ON UNITS OF PURE QUARTIC NUMBER FIELDS

Akira Endô

Let $K = Q(\sqrt[4]{D^4 \pm d})$ be a pure quartic number field, where *D* and *d* are natural numbers such that *d* divides D^3 and *d* is fourth power free. Then $\varepsilon = \pm (\sqrt[4]{D^4 \pm d} + D)/(\sqrt[4]{D^4 \pm d} - D)$ is a unit of *K* whose relative norm to the quadratic subfield of *K* is 1. We consider the condition for ε to be a member of a system of fundamental units of *K*.

1. Introduction. There have been many investigations concerning units of pure extensions of the rational number field of degree n > 2 generated by $\sqrt[n]{D^n \pm d}$, where D and d are natural numbers satisfying certain conditions ([2], [4], [7], [9], etc.). In general, suppose d divides D^{n-1} or, if n is a power of a prime number p, d divides pD^{n-1} . Then the numbers

$$\epsilon_k = rac{\omega^k - D^k}{\left(\omega - D
ight)^k}, \qquad \omega = \sqrt[n]{D^n \pm d},$$

where k runs over all the divisors of n except 1, are units and, moreover, independent in the real algebraic number field generated by ω [1], [2], [4]. (The proof of independence of the ε_k 's given by Halter-Koch and Stender [4] is incomplete. But the proof can be corrected by a slight modification.) When n = 3, 4 or 6, the number of such divisors is equal to the rank of the unit group of the field $Q(\omega)$, where Q denotes the rational number field. In this paper we shall treat these units in the case n = 4.

The following result is established by Stender [8], [9]:

Let D and d be two natural numbers such that $d|2D^3$, and put $A = D^4 \pm d$ and $\omega = \sqrt[4]{A}$. Suppose that d is fourth power free and A/d or 2A/d is square free, according as $d|D^3$ or $d|2D^3$. Then

$$\varepsilon_2 = \pm \frac{\omega + D}{\omega - D} \quad \text{and} \quad \varepsilon_4 = \begin{cases} \frac{d}{(\omega - D)^4} & \text{if } d \text{ is not a square,} \\ \frac{\sqrt{d}}{(\omega - D)^2} & \text{if } d \text{ is a square and } d \neq 1, \\ \pm \frac{1}{\omega - D} & \text{if } d = 1 \end{cases}$$

AKIRA ENDÔ

form a system of fundamental units of $Q(\omega)$, except for the three cases $\omega^k = 8 = 2^4 - 8$, $\omega^4 = 12 = 2^4 - 4$ and $\omega^4 = 20 = 2^4 + 4$.

In this paper we shall remove the above assumption on A/d, and study the properties of ε_2 .

2. Known facts. First, we state a few known facts on units of a pure quartic number field. Let A be a natural number which is fourth power free; then we can write $A = fg^2h^3$ with natural numbers f, g, h such that fgh is square free. We suppose $fh \neq 1$. Then the pure quartic number field $K = Q(\sqrt[4]{A})$ generated by $\sqrt[4]{A}$ contains a unique quadratic subfield, namely $Q(\sqrt{fh})$. Any integer α of K is of the form

$$\alpha = \frac{1}{k} \left(x_0 + x_1 \sqrt[4]{fg^2 h^3} + x_2 \sqrt{fh} + x_3 \sqrt[4]{f^3 g^2 h} \right)$$

with rational integers x_0 , x_1 , x_2 , x_3 and k = 1, 2 or 4, and its conjugate relative to $Q(\sqrt{fh})$ is

$$\alpha' = \frac{1}{k} \left(x_0 - x_1 \sqrt[4]{fg^2 h^3} + x_2 \sqrt{fh} - x_3 \sqrt[4]{f^3 g^2 h} \right).$$

Now let $\varepsilon_0 > 1$ be the smallest unit of K such that $\varepsilon_0 \varepsilon'_0 = 1$, and $\varepsilon^* > 0$ the fundamental unit of $Q(\sqrt{fh})$.

LEMMA 1 ([5], [6]). ε_0 and ε^* or ε_0 and $\sqrt{\varepsilon^* \varepsilon_0}$ form a system of fundamental units of K; the former case occurs if and only if neither ε^* nor $-\varepsilon^*$ is the norm of a unit of K to $Q(\sqrt{fh})$.

In any case, ε_0 appears as a member of a system of fundamental units of K. The following result will aid in determining ε_0 :

LEMMA 2 ([6]). Let A_1 and A_2 be two positive rational integers such that $Q(\sqrt[4]{A_1A_2^3}) = Q(\sqrt[4]{A})$. Then the indeterminate equation

$$A_1 x^4 - A_2 y^4 = \pm C$$
 with $C = 1, 2, 4$

has at most one positive integer solution. If (a, b) is a positive integer solution of this equation, then $\pm (a\sqrt[4]{A_1} + b\sqrt[4]{A_2})/(a\sqrt[4]{A_1} - b\sqrt[4]{A_2})$ is a unit of $Q(\sqrt[4]{A})$ whose relative norm to $Q(\sqrt{A})$ is 1, and furthermore is equal to ε_0 or ε_0^2 with the only two exceptions $x^4 - 5y^4 = 1$ and $4x^4 - 3y^4 = 1$.

328

3. Theorems. From now on, we take A so that $K = Q(\sqrt[4]{A}) = Q(\sqrt[4]{D^4 \pm d})$, and suppose that $d \mid D^3$ and d is fourth power free. Then there is a natural number u satisfying

$$u^4 A = D^4 \pm d.$$

We write $d = d_1 d_2^2 d_3^3$ with natural numbers d_1 , d_2 , d_3 such that $d_1 d_2 d_3$ is square free. It is easy to see that $d_1 | f, d_2 | g, d_3 | h$.

Now we write $\sqrt[4]{A} = \omega$ and put

$$\varepsilon_2 = \pm \frac{u\omega + D}{u\omega - D},$$

which is a unit of K. In the special case where u = 1 and A/d is square free, i.e. $g = d_2$, $h = d_3$, as already mentioned in the introduction, Stender's result [8], [9] states that ε_2 is contained in a system of fundamental units of K with the exception of three cases. Moreover [3],

$$\varepsilon^* = \begin{cases} \frac{d}{\left(\omega^2 - D^2\right)^2}, & d_1 d_3 \neq 1, \\ \\ \pm \frac{\sqrt{d}}{\omega^2 - D^2}, & d = d_2^2, \end{cases}$$

and $\pm \varepsilon^*$ are the norms of no unit of K to $Q(\sqrt{fh})$.

Since

$$Q\left(\sqrt[4]{D^4 \pm d}\right) = Q\left(\sqrt[4]{D'^4 \mp d'}\right),$$

where $D' = u(f/d_1)(g/d_2)(h/d_3)$, $d' = (f/d_1)^3(g/d_2)^2(h/d_3)$, $d' | D'^3$ and d' is fourth power free, we treat below exclusively the plus case, i.e. $u^4A = D^4 + d$. We write simply $\varepsilon_2 = \varepsilon$:

$$\varepsilon = \frac{u\omega + D}{u\omega - D} = \frac{1}{d} \left(2D^4 + d + 2D^3u\omega + 2D^2u^2\omega^2 + 2Du^3\omega^3 \right).$$

Obviously $\varepsilon \varepsilon' = 1$. We then consider whether there exists a unit η of K such that $\eta \eta' = 1$ and $\varepsilon = \eta^2$.

Let

$$\eta = \frac{1}{k} \left(x_0 + x_1 \sqrt[4]{fg^2 h^3} + x_2 \sqrt{fh} + x_3 \sqrt[4]{f^3 g^2 h} \right)$$

be a unit of K with $\eta \eta' = 1$. Then

(1)
$$x_0^2 + x_2^2 fh - 2x_1 x_3 fgh = k^2,$$

AKIRA ENDÔ

(2)
$$x_1^2gh + x_3^2fg - 2x_0x_2 = 0,$$

and

$$\eta^{2} = \frac{1}{k^{2}} \bigg(x_{0}^{2} + x_{1}^{2} fh + 2x_{1} x_{3} fgh + 2(x_{0} x_{1} + x_{2} x_{3} f) \sqrt[4]{fg^{2}h^{3}} + (x_{1}^{2} gh + x_{3}^{2} fg + 2x_{0} x_{2}) \sqrt{fh} + 2(x_{0} x_{3} + x_{1} x_{2} h) \sqrt[4]{f^{3}g^{2}h} \bigg).$$

Hence (1) and (2) imply that $\varepsilon = \eta^2$ if and only if

(3)
$$\frac{D^4}{d} = \frac{2}{k^2} x_1 x_3 fgh = \frac{1}{k^2} \left(x_0^2 + x_2^2 fh \right) - 1,$$

(4)
$$\frac{D^3}{d}u = \frac{1}{k^2}(x_0x_1 + x_2x_3f),$$

(5)
$$\frac{D^2}{d}u^2gh = \frac{2}{k^2}x_0x_2 = \frac{1}{k^2}(x_1^2gh + x_3^2fg),$$

(6)
$$\frac{D}{d}u^{3}gh^{2} = \frac{1}{k^{2}}(x_{0}x_{3} + x_{1}x_{2}h).$$

From (3)–(6) we have

$$2x_0x_2(x_0x_1 + x_2x_3f)h = 2x_1x_3fgh(x_0x_3 + x_1x_2h).$$

It easily follows from this, together with (2), that

$$(x_0x_1 - x_2x_3f)(x_1^2h - x_3^2f) = 0,$$

from which, as $fh \neq 1$ is not a square,

(7)
$$x_0 x_1 = x_2 x_3 f.$$

REMARK 1. It is easily shoon that in the above situation the following facts hold:

$$k = 1 \quad \text{if } 4 | d, 2 | fh \text{ or } 2 \nmid fgh,$$

$$k = 2 \quad \text{if } 2 \nmid d \text{ and } 2 | g.$$

We prove here the following:

THEOREM 1. Notations being as above, suppose that $u^4A = D^4 + d$ and $A \neq 5^3$, 2^23^3 . Then $\varepsilon = \varepsilon_0$ or ε_0^2 , and moreover $\varepsilon = \varepsilon_0^2$ if and only if A = d or 4d and either $2(u^2 + \sqrt{d/A})$ or $2(u^2 - \sqrt{d/A})$ is a square.

330

Proof. It follows from Lemma 2 that $\varepsilon = \varepsilon_0$ or ε_0^2 . Suppose that $\varepsilon = \eta^2$ with $\eta \eta' = 1$ as above. Then from (3) we have

$$u^{4}A = u^{4}fg^{2}h^{3} = D^{4} + d = \frac{2}{k^{2}}x_{1}x_{3}fghd + d.$$

This implies A = d or 4d because $d_1 | f, d_2 | g, d_3 | h$, and if 2 | fh, k = 1 by Remark 1. Furthermore, from (3)–(7) we obtain

$$x_1 = \frac{k^2 D^3 u}{2d} \frac{1}{x_0}, \quad x_2 = \frac{k^2 D^2 u^2 g h}{2d} \frac{1}{x_0}, \quad x_3 = \frac{D}{u f g h} x_0,$$

and

$$\frac{D}{d}u^{3}gh^{2} = \frac{1}{k^{2}} \left(\frac{D}{ufgh} x_{0}^{2} + \frac{k^{4}D^{5}u^{3}gh}{4d^{2}} \frac{1}{x_{0}^{2}} \right).$$

From the last equation we have

$$0 = x_0^4 - \frac{k^2 u^4 A}{d} x_0^2 + \frac{k^4 u^4 D^4 A}{4d^2}$$

=
$$\begin{cases} \left(x_0^2 - \frac{k^2 u^2 (u^2 + 1)}{2}\right) \left(x^2 - \frac{k^2 u^2 (u^2 - 1)}{2}\right), & A = d, \\ \left(x_0^2 - k^2 u^2 (2u^2 + 1)\right) \left(x_0^2 - k^2 u^2 (2u^2 - 1)\right), & A = 4d. \end{cases}$$

Since x_0 is a rational integer, $(u^2 \pm 1)/2$ or $2u^2 \pm 1$ must be a square, according as A = d or A = 4d. Conversely, if these conditions are satisfied, then

$$x_0 = kuv, \quad x_1 = \frac{kD^3}{2d}\frac{1}{v}, \quad x_2 = \frac{kD^2ugh}{2d}\frac{1}{v}, \quad x_3 = \frac{kD}{fgh}v,$$

where

$$v = \begin{cases} \sqrt{\frac{u^2 \pm 1}{2}}, & A = d, \\ \sqrt{2u^2 \pm 1}, & A = 4d, \end{cases}$$

satisfy conditions (1)-(6). Thus the theorem follows.

REMARK 2. In the above theorem, $u \neq 1$ if A = d. Since the fundamental unit of the real quadratic number field $Q(\sqrt{2})$ is $1 + \sqrt{2}$, the natural numbers u such that $(u^2 \pm 1)/2$ is a square are given by $u + \sqrt{u^2 + 1} = (1 + \sqrt{2})^{2l+1}$ or $u + \sqrt{u^2 - 1} = (1 + \sqrt{2})^{2l}$ for some $l \ge 1$.

AKIRA ENDÔ

Moreover, the natural numbers u such that $2u^2 \pm 1$ is a square are given by $\sqrt{2u^2 + 1} + u\sqrt{2} = (1 + \sqrt{2})^{2l}$ or $\sqrt{2u^2 - 1} + u\sqrt{2} = (1 + \sqrt{2})^{2l-1}$ for some $l \ge 1$.

In the minus case we have the following:

THEOREM 2. Suppose $u^4A = D^4 - d$ and $A \neq 5$, 2^23 . Then $\varepsilon = \varepsilon_0$ or ε_0^2 , and $\varepsilon = \varepsilon_0^2$ if and only if d = 1 or 4 and either $2(D^2 + \sqrt{d})$ or $2(D^2 - \sqrt{d})$ is a square.

Proof. Immediate from Theorem 1 and the remark at the beginning of this section.

REMARK 3. In the above theorem, $D \neq 1$ if d = 1. The natural numbers D such that $D^2/2 \pm 1$ is a square are given by $\sqrt{2(D^2 + 2)} + D\sqrt{2} = 2(1 + \sqrt{2})^{2l}$ or $\sqrt{2(D^2 - 2)} + D\sqrt{2} = 2(1 + \sqrt{2})^{2l-1}$ for some $l \geq 1$.

COROLLARY ([9]). If $A = D^4 \pm d$ and A/d is square free, there exists no unit η of K such that $\eta \eta' = 1$ and $\varepsilon = \eta^2$, with the single exception of $A = 12 = 2^4 - 4$.

Proof. By Theorem 1 such a unit cannot exist in the plus case, and hence Theorem 2 shows that d = 1 or 4. Then, from the assumption, we have $A = 4f = D^4 - d = 12$, namely D = 2, d = 4, which gives the only exception stated above.

REMARK 4. Stender [10] has obtained some sufficient conditions for $\varepsilon = \varepsilon_0$, which can also be deduced from Theorems 1 and 2.

References

- [2] L. Bernstein und H. Hasse, Einheitenberechnung mittels des Jacobi-Perronschen Algorithmus, J. Reine Angew. Math., 218 (1965), 51-69.
- [3] G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg, **22** (1958), 92-97.
- [4] F. Halter-Koch und H.-J. Stender, Unabhängige Einheiten für die Körper $K = Q(\sqrt[n]{D^n \pm d})$ mit $d \mid D^n$, Abh. Math. Sem. Univ. Hamburg, **42** (1974), 33–40.
- [5] W. Ljunggren, Über die Lösung einiger unbestimmten Gleichungen vierten Grades, Avh. Norske Vid.-Akad. Oslo (I), 1934 No. 14, 1–35.

L. Bernstein, Der Hasse-Bernsteinsche Einheitensatz f
ür den verallgemeinerten Jacobi-Perronschen Algorithmus, Abh. Math. Sem. Univ. Hamburg, 43 (1975), 11–20.

- [6] _____, Einige Eigenschaften der Einheiten reeller quadratischer und rein-biquadratischer Zahlkörper mit Anwendung auf die Lösung einer Klasse unbestimmter Gleichungen vierten Grades, Skr. Norske Vid.-Akad. Oslo (I), 1936 No. 12, 1–73.
- [7] R. J. Rudman, On the fundamental unit of a purely cubic field, Pacific J. Math., 46 (1973), 253–256.
- [8] H.-J. Stenderr, Grundeinheiten für einige unendliche Klassen reiner biquadratischer Zahlkörper mit einer Anwendung auf die diophantische Gleichung $x^4 ay^4 = \pm c$ (c = 1, 2, 4 oder 8), J. Reine Angew. Math., **264** (1973), 207–220.
- [9] ____, Eine Formel für Grundeinheiten in reinen algebraischen Zahlkörpern dritten, vierten und sechsten Grades, J. Number Theory, 7 (1975), 235–250.
- [10] _____, Lösbare Gleichungen $ax^n by^n = c$ und Grundeinheiten für einige algebraische Zahlkörper vom Grade n = 3, 4, 6, J. Reine Angew. Math., **290** (1977), 24–62.

Received April 2, 1981 and in revised form April 28, 1982.

Kumamoto University Kumamoto, Japan