ON UNITS OF PURE QUARTIC NUMBER FIELDS

Akira Endô

Abstract

Let $K=Q\left(\sqrt[4]{D^{4} \pm d}\right)$ be a pure quartic number field, where D and d are natural numbers such that d divides D^{3} and d is fourth power free. Then $\varepsilon= \pm\left(\sqrt[4]{D^{4} \pm d}+D\right) /\left(\sqrt[4]{D^{4} \pm d}-D\right)$ is a unit of K whose relative norm to the quadratic subfield of K is 1 . We consider the condition for ε to be a member of a system of fundamental units of K.

1. Introduction. There have been many investigations concerning units of pure extensions of the rational number field of degree $n>2$ generated by $\sqrt[n]{D^{n} \pm d}$, where D and d are natural numbers satisfying certain conditions ([2], [4], [7], [9], etc.). In general, suppose d divides D^{n-1} or, if n is a power of a prime number p, d divides $p D^{n-1}$. Then the numbers

$$
\varepsilon_{k}=\frac{\omega^{k}-D^{k}}{(\omega-D)^{k}}, \quad \omega=\sqrt[n]{D^{n} \pm d}
$$

where k runs over all the divisors of n except 1 , are units and, moreover, independent in the real algebraic number field generated by ω [1], [2], [4]. (The proof of independence of the ε_{k} 's given by Halter-Koch and Stender [4] is incomplete. But the proof can be corrected by a slight modification.) When $n=3,4$ or 6 , the number of such divisors is equal to the rank of the unit group of the field $Q(\omega)$, where Q denotes the rational number field. In this paper we shall treat these units in the case $n=4$.

The following result is established by Stender [8], [9]:
Let D and d be two natural numbers such that $d \mid 2 D^{3}$, and put $A=D^{4} \pm d$ and $\omega=\sqrt[4]{A}$. Suppose that d is fourth power free and A / d or $2 A / d$ is square free, according as $d \mid D^{3}$ or $d \mid 2 D^{3}$. Then

$$
\varepsilon_{2}= \pm \frac{\omega+D}{\omega-D} \quad \text { and } \quad \varepsilon_{4}= \begin{cases}\frac{d}{(\omega-D)^{4}} & \text { if } d \text { is not a square } \\ \frac{\sqrt{d}}{(\omega-D)^{2}} & \text { if } d \text { is a square and } d \neq 1 \\ \pm \frac{1}{\omega-D} & \text { if } d=1\end{cases}
$$

form a system of fundamental units of $Q(\omega)$, except for the three cases $\omega^{k}=8=2^{4}-8, \omega^{4}=12=2^{4}-4$ and $\omega^{4}=20=2^{4}+4$.

In this paper we shall remove the above assumption on A / d, and study the properties of ε_{2}.
2. Known facts. First, we state a few known facts on units of a pure quartic number field. Let A be a natural number which is fourth power free; then we can write $A=f g^{2} h^{3}$ with natural numbers f, g, h such that $f g h$ is square free. We suppose $f h \neq 1$. Then the pure quartic number field $K=Q(\sqrt[4]{A})$ generated by $\sqrt[4]{A}$ contains a unique quadratic subfield, namely $Q(\sqrt{f h})$. Any integer α of K is of the form

$$
\alpha=\frac{1}{k}\left(x_{0}+x_{1} \sqrt[4]{f g^{2} h^{3}}+x_{2} \sqrt{f h}+x_{3} \sqrt[4]{f^{3} g^{2} h}\right)
$$

with rational integers $x_{0}, x_{1}, x_{2}, x_{3}$ and $k=1,2$ or 4 , and its conjugate relative to $Q(\sqrt{f h})$ is

$$
\alpha^{\prime}=\frac{1}{k}\left(x_{0}-x_{1} \sqrt[4]{f g^{2} h^{3}}+x_{2} \sqrt{f h}-x_{3} \sqrt[4]{f^{3} g^{2} h}\right)
$$

Now let $\varepsilon_{0}>1$ be the smallest unit of K such that $\varepsilon_{0} \varepsilon_{0}^{\prime}=1$, and $\varepsilon^{*}>0$ the fundamental unit of $Q(\sqrt{f h})$.

Lemma 1 ([5], [6]). ε_{0} and ε^{*} or ε_{0} and $\sqrt{\varepsilon^{*} \varepsilon_{0}}$ form a system of fundamental units of K; the former case occurs if and only if neither ε^{*} nor $-\varepsilon^{*}$ is the norm of a unit of K to $Q(\sqrt{f h})$.

In any case, ε_{0} appears as a member of a system of fundamental units of K. The following result will aid in determining ε_{0} :

Lemma 2 ([6]). Let A_{1} and A_{2} be two positive rational integers such that $Q\left(\sqrt[4]{A_{1} A_{2}^{3}}\right)=Q(\sqrt[4]{A})$. Then the indeterminate equation

$$
A_{1} x^{4}-A_{2} y^{4}= \pm C \quad \text { with } C=1,2,4
$$

has at most one positive integer solution. If (a, b) is a positive integer solution of this equation, then $\pm\left(a \sqrt[4]{A_{1}}+b \sqrt[4]{A_{2}}\right) /\left(a \sqrt[4]{A_{1}}-b \sqrt[4]{A_{2}}\right)$ is a unit of $Q(\sqrt[4]{A})$ whose relative norm to $Q(\sqrt{A})$ is 1 , and furthermore is equal to ε_{0} or ε_{0}^{2} with the only two exceptions $x^{4}-5 y^{4}=1$ and $4 x^{4}-3 y^{4}=1$.
3. Theorems. From now on, we take A so that $K=Q(\sqrt[4]{A})=$ $Q\left(\sqrt[4]{D^{4} \pm d}\right)$, and suppose that $d \mid D^{3}$ and d is fourth power free. Then there is a natural number u satisfying

$$
u^{4} A=D^{4} \pm d
$$

We write $d=d_{1} d_{2}^{2} d_{3}^{3}$ with natural numbers d_{1}, d_{2}, d_{3} such that $d_{1} d_{2} d_{3}$ is square free. It is easy to see that $d_{1}\left|f, d_{2}\right| g, d_{3} \mid h$.

Now we write $\sqrt[4]{A}=\omega$ and put

$$
\varepsilon_{2}= \pm \frac{u \omega+D}{u \omega-D}
$$

which is a unit of K. In the special case where $u=1$ and A / d is square free, i.e. $g=d_{2}, h=d_{3}$, as already mentioned in the introduction, Stender's result [8], [9] states that ε_{2} is contained in a system of fundamental units of K with the exception of three cases. Moreover [3],

$$
\varepsilon^{*}= \begin{cases}\frac{d}{\left(\omega^{2}-D^{2}\right)^{2}}, & d_{1} d_{3} \neq 1 \\ \pm \frac{\sqrt{d}}{\omega^{2}-D^{2}}, & d=d_{2}^{2}\end{cases}
$$

and $\pm \varepsilon^{*}$ are the norms of no unit of K to $Q(\sqrt{f h})$.
Since

$$
Q\left(\sqrt[4]{D^{4} \pm d}\right)=Q\left(\sqrt[4]{D^{\prime 4} \mp d^{\prime}}\right)
$$

where $D^{\prime}=u\left(f / d_{1}\right)\left(g / d_{2}\right)\left(h / d_{3}\right), d^{\prime}=\left(f / d_{1}\right)^{3}\left(g / d_{2}\right)^{2}\left(h / d_{3}\right), d^{\prime} \mid D^{\prime 3}$ and d^{\prime} is fourth power free, we treat below exclusively the plus case, i.e. $u^{4} A=D^{4}+d$. We write simply $\varepsilon_{2}=\varepsilon$:

$$
\varepsilon=\frac{u \omega+D}{u \omega-D}=\frac{1}{d}\left(2 D^{4}+d+2 D^{3} u \omega+2 D^{2} u^{2} \omega^{2}+2 D u^{3} \omega^{3}\right)
$$

Obviously $\varepsilon \varepsilon^{\prime}=1$. We then consider whether there exists a unit η of K such that $\eta \eta^{\prime}=1$ and $\varepsilon=\eta^{2}$.

Let

$$
\eta=\frac{1}{k}\left(x_{0}+x_{1} \sqrt[4]{f g^{2} h^{3}}+x_{2} \sqrt{f h}+x_{3} \sqrt[4]{f^{3} g^{2} h}\right)
$$

be a unit of K with $\eta \eta^{\prime}=1$. Then

$$
\begin{equation*}
x_{0}^{2}+x_{2}^{2} f h-2 x_{1} x_{3} f g h=k^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x_{1}^{2} g h+x_{3}^{2} f g-2 x_{0} x_{2}=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{aligned}
\eta^{2}=\frac{1}{k^{2}} & \left(x_{0}^{2}+x_{1}^{2} f h+2 x_{1} x_{3} f g h+2\left(x_{0} x_{1}+x_{2} x_{3} f\right) \sqrt[4]{f g^{2} h^{3}}\right. \\
& \left.+\left(x_{1}^{2} g h+x_{3}^{2} f g+2 x_{0} x_{2}\right) \sqrt{f h}+2\left(x_{0} x_{3}+x_{1} x_{2} h\right) \sqrt[4]{f^{3} g^{2} h}\right)
\end{aligned}
$$

Hence (1) and (2) imply that $\varepsilon=\eta^{2}$ if and only if

$$
\begin{equation*}
\frac{D^{4}}{d}=\frac{2}{k^{2}} x_{1} x_{3} f g h=\frac{1}{k^{2}}\left(x_{0}^{2}+x_{2}^{2} f h\right)-1 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{D^{3}}{d} u=\frac{1}{k^{2}}\left(x_{0} x_{1}+x_{2} x_{3} f\right) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{D^{2}}{d} u^{2} g h=\frac{2}{k^{2}} x_{0} x_{2}=\frac{1}{k^{2}}\left(x_{1}^{2} g h+x_{3}^{2} f g\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{D}{d} u^{3} g h^{2}=\frac{1}{k^{2}}\left(x_{0} x_{3}+x_{1} x_{2} h\right) \tag{6}
\end{equation*}
$$

From (3)-(6) we have

$$
2 x_{0} x_{2}\left(x_{0} x_{1}+x_{2} x_{3} f\right) h=2 x_{1} x_{3} \operatorname{fgh}\left(x_{0} x_{3}+x_{1} x_{2} h\right)
$$

It easily follows from this, together with (2), that

$$
\left(x_{0} x_{1}-x_{2} x_{3} f\right)\left(x_{1}^{2} h-x_{3}^{2} f\right)=0
$$

from which, as $f h \neq 1$ is not a square,

$$
\begin{equation*}
x_{0} x_{1}=x_{2} x_{3} f \tag{7}
\end{equation*}
$$

Remark 1. It is easily shwon that in the above situation the following facts hold:

$$
\begin{array}{ll}
k=1 & \text { if } 4|d, 2| f h \text { or } 2 \nmid f g h \\
k=2 & \text { if } 2 \nmid d \text { and } 2 \mid g .
\end{array}
$$

We prove here the following:
Theorem 1. Notations being as above, suppose that $u^{4} A=D^{4}+d$ and $A \neq 5^{3}, 2^{2} 3^{3}$. Then $\varepsilon=\varepsilon_{0}$ or ε_{0}^{2}, and moreover $\varepsilon=\varepsilon_{0}^{2}$ if and only if $A=d$ or $4 d$ and either $2\left(u^{2}+\sqrt{d / A}\right)$ or $2\left(u^{2}-\sqrt{d / A}\right)$ is a square.

Proof. It follows from Lemma 2 that $\varepsilon=\varepsilon_{0}$ or ε_{0}^{2}. Suppose that $\varepsilon=\eta^{2}$ with $\eta \eta^{\prime}=1$ as above. Then from (3) we have

$$
u^{4} A=u^{4} f g^{2} h^{3}=D^{4}+d=\frac{2}{k^{2}} x_{1} x_{3} f g h d+d
$$

This implies $A=d$ or $4 d$ because $d_{1}\left|f, d_{2}\right| g, d_{3} \mid h$, and if $2 \mid f h, k=1$ by Remark 1. Furthermore, from (3)-(7) we obtain

$$
x_{1}=\frac{k^{2} D^{3} u}{2 d} \frac{1}{x_{0}}, \quad x_{2}=\frac{k^{2} D^{2} u^{2} g h}{2 d} \frac{1}{x_{0}}, \quad x_{3}=\frac{D}{u f g h} x_{0}
$$

and

$$
\frac{D}{d} u^{3} g h^{2}=\frac{1}{k^{2}}\left(\frac{D}{u f g h} x_{0}^{2}+\frac{k^{4} D^{5} u^{3} g h}{4 d^{2}} \frac{1}{x_{0}^{2}}\right)
$$

From the last equation we have

$$
\begin{aligned}
0 & =x_{0}^{4}-\frac{k^{2} u^{4} A}{d} x_{0}^{2}+\frac{k^{4} u^{4} D^{4} A}{4 d^{2}} \\
& = \begin{cases}\left(x_{0}^{2}-\frac{k^{2} u^{2}\left(u^{2}+1\right)}{2}\right)\left(x^{2}-\frac{k^{2} u^{2}\left(u^{2}-1\right)}{2}\right), & A=d \\
\left(x_{0}^{2}-k^{2} u^{2}\left(2 u^{2}+1\right)\right)\left(x_{0}^{2}-k^{2} u^{2}\left(2 u^{2}-1\right)\right), & A=4 d\end{cases}
\end{aligned}
$$

Since x_{0} is a rational integer, $\left(u^{2} \pm 1\right) / 2$ or $2 u^{2} \pm 1$ must be a square, according as $A=d$ or $A=4 d$. Conversely, if these conditions are satisfied, then

$$
x_{0}=k u v, \quad x_{1}=\frac{k D^{3}}{2 d} \frac{1}{v}, \quad x_{2}=\frac{k D^{2} u g h}{2 d} \frac{1}{v}, \quad x_{3}=\frac{k D}{f g h} v
$$

where

$$
v= \begin{cases}\sqrt{\frac{u^{2} \pm 1}{2}}, & A=d \\ \sqrt{2 u^{2} \pm 1}, & A=4 d\end{cases}
$$

satisfy conditions (1)-(6). Thus the theorem follows.
Remark 2. In the above theorem, $u \neq 1$ if $A=d$. Since the fundamental unit of the real quadratic number field $Q(\sqrt{2})$ is $1+\sqrt{2}$, the natural numbers u such that $\left(u^{2} \pm 1\right) / 2$ is a square are given by u $+\sqrt{u^{2}+1}=(1+\sqrt{2})^{2 l+1}$ or $u+\sqrt{u^{2}-1}=(1+\sqrt{2})^{2 l}$ for some $l \geq 1$.

Moreover, the natural numbers u such that $2 u^{2} \pm 1$ is a square are given by $\sqrt{2 u^{2}+1}+u \sqrt{2}=(1+\sqrt{2})^{2 l}$ or $\sqrt{2 u^{2}-1}+u \sqrt{2}=(1+\sqrt{2})^{2 l-1}$ for some $l \geq 1$.

In the minus case we have the following:
Theorem 2. Suppose $u^{4} A=D^{4}-d$ and $A \neq 5,2^{2} 3$. Then $\varepsilon=\varepsilon_{0}$ or ε_{0}^{2}, and $\varepsilon=\varepsilon_{0}^{2}$ if and only if $d=1$ or 4 and either $2\left(D^{2}+\sqrt{d}\right)$ or $2\left(D^{2}-\sqrt{d}\right)$ is a square.

Proof. Immediate from Theorem 1 and the remark at the beginning of this section.

Remark 3. In the above theorem, $D \neq 1$ if $d=1$. The natural numbers D such that $D^{2} / 2 \pm 1$ is a square are given by $\sqrt{2\left(D^{2}+2\right)}+$ $D \sqrt{2}=2(1+\sqrt{2})^{2 l}$ or $\sqrt{2\left(D^{2}-2\right)}+D \sqrt{2}=2(1+\sqrt{2})^{2 l-1}$ for some $l \geq 1$.

Corollary ([9]). If $A=D^{4} \pm d$ and A / d is square free, there exists no unit η of K such that $\eta \eta^{\prime}=1$ and $\varepsilon=\eta^{2}$, with the single exception of $A=12=2^{4}-4$.

Proof. By Theorem 1 such a unit cannot exist in the plus case, and hence Theorem 2 shows that $d=1$ or 4 . Then, from the assumption, we have $A=4 f=D^{4}-d=12$, namely $D=2, d=4$, which gives the only exception stated above.

Remark 4. Stender [10] has obtained some sufficient conditions for $\varepsilon=\varepsilon_{0}$, which can also be deduced from Theorems 1 and 2.

References

[1] L. Bernstein, Der Hasse-Bernsteinsche Einheitensatz für den verallgemeinerten JacobiPerronschen Algorithmus, Abh. Math. Sem. Univ. Hamburg, 43 (1975), 11-20.
[2] L. Bernstein und H. Hasse, Einheitenberechnung mittels des Jacobi-Perronschen Algorithmus, J. Reine Angew. Math., 218 (1965), 51-69.
[3] G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 92-97.
[4] F. Halter-Koch und H.-J. Stender, Unabhängıge Einheiten für die Körper $K=$ $Q\left(\sqrt[n]{D^{n} \pm d}\right)$ mit $d \mid D^{n}$, Abh. Math. Sem. Univ. Hamburg, 42 (1974), 33-40.
[5] W. Ljunggren, Über die Lösung einiger unbestimmten Gleichungen vierten Grades, Avh. Norske Vid.-Akad. Oslo (I), 1934 No. 14, 1-35.
[6] __, Einige Eigenschaften der Einheiten reeller quadratischer und rein-biquadratischer Zahlkörper mit Anwendung auf die Lösung einer Klasse unbestimmter Gleichungen vierten Grades, Skr. Norske Vid.-Akad. Oslo (I), 1936 No. 12, 1-73.
[7] R. J. Rudman, On the fundamental unit of a purely cubic field, Pacific J. Math., 46 (1973), 253-256.
[8] H.-J. Stenderr, Grundeinheiten für einige unendliche Klassen reiner biquadratischer Zahlkörper mit einer Anwendung auf die diophantische Gleichung $x^{4}-a y^{4}= \pm c$ ($c=$ 1, 2, 4 oder 8), J. Reine Angew. Math., 264 (1973), 207-220.
[9] _, Eine Formel für Grundeinheiten in reinen algebraischen Zahlkörpern dritten, vierten und sechsten Grades, J. Number Theory, 7 (1975), 235-250.
[10] \qquad , Lösbare Gleichungen $a x^{n}-b y^{n}=c$ und Grundeinheiten für einige algebraische Zahlkörper vom Grade $n=3,4,6$, J. Reine Angew. Math., 290 (1977), 24-62.

Received April 2, 1981 and in revised form April 28, 1982.
Kumamoto University
Kumamoto, Japan

