii) obviously hold for k,,, and F,,, thus defined. By (i) and (ii),
F = U%_, F, and hence F, F),... is the desired sequence of subfields of
F.

Suppose F\ E is uncountable. Then the transcendence degree of F
over E is infinite. Hence there exists a subfield E, of F and distinct
elements x, x,,... of F such that {x;: i = 0} is a transcendence base for
F over E,. For each n=0, let F,={a € F: a is algebraic over
Ey(xq, Xy,...,x,)}. Fy, F),... is then a sequence of subfields of F satisfy-
ing the desired properties.

(The author is grateful to the referee for suggesting the above lemma
as well as its proof.)

Henceforth, let F be an infinite field and let F, F), F,,... be a nested
sequence of subrings of F such that F, is properly contained in F, , ; for all
n=0,1€F and F= U]_ F,. For each a € F, let ¢(a) denote the
smallest nonnegative integer n such that a € F,. Clearly:

(1) ¢(a = b) < max{¢(a),¢(b)} foralla,binF.
(2) ¢(ab) < max{¢(a), p(b)} foralla,bin F.

Define | - -| from F to N U {0} by,

a|= {2‘#@ if a € F\{0},
0 ifa=0.

Obviously, | a|= 0 if and only if a = 0. Furthermore from (1) and (2) we
obtain

|a =b|<max{|a|,|b|} and |ab|<max{|a|,|d|}

forallaand bin F. As |a|=1 for all a € F\{0}, |ab|<|a||b| for all a
and bin F. Thus | - -| is a norm on F.

Let x be any transcendental element over F in some field extension,
let F(x) be the field of rational functions over F and let F((x)) denote the
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field of formal power series over F, that is, F((x)) = {22, a;x": m € Z,
a; € F for all i = m}. As F((x)) is the completion of F(x) for the x-adic
valuation v, defined on F(x) [8, p. 243], we may identify F(x) with a
subfield of F((x)).

Define N from F((x)) to [0, o] by,

N(y) =sup|a;|27" fory =X a,x' € F((x)).

LeMMA 2. (1) N(y) = 0ifand only ify = 0.
(2) N(y, =) = max{N(y,), N(»,)} for all y,, y, in F((x)).
(3) N(y1y2) = N(y\)N(»,) for all yy, y, in F((x)).

Proof. As (1) and (2) follow easily from the corresponding properties
of |--|, it suffices to prove (3). Let y, = 2a,x’ and y, = 3 b,x’ be
elements of F((x)). Then y,y, = 2 ¢;x’ where ¢, =Z,,,_, a,b, for all
n € Z. Hence

N(c,x") = N( > a,-xibjxf) < max N(a,x'b,x)
i+j=n rrj=n

< max N(a,x')N(bx’) < N(y,)N(y,).

i+j=n
Therefore

N(y,y,) = supN(c,x") < N(y,)N(y,) fory,,y,in F((x)).

By the above lemma, the set R defined by, R = {y € F((x)): N(y) <
o0}, is a subring of F((x)) and N is a norm on R. Let D be the subset of R
defined by,

D:{E ax':m €€ Z,a, € Fforalli =mand lim|ai(2‘f:0}.
i=m i— 00

LEMMA 3. D is a subfield of R, D is complete with respect to the
N-topology and F(x) is a dense subfield of D.

Proof. Clearly, foranya € Fand anym € Z,aD C D and x™D C D.
We first show that for any y € D\{0}, y~' € D. By the preceding
observation, we may assume that y = 32 a,x’ wherea, = 1. Theny ™' =
22 bx' where by=1 and for all n =1, b, = —2,;,_,.<j<na,b,. For
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each n = 0, let vy, = max{| q;|: 0 <i < n}. An inductive argument estab-
lishes that | b, |< vy, foralln = 0. As |a,|27" — 0, it follows that y,27" -
Oandso|b,|27" - 0, thatis,y~' € D.

To complete the proof of the lemma we shall make use of the
following alternate construction of R, D and N. Let Z be given the
discrete topology and let v: Z — (0, o) be defined by, v(n) = 27" for all
n € Z. Denote the set of all continuous functions f from Z to F for which
Il £1l, = sup;ez (i) | f(i)|< oo by C*(Z, F), the set of all fin C*(Z, F)
such that f vanishes at oo (that is, for each ¢ > 0, there exists a compact
subset K of Z such that || f+ x z\ k|l , <€) by C¢(Z, F), and the set of all
fin C2(Z, F) with compact support by C§(Z, F). Then Z is a locally
compact space, v is continuous, C2(Z, F) is a closed subgroup (under +)
of the complete, normable group C°(Z, F) and C§(Z, F) is a dense
subset of C2(Z, F). (The proof of this assertion is similar to the proof in
the classical case where F is R or C. For a discussion of this case see, for
example, [7].) For each y = 3 a,x’ € F((x)), we may identify y with the
function f defined from Z to F by, f(i) = a, for all i € Z. With this
identification,

R=C%(Z,F), D=CZ, F), Flx] CC(Z, F)CF(x),
C{(Z,F)c D and N(y)=Iyll, forallyinR.

Moreover, C*(Z, F) and C{(Z, F) are topological rings under the multi-
plication (/- g)(i) = 2,1, f(m)g(n). As (CYZ, F), Il - -1,) is com-
plete, (D, N) is complete as well. Further, as Cf(Z, F) = C%(Z, F), D is
a subring of R and hence a subfield of R by the previous observation.
Thus F(x) C D and so D = CJ(Z, F) C F(x) C D, that is, F(x) is a
dense subfield of D.

THEOREM 1. Let F be an infinite field, let F,, F\, F,,... be a nested
sequence of subrings of F such that F, is properly contained in F, | for all
n=0,1€ Fyand F= U%_ F,, and let x be any transcendental element
over F in some field extension. Then there exists a norm || - -|| on F(x) such
that F is discrete, || x|| < 1, the completion of F(x) for || - -l is a field but
Il - - |l is not equivalent to the supremum of a finite family of absolute values
on F(x). Moreover for each n = 0, the topology induced on F,(x) by || - -l is
the same as that induced on F,(x) by the x-adic valuation v, defined on

F(x).

Proof. Let || - -|| denote the restriction of N to F(x). By Lemmas 2
and 3, || - -l is a norm on F(x) and the completion of F(x) for || - -|l is a
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field. By definition, || x|l = 27! <1 and for each nonzero a in F, |lall =
| a|= 1. Hence Fis discrete for || - -|I.

Suppose || - - || is equivalent to the supremum of a finite family {| - -|;:
1 <i=<n} of absolute values on F(x). As the completion of F(x) for
(|- -l is a field, n =1 by the Approximation Theorem for Absolute
Values [1, Theorem 2, p. 136). As F is discrete for || - -, F is discrete for
| -], as well, thatis, | a |, = 1 for all @ in F\{0}. Thus F'is a bounded set
for the topology induced on F(x) by | - -|,. However, if n is any positive
integer and q,, is any element of F\ F, ,, then |la,ll =|a,|= 2". There-
fore F is not bounded for the topology defined on F(x) by Il - -|l, a
contradiction.

To prove the last assertion of the theorem, we note that for any n =0
and for any y in F(x),

27u(y) < lyll < 21~ 0oly)

In [9] Weber showed that if F is a field and x 1s any transcendental
element over F, then F is finite if and only if for each Hausdorff,
nondiscrete locally bounded topology 9 on F(x), there exists a nonempty
proper subset S of ¥’ = { p: p is a prime polynomial of F[x]} U {0}
such that the set O(S) defined by, O(S) = {y € F(x): v,(y) =0 for all
p € S}, is a bounded neighborhood of zero for I (Satz 3.3). The following
is a generalization of this result.

COROLLARY. Let F be a field and let x be any transcendental element
over F. The following are equivalent.

(1) F is a finite field.

(2) If 9 is a Hausdorff, nondiscrete locally bounded topology on F(x),
then there exists a nonempty, proper subset S of &’ such that O(S) is a
bounded neighborhood of zero for 5.

3) If Il - -l is a nontrivial norm on F(x) such that F is discrete and the
completion of F(x) for || - -l is a field, then || - -|| is equivalent to an
absolute value which is improper on F.

Proof. By the above remarks, (1) and (2) are equivalent. By Theorem
1, (3) implies (1). So it suffices to show that (1) implies (3). Suppose F'is a

finite field and || - -|| is a nontrivial norm on F(x) such that the comple-
tion of F(x) for || - -|| is a field. Then F is bounded in norm and so by the
corollary to Theorem 2 of [2], || - - || is equivalent to an absolute value on

F(x) which is improper on F.
In [3] we characterized all norms on the polynomial ring F[x] for
which F is bounded (Theorem 2). We conclude this paper by showing that
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if F is any infinite field, the analogous characterization of the norms on
F[x] for which F is discrete is impossible.

THEOREM 2. Let F be an infinite field and let x be any transcendental
element over F in some field extension. Then there exists a norm || - -|| on
F[x] such that F is discrete and || x|l < 1 but || - -|| is not equivalent to the
supremum of a finite family of absolute values on F[x].

Proof. Let || - -|| be the norm on F(x) constructed in the proof of
Theorem 1 and let || - -|I” denote its restriction to F[x]. Clearly, F is
discrete for || - -|I” and |Ix|I”’ < 1. Suppose || - -|I’ is equivalent to the
supremum of a finite family {| - -|;: 1 =i < n} of absolute values on F[x].
Then each | - -|; is improper on F. Indeed, suppose there exist i, 1 <i < n,
and a € F such that |a|,> 1. Let m be such that |a”x|, > 1. The
sequence ((a”x)")%, converges to 0 for || - -{|” but not for |--|, a
contradiction. Hence each | - -|, is improper on F. It then follows that F'is
bounded for the supremum topology but not for the topology defined on
F[x] by Il - -1I’, a contradiction.
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