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NORMS ON F(X)

JO-ANN COHEN

It is well known that if 11 II is a norm on the field F( X) of rational
functions over a field F for which F is bounded, then II II is equivalent
to the supremum of a finite family of absolute values on F(X), each of
which is improper on F. Moreover, 11 || is equivalent to an absolute
value if and only if the completion of F(X) for || II is a field. We show
that the analogous characterization of norms on F(X) for which F is
discrete is impossible by constructing for each infinite field F, a norm
II II on F(X) such that Fis discrete, || X\\ < 1, the completion of F(X)
for || || is a field, but 11 || is not equivalent to the supremum of
finitely many absolute values.

1. Introduction and basic definitions. Let R be a ring and let 3~be a

ring topology on R, that is, ?Γ is a topology on R making (x9 y) -> x — y

and (x, y) -* xy continuous from R X R to R. A subset A of R is bounded

for ?Γ if given any neighborhood U of zero, there exists a neighborhood V

of zero such that A V C U and VA C ί/. ?Γ is a locally bounded topology on

/? if there exists a fundamental system of neighborhoods of zero for ?Γ

consisting of bounded sets.

We recall that a worm 11 || on a ring R is a function from i? to the

nonnegativereals satisfying \\x\\ = 0 if and only if Λ; = 0, II x — J > | | < | | J C | |

+ HjHI and ||xy|| < | |x | | \\y\\ for all x a n d y in R. If || || is a norm on

R, for each ε > 0 define Bε by, 5 £ = {rG /?: | | r | | < ε}. Then {Bε: ε > 0}

is a fundamental system of neighborhoods of zero for a Hausdorff locally

bounded topology ?T||..|| on JR. Two norms on R are equivalent if they

define the same topology. We note further that if II II is a nontrivial

norm on a field K (that is, ?Γ|(.. y is nondiscrete), then a subset A of ίΓ is

bounded for the topology defined by || || if and only if A is bounded in

norm.

It is classic that, to within equivalence, the only valuations on the

field F( X) of rational functions over a field F that are improper on F are

the valuations vp9 where p is a prime polynomial of F[X], and the

valuation v^ defined by the prime polynomial X~x of F[ X~ι ] ([1, Corollary

2, p. 94]). For each valuation v9 the function | \Ό defined by | y \v = 2~v(y)

for all y in F(X) is an absolute value on F( X) for which F is discrete. In

[2, Theorem 2] we showed that if || || is a nontrivial norm on F(X) for

which F is bounded, then || || is equivalent to the supremum of finitely
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many of these absolute values. (This result was also obtained by Kiyek [5,
Satz 2.11].) The analogous question of characterizing those norms || ||
on F( X) for which F is discrete has been considered in several papers.
(See for example [4, Theorem 4] and [10, Lemma 3]. We note that in each
case the author has actually assumed that F is bounded.) In this paper we
modify a technique of Mutylin [6] to show that such a characterization is
impossible by constructing for each infinite field F, a norm || 11 on
F(X) for which F is discrete, \\X\\ < 1, the completion of F(X) is a field
but || || is not equivalent to the supremum of any finite family of
absolute values on F(X). In the process, we also obtain a norm || || on
the polynomial ring F[X] such that F is discrete and || AΊI < 1 but || II
is not equivalent to the supremum of finitely many absolute values on
F[X]. (For a characterization of all norms on F[X] for which F is a
bounded set, see [3, Theorem 2].)

2. Norms on F(X).

LEMMA 1. Let F be an infinite field and let E be its prime subfield.

(1) If F is finitely generated over E, then there exists a nested sequence

Fo, Fx, JF2,. .. of subrings of F such that Fn is properly contained in Fn+λ for

alln>0, \ <ΞFoandF= U™=0Fn.

(2) // F is not finitely generated over E, then there exists a nested

sequence Fθ9 Fv F2,... ofsubfields of F such that Fn is properly contained in

Fn+lforalln>0andF= U™=0Fn.

Proof. (1) F is either a finite algebraic extension of Q or there exists a
subfield K of F and an element z in F which is transcendental over K such
that F is a finite algebraic extension of K(z). If F is a finite algebraic
extension of <2, let p0, pv... be a sequence of distinct positive primes in Z
and for each n, let vn be an extension of the/?rt-adic valuation from Q to F.
Define Fn by,

Fn = 0({ύn+l9en+2,...})= { α G f : ^ ) > 0 f o r / > « + 1}.

Then 1 E Fθ9 each Fn is clearly a subring of F and FnQFn+λ for all n >: 0.

As pn+2/Pn+\ £ Fn+\\Fn>
 Fn is properly contained in Fn+λ for all n > 0.

Finally, if a G Z^VO}, then vp(a) = 0 for all but finitely many primes/?.

Hence F= U ~ = 0 F n .

If Fis a finite algebraic extension of K(z), let/?0, pl9... be a sequence

of distinct prime polynomials in K[z] and proceed as before.
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(2) Suppose F\E is a countably infinite set {s0, su...}. By induction

on n, we define integers kQ9 kl9... and subfields Fo, Fl9... of F satisfying:

(i) k0 < kλ <

(iϊ)Fn = E(s09sl9...9skm);

(iii) Fn is properly contained in Fn+X.

Let k0 = 0 and let F o = £ ( s o ) Assume fc0, fc1?... ,fcπ and J^, i^,. . . 9Fn

have been defined satisfying (i)-(iii). As F i s not finitely generated over E,

there exists an integer / such that st&Fn. Let kn+x be the smallest integer

/ satisfying this property and let Fn+X — E(sθ9 sl9. ..,sk ). Properties

(i)-(iii) obviously hold for fcn+1 and i ^ + 1 thus defined. By (i) and (ii),

F — U ^ = o FΛ and hence F09 Fl9... is the desired sequence of subfields of

F.

Suppose F\E is uncountable. Then the transcendence degree of F
over £ is infinite. Hence there exists a subfield Eo of T7 and distinct
elements x09xl9... of Fsuch that [xt: i > 0} is a transcendence base for
F over 2?0. For each n > 0, let FB = { f l£F: α is algebraic over
£O(JCO5

 x\>- - - >xn)}' Fo> F\>- - - ^s ^ e n a sequence of subfields of F satisfy-
ing the desired properties.

(The author is grateful to the referee for suggesting the above lemma
as well as its proof.)

Henceforth, let F be an infinite field and let Fθ9 Fv F29... be a nested
sequence of subrings of F such that Fn is properly contained iaFn+ι for all
n > 0, l G F o a n d f = U™=0Fn. For each a G F, let φ(a) denote the
smallest nonnegative integer n such that a E Fn. Clearly:

(1) φ(a ±b)< max{φ(α), φ(b)} for all a9 b in F.

(2) φ(ab) < max{φ(α), φ(Z?)} for all a9 b in JF.

Define | | from F to N U {0} by,

\a\ =
1 ' '.0 iίa =

Obviously, | a \ = 0 if and only if a = 0. Furthermore from (1) and (2) we
obtain

| β ± 6 | < m a x f | f l | , | 6 | ) and

for all α and b in F. As | a | > 1 for all α E /^MO}, | ύ* | < | Λ 11 6 | for all a
and b in i7. Thus | | is a norm on F.

Let x be any transcendental element over F in some field extension,
let F(x) be the field of rational functions over F and let F((Λ:)) denote the
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field of formal power series over F, that is, F((x)) = {Σf=m a^x*: m E Z,
at E F for all / >: m). As /"((Λ:)) is the completion of F(x) for the x-adic
valuation υx defined on F(x) [8, p. 243], we may identify F(x) with a
subfieldof^x)).

Define N from F((x)) to [0, oo] by,

N(y) = sup I a, I 2"'" for7 = 2 atx
l E

LEMMA 2. (1) N(y) = 0 if and only ify = 0.
(2) JV(jμ, ± Λ ) < m a x ^ , ) , #(.y2)} /or allyvy2 in
(3) JV( Λ Λ ) < N(yx)N(y2)for ally,, y2 in F((x)).

Proof. As (1) and (2) follow easily from the corresponding properties
of I I , it suffices to prove (3). Let yλ = Σ atx

l and y2 = Σ b^ be
elements of F((x)). Then yλy2 = Σc^x1 where cn

:=lΣiΛ.j^naibj for all
n ELZ. Hence

7V(cπx") = N[ 2 β ^ V 7 ) - m a x M^-x'W)

< max ̂ a^Nib.xΛ ^N(yι)N(y2).
i+j=n

Therefore

M ) Ί Λ ) = supiV(cnx
w) ^N(yι)N(y2) foτyl9y2inF((x)).

n

By the above lemma, the set R defined by, R - {y E F((x)): N(y) <
00}, is a subring of F((x)) and TV is a norm on R. Let D be the subset of R
defined by,

ί °° 1
ΰ = 2 α,.*'': m E Z,atE Ffor all 1 > m and lim | at | 2"1' = Ok

l J
LEMMA 3. D is a subfield of R, D is complete with respect to the

N-topology and F(x) is a dense subfield of D.

Proof. Clearly, for any a <Ξ F and any m E Z, aD C D and xmD C D.
We first show that for any y E .DXIO), j " 1 G ΰ . By the preceding
observation, we may assume that j> = Σf=0 atx

ι where a0 = 1. Then j " 1 =
ΣT=obιχi w h e r e b0 = 1 and for all n > 1, 6Π = -Σ^j^^j^agbj. For
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each n > 0, let γn = max{| a% \ : 0 < / < « } . An inductive argument estab-
lishes that I 2>n I < γn for all n > 0. As | an \ 2~n -> 0, it follows that yn2~n ->
0 and so I 6Π I 2~n -» 0, that is,jΓ~ι E D.

To complete the proof of the lemma we shall make use of the
following alternate construction of R, D and N. Let Z be given the
discrete topology and let v: Z -> (0, oo) be defined by, v(n) = 2~n for all
n E: Z. Denote the set of all continuous functions / from Z to F for which
11/II* = sup/6Zt>(i) | / ( Ϊ ) | < oo by CV(Z, F), the set of all/in CV(Z, F)
such that / vanishes at oo (that is, for each ε > 0, there exists a compact
subset K of Z such that II / χ z v κ Ί I „ < ε) by Q ( Z , F)9 and the set of all
/ in Q ( Z , F) with compact support by C£(Zy F). Then Z is a locally
compact space, v is continuous, C£(Z9 F) is a closed subgroup (under +)
of the complete, normable group CV(Z, F) and CQ(Z, F) is a dense
subset of QJ(Z, F). (The proof of this assertion is similar to the proof in
the classical case where F is R or C. For a discussion of this case see, for
example, [7].) For each y — Σ a^ E ^((JC)), we may identify y with the
function / defined from Z to F by, f(i) — ai for all i E Z. With this
identification,

ς ( Z J ) c ΰ and #(>>) = Ml* for all y in 2?.

Moreover, CV(Z, F) and CQ(Z9 F) are topological rings under the multi-
plication (/• g)(0 - ΣM+ll==i/(ifi)g(/i). As ( Q ( Z , n II - | | J is com-
plete, (/), # ) is complete as well. Further, as Q{Z, F) = Q ( Z , F), D is
a subring of R and hence a subfield of R by the previous observation.
Thus F(x) CD and so D = Q{Z, F) C F(x) C D, that is, F(JC) is a
dense subfield of D.

THEOREM 1. Let F be an infinite field, let Fo, Fl9 F29... be a nested

sequence of subrings of F such that Fn is properly contained in Fn+ι for all

« > 0 , 1 E F O and F — U ^ = 0 F n , and let x be any transcendental element

over F in some field extension. Then there exists a norm \\ || on F(x) such

that F is discrete, \\x\\ < 1, the completion of F(x) for || || is a field but

II || is not equivalent to the supremum of a finite family of absolute values

on F(x). Moreover for each n >: 0, the topology induced on Fn(x) by \\ || is

the same as that induced on Fn(x) by the x-adic valuation vx defined on

F{x).

Proof. Let II II denote the restriction of N to F(x). By Lemmas 2
and 3, || || is a norm on F(x) and the completion of F(x) for || || is a
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field. By definition, | |x | | = 2~x < 1 and for each nonzero a in F, \\a\\ =

I a I > 1. Hence F is discrete for || ||.

Suppose || || is equivalent to the supremum of a finite family (| | :

I < i < n) of absolute values on F(x). As the completion of F(x) for

II II is a field, n — 1 b y the A p p r o x i m a t i o n T h e o r e m for Absolute

Values [1, T h e o r e m 2, p . 136]. As F is discrete for || II, F is discrete for

I I, as well, that is, | a \λ — 1 for all a in F\{0}. Thus F i s a bounded set

for the topology induced on F(x) by | | l β However, if n is any positive

integer and an is any element of Fn\Fn_x, then | | α j | = | an \— 2n. There-

fore F is not bounded for the topology defined on F(x) by II II, a

contradiction.

To prove the last assertion of the theorem, we note that for any n > 0

and for any y in Fn(x),

In [9] Weber showed that if F is a field and x is any transcendental

element over F, then F is finite if and only if for each Hausdorff,

nondiscrete locally bounded topology ?Γon F(x), there exists a nonempty

proper subset S oί Φ' = {p: p is a. prime polynomial of F[x]} U {oo}

such that the set O(S) defined by, O(S) = { j G F(x): vp(y) > 0 for all

p E S], is a bounded neighborhood of zero for ?Γ(Satz 3.3). The following

is a generalization of this result.

COROLLARY. Let F be α field and let x be any transcendental element

over F. The following are equivalent.

(1) F is a finite field.

(2) If ^ is a Hausdorff, nondiscrete locally bounded topology on F(x),

then there exists a nonempty, proper subset S of ty' such that O(S) is a

bounded neighborhood of zero for ?Γ.

(3) //1 | || is a nontrivial norm on F(x) such that F is discrete and the

completion of F(x) for \\ - -\\ is a field, then II II w equivalent to an

absolute value which is improper on F.

Proof. By the above remarks, (1) and (2) are equivalent. By Theorem

1, (3) implies (1). So it suffices to show that (1) implies (3). Suppose F is a

finite field and || || is a nontrivial norm on F(x) such that the comple-

tion of F(x) for || || is a field. Then Fis bounded in norm and so by the

corollary to Theorem 2 of [2], || || is equivalent to an absolute value on

F(x) which is improper on F.

In [3] we characterized all norms on the polynomial ring F[x] for

which F is bounded (Theorem 2). We conclude this paper by showing that
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if F is any infinite field, the analogous characterization of the norms on
F[x] for which F is discrete is impossible.

THEOREM 2. Let F be an infinite field and let x be any transcendental

element over F in some field extension. Then there exists a norm 11 11 on

F[x] such that F is discrete and \\x\\ < 1 but || || is not equivalent to the

supremum of a finite family of absolute values on F[x].

Proof. Let || || be the norm on F(x) constructed in the proof of

Theorem 1 and let || | | ' denote its restriction to F[x]. Clearly, F is

discrete for || | |' and IUIΓ< 1. Suppose || |Γ is equivalent to the

supremum of a finite family {| I,.: 1 < i < ή) of absolute values on F[x].

Then each | |, is improper on F. Indeed, suppose there exist /, 1 < i < n,

and a E F such that | a | z > 1. Let m be such that \amx\i> 1. The

sequence ((amx)r)%λ converges to 0 for || | | ' but not for | ••)., a

contradiction. Hence each | |f is improper on F. It then follows that F is

bounded for the supremum topology but not for the topology defined on

F[x] by || |Γ, a contradiction.
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