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ACYCLIC DECOMPOSITIONS OF MANIFOLDS

R. J. DAVERMAN AND J. J. WALSH

This paper develops techniques for generating decompositions of
manifolds into homologically acyclic compacta. For n > 3 it presents
examples of decompositions of the ^-sphere S" that are totally acyclic, in
the sense that each decomposition element is an acyclic but non-cell-like
set. One class of examples yields non-ANR's as quotient spaces; another
class (for n > 3) yields ANR's. The distinction essentially depends upon
whether the decomposition elements are nearly 1-movable.

Every since their introduction in the 1930's, homology manifolds have

held an important position in topology. In low dimensions ( < 2) their

local algebraic properties are sufficiently strong to imply that they are

genuine manifolds. In higher dimensions this is not the case; nevertheless,

they attract attention for at least two reasons: first, their local algebraic

properties subject them to the same global algebraic properties possessed

by manifolds (like Poincare Duality), and second, they arise naturally as

fixed point sets of certain group actions on genuine manifolds.

Homology manifolds, sometimes called generalized mnaifolds, occur

in two distinct forms, the ANR's and the non-ANR's. Current practice, it

seems, reserves the term "generalized manifold" for the ANR form. In

accordance with that practice, we shall speak of a locally compact metric

space X as a generalized n-manifold if X is an ANR and, for each x G X,

H*(X,X- {x};Z)=H*(E\E"- {point}; Z);

and we shall speak of X as a homology n-manifold if, for each x G l ,

H*{X,X- [x}\Z)^H*{E\En- {point}; Z),

where //* denotes Cech homology. If we change from integer coefficients

to some other module R and if

H*(X,X- [x};R)=H*(E\E"- {point}; Λ),

we shall call X an R-homology n-manifold.

Within the past few years these generalized manifolds have moved

into a central position in geometric topology. It is a consequence of the

classical Vietoris-Begle Mapping Theorem [Be] that any finite dimensional

space X which is the cell-like image of an π-manifold is, in fact, a
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generalized ^-manifold. In 1977 R. D. Edwards [EJ proved that such a
space X, the cell-like image of a manifold, is always a factor of some
manifold (more remarkably, it is a manifold itself provided n >: 5 and X
satisfies the minimal general positioning embodied in the Disjoint Disks
Property). This line of research has culminated with the announcement by
F. Quinn [Q] that for n >: 5 a finite dimensional space X is a generalized
^-manifold iff it is the cell-like image of an w-manifold.

Beginning with the pioneering work of R. H. Bing [Bi] in the 1950's,
much of the early work concerning cell-like decompositions or cell-like
mappings was directed at discovering non-manifold generalized mani-
folds. Comparable efforts still go on at present, aided by the result of
Edwards. In contrast, very little has been done with decompositions of
manifolds into Z-acyclic compact sets, other than the classical result [Be]
that the associated decomposition space turns out to be a homology
manifold having the same (homology) dimension as the source. Now, in
view of Quinn's result, it is worth investigating which homology π-mani-
folds arise as the image of some w-manifold under a Z-acyclic mapping.
We shall supply some data for such investigations here, primarily through
the introduction of machinery for producing unusual and nontrivial
decompositions of manifolds into Z-acyclic but not cell-like sets.

Besides this machinery, we identify a property of such decompositions
crucial for distinguishing whether the decomposition space is a generalized
manifold, rather than the more pathological homology manifold. It is the
shape property called "nearly 1-movable". §5 traces the history establish-
ing the key result that if G is a decomposition of an ^-manifold M into
nearly 1-movable, Z-acyclic compact sets and if M/G is finite dimen-
sional, then M/G is a generalized H-manifold.

1. Defining sequences and decompositions. Decompositions of
manifolds can be prescribed efficiently in terms of defining sequences. In
this section we review the general notions of defining sequences to be
employed.

Let X be a space and 9ΐt a collection of subsets of X. For an arbitrary
subset A of X define its star in 911 as

st(A,GXL) = stι(A,(UlL)=A U ( ( J {M E 911: M Π A Φ 0})

and, recursively for any integer k > 1, define its kth star in 9H as
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Now suppose that X is a (locally) compact metric space. According to

the general definition introduced in [DW], a defining sequence in X is a

sequence S = {91L,, (D1L2,...} satisfying the following two simple axioms:

Axiom 1. For each /', the set (ζίίii is a (locally) finite cover of X by

compact subsets which have nonempty, pairwise disjoint interiors.

Axiom 2. For each i and each x E X,

The elements of the decomposition G associated with § are the sets

Πt st2(;c, 911,.), x E X, By Theorem 2.3 of [DW], G is upper semicontinu-

ous. This definition is all-encompassing since every upper semicontinuous

decomposition of a locally compact metric space arises from such a

defining sequence.

More useful for our purposes is a somewhat restricted notion of

defining sequence introduced in [CD], which inspired the generalization in

[DW]. It is this more restrictive notion that will be employed here. From

now on, a defining sequence in an ^-manifold T is a sequence § =

{9lt p 91L2> ..} satisfying the following conditions:

(i) Disjointness Criterion: for each /, the set 91t, is a locally finite

cover by compact, connected n-manfiolds-with-boundary which are em-

bedded locally flatly in T and which have pairwise disjoint interiors;

(ii) Nesting Criterion: for each i > 1 and each A E 91L, , there is a

unique element Pre^4 E 911._ x which properly contains A;

(iii) Boundary Size Criterion: for each / > 1, each A E 911,, and each

pair of distinct points x, y E &4, there is an integer k > i such that no

element of (ΰ\ik contains both x and y.

As before, the decomposition G associated with § is the one having the

sets rLst 2(/, 911,), / E 71, for its members. By Theorem 1 of [CD], G is

upper semicontinuous.

REMARK. In this situation, two additional features fill out the depic-

tion of G: first, n o g E G contains more than one point of Bd § = U (9^4:

A E U91LJ, and, second, if t E g E G and if either t E Bd S or g Π Bd S

= 0 , then g = Π.st(ί, 911,.) (cf. [CD, Addendum to Theorem 1]).

Comparing these two definitions of defining sequences, one sees

immediately that the Disjointness Criterion parallels Axiom 1. Less obvi-

ously, the Nesting Criterion and the Boundary Size Criterion, taken

together, imply a form of Axiom 2. In particular, with the forthcoming



294 R. J. DAVERMAN AND J. J. WALSH

constructions, just as with that in [CD], the Boundary Size Criterion will

be fulfilled so that for each / > 1 and each / E T - Bd S or / E U {9,4:

A E 9IL,},

st2(/,9lt / + 1) Clntst2(ί,9IL f)

which, with the Nesting Criterion, implies

st3(ί,91L;+1) C s t 2 ( / , % ) .

This then gives the modification of Axiom 2 that, for each / G Γ ,

ultimately,

st3(/,91t/+2) Clntst2(/,9H,)

2. Defining sequences and acyclicity. From among the various defi-

nitions of acyclicity given in the literature, we retrace the formulation

given by McMillan [Mc2]. The symbol Zp (p always denotes 0 or a prime)

is to be read consistently with fixed p in any discussion, and it denotes the

ring of integers mod /?, with Zo = Z the ring of integers itself. If k is a

nonnegative integer, then a compact set X in a manifold T (or, more

generally, an ANR T) is said to be strongly k-acyclic over Zp (or to have

Property k-uv(Zp)) if each neighborhood U of X in T contains another

neighborhood V oΐ X such that each &-cycle in V is homologous to zero in

U (singular homology with Zp coefficients). Generally, X is said to be

strongly acyclic over Zp if for each k > 0 it is strongly k-acyclic over Zp.

One should turn to [L, §2] and [Mc2, §2] for further background and

examples.

There is an important relationship between these homological acyclic-

ity properties and the Cech cohomology of X. According to Lacher [L,

§2.2], for a compact subset X of an ANR T and a positive integer k, (1) if

Xhas properties (k-\) — uυ(Zp) and k-uυ(Zp), then Hk(X: Zp) — 0 and

(2) if Hk{X\ Zp) = HkJr\X\ Zp) = 0, then Xhas property k-uv(Zp).

We call a decomposition G of an ANR acyclic (or, Zp-acyclic) if each

g G G is strongly acyclic over Z (over Z ). In order that a decomposition

G associated with a defining sequence § be Z^-acyclic, it is sufficient (but

not necessary) that the following condition be satisfied.

(iv) Zp-Acyclicity Criterion: for each i > 1 and A E 911,, the inclusion

map A -> Pre^4 E 9 1 1 ^ induces the zero homomorphism //*(Pre^4; Z^)

PROPOSITION 2.1. / / § = {^ILj, 9IL2,...} w α defining sequence (in an

ANR T) satisfying the Zp-Acyclicity Criterion, then each element g of the

associated decomposition G is strongly acyclic over Zp.
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Proof. The case g Π Bd § = 0 is the easier one and is left to the

reader. In the other case, according to the remark in §1 one can assume

that there is an A E 91tm and t E dA with g = Π.st(ί, 91L,.). For a

neighborhood U of g one can determine k > m such that st(ί, 9Tt*) C £/.

Let Al9...9As denote the elements of 9H^ + 1 containing ί, and for / =

1,... ,s let ϊ) denote the set g Π ( U 1

 = 1 Aj). A Mayer-Vietoris argument

establishes by induction on / that the inclusion of Yt into st(/, 9H^)

induces the trivial homomorphism on Cech cohomology; at the heart of

the argument is the choice of t E g so that Yι_ι Π At = {t} which implies

that

H*(Yi; Zp) ^ i / * ( ^ _ i ; Zp) θ H*(g Π At; Zp)

Consequently, H*(g; Zp) = H*(YS; Zp)=0, and g is Z^-acyclic [L, §2.2].

For a defining sequence § = {9H19

 (31t2> } ^n a fiώte dimensional

ANR Γ, a necessary and sufficient condition that the associated de-

composition G be Z^-acyclic is that for each integer / and each t E T there

exists an integery' > / such that

# * ( s φ , % ) ; Zp) - #*(st2(x, 9I6f.);
 Z J

is the trivial homomorphism.

3. A decomposition incorporating components of a compactum. Al-

though our main emphasis is on acyclic decompositions, the main result is

substantially more general and can be used to product examples of

manifold decompositions, the shape of whose elements reflects that of the

components of a prechosen compactum.

MAIN THEOREM. Let X be a compact k-dimensional subset of the

interior of a compact connected PL n-manifold T, n > 3 and k < n — 2, let

K( X) denote the decomposition of T into points and the components of X

with decomposition map πx: T -» T/K( X), and suppose that πx( X) is a

Cantor set. Then there exists a defining sequence § for an upper semicontinu-

ous decomposition G of Tsuch that:

(0) Bd § does not intersect X;

(1) each component of X is contained in some g E G,

(2) each g E G contains a component of X,

(3) each set πx(g), g E G, is cell-like and I-dimensional,

(4) T/G has dimension < n.
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Proof. We shall obtain G as the decomposition associated with a

defining sequence S = {91Ll9 9I t 2 , . . . } . We begin with 9tl, = {Γ} and

proceed to give an inductive specification of the rest of S.

Inductive Hypothesis (j). Suppose that 9L,, 91t2,... 9

(UΪLJ have been

obtained satisfying the following properties:

(a) ^ILp 9H 2 ? . . .,91l7 fulfill the appropriate finite segment from

Criteria (i), (ii), and (iii) for a defining sequence; in particular, for

1 < i <y and 4 E 9IL., the diameter of 4 Π 3(Pre4) is less than l/i;

(b) for each 4 E 911,, 1 < / <y, there exists a (l//)-map of 77>(4) to

an arc; and

(c) for each A E 911,, 1 < / <y, 94 Π X = 0 and 4 Π J T ^ 0 .

Description of (9H / + 1. Assuming Inductive Hypothesis (y) we shall

specify (D1L/+, so that ύtl9...,
(UtJ+ι fulfill the parallel Inductive Hypothe-

sis (j + 1). In order to do this, we fix an A E C91t/ and note that it will

suffice to describe the elements of 9ILy+1 which are contained in A. This

will be accomplished in five steps.

Step 1. Splitting components of A Π X. In T/K(X) the compact set

fl>(4 Π X) can be covered by a finite number of pairwise disjoint

nonempty compact subsets Qλ9...,Qq of πx(X), each having diameter less

than \/(j + 1). Let 7?z denote the preimage of Qt inT(i = 1,... ,#).

Step 2. Decomposing A into cells. Let Γθ denote a triangulation of dA.

Choose a PL collar neighborhood (dA) X [0,1] on 84 in 4 (which is

empty in casey = 1 and Γhas no boundary) disjoint from URι9 with 94

corresponding to 34 X {0}. The product Td X [0,1] provides a cell-de-

composition of the collar, and it extends to a PL cell-decomposition 7^ of

4 . Shortening the collar and subdividing both Td and 4 minus the collar,

where necessary, we may assume that each of the cells Dl9... ,DS of TA as

well as each of their images in T/K(X) has diameter less than l/(j + 1),

that each of the cells Dl9...9Ds misses at least one of the R.9s9 and that at

least q of the cells in TA miss each of R^ R2,... ,Rq (most conveniently,

these cells can be chosen to lie in TA X [0,1] unless j — 2 and T has no

boundary).

Step 3. Pairing the cells with parts of Rr Π X. Because of these last

assumptions, to each ft-cell Z), of TA we can associate some set Rr(i) so that

Rr(ι) Π Dι — 0 and so that each Rr is associated with some Dι E 7 .̂ The

hypothesis that πx( X) is a Cantor set means that each Rr can be fractured

into exactly the same number of pairwise disjoint nonempty

K( Z)-saturated closed sets as the number of «-cells Z), of TA for which
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Rr(ι) — Rr. In order to simplify notation, we shall assume that the

association of the «-cells of 7^ with the sets i? r, pairing Rr{ι) and Di9 is a

bijection.

Step 4. Connecting D{ to Rrυr Since dim X < n — 2, for / = 1,... 9s

we can thread an arc ai in πx(lnt A — IntZ),) through the points of

πx(Rr(ι) Π X) so that α, Π ^(Z),-) is an endpoint of α, in ^(3/),- — X)

and α/ meets no point of πx(X — i? r ( / )). Let β, = ^ ( α , ) . After slight

general position adjustments of /?,- — X, we can assume that βt Π βm = 0

whenever/ ^ m.

S/ep 5. Defining Al9...9As. Note that there is a \/(j + l)-retraction

of ^(2?,- U βt U i? r ( z )) = πx(Dt) U α, to ai9 sending ^x(Di) to an end-

point. Determine a fine simplicial subdivision Tλ of 7^ such that the sets

βλ U Rr{λy.. .,iβ5 U Rr(s) have pairwise disjoint connected simplicial

neighborhoods N[,. ..9N^9 respectively, in Int A so close to the core sets

j8, U Rr(i) that ^ ( D , U N[) admits a l / ( j + l)-map to α7 and that no

Dm E 7^ is contained in or separated by any Nf. If Γ2 is a/?th barycentric

subdivision of Tx for sufficiently large />, then the sets iV = st(iV/, Γ2) will

possess the same properties but will be PL w-manifolds. The set At is

defined as (Dι U Nt) — Um^iNm, and it is also a PL ^-manifold (/ =

1,...,5).

This completes the inductive specification of the defining sequence §.

The three conditions of Inductive Hypothesis (j + 1) can be verified

directly by inspection of this construction. The only item warranting

special mention concerns (a), namely, that At Π dA — Dt Π dA, which has

diameter < \/(j + 1) according to Step 2.

As discussed in §1 (cf. [CD, Theorem 1]), S is a defining sequence for

an upper semicontinuous decomposition G of T. Clearly, Bd § Π X — 0.

Moreover, by the remark in §1, each point of T/G has arbitrarily small

neighborhoods with frontiers in the image of Bd §, which is naturally

homeomorphic to Bd §, showing T/G to have dimension equal to either

n — 1 or n.

In order to see that the other conclusions of the Main Theorem hold,

one can use the connectedness of elements of ^ ^ and Condition (c) of the

Inductive Hypothesis to show that to each component Y of X there exists

a unique Aj E C!JIL/ containing Y, thereby establishing

y c Π ^ - C Π st2(j>, 91L,) E G, for each;/ E Y.
J j

On the other hand, given g E G, one can name t ^ g and then produce

AJ E <U\Lj such that A} C st(ί, 91t7) and Aj = P r e ^ y + 1 (j = 1,2,...); one
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can use Condition (c) again to show that ΓΊ y Ay contains a component of

X and, of course, Π/A/ C g. Finally, the 1-dimensionality and cell-like-

ness of πx(g) follows directly (as below) from Condition (b) of the

Inductive Hypothesis in case g E G misses Bd §; in the other case, when

g = Πi st(/, 91,) where t E dAf and A' E <ΰtm (see the remark in §1), for

j > m and each A E 91L7 containing t, there exists a (\/j)-mapfA of πx(A)

to an arc α^. The various arcs aA can be wedged at the points fAπx(t) to

form a contractible 1-complex Γ, and πx(g) can be (2//)-mapped to Γ by

the natural compilation of them's (restricted). Thus, πx(g) is a treelike

continuum, which is another way of saying that it is cell-like and 1-dimen-

sional.

REMARK. The assumption that dim X < n — 2 is more restrictive than

necessary but it permits a significantly simpler proof. We state, leaving the

interested reader to perform the not entirely trivial modifications to the

proof, that it suffices to assume that, for each open connected subset

U C T with Fr U Π X = 0 , the set U ~ X is also connected (of course,

continuing to assume that X is a subset of the interior of T and πx( X) is a

Cantor set).

4. The preservation of shape properties. The elements of the de-

composition constructed in the preceding section will possess certain of

the shape properties of the components of the compactum X. Singled out

in what follows are several properties, including those with which we shall

be subsequently concerned. The first result is quite general; the forward

implication is due to McMillan [Mc^; Theorem 1] assuming only that/is a

continuous surjection while the reverse implication is due to Dydak [DJ.

A compactum C is nearly \-movable if for some (and hence for every)

embedding of C in an ANR X, the following holds: for each neighbor-

hood U of C in X there exists another neighborhood V of C in X, with

V C I/, such that "V nearly 1-moves toward C in U", meaning that for

every loop /: dB2 -* V and for every neighborhood W of C in X, there

exists a finite collection of pairwise disjoint disks {Bt} in Int B2 and an

extension Foΐfto

F:(B2- U lntBl9 ( J dBf) -> ([/, W).

PROPOSITION. 4.1 {McMillan, Dydak). Let f: X -* Y be a map between

compact spaces with each point inverse f~ι(y) nearly l-movable. Then X is

nearly X-moυable if and only if Y is nearly l-movable.
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Recall that a compact subset Z of an ANR T is said to have Property

UVk provided for each neighborhood U of Z there is a neighborhood V of

Z such that each map of the j-sphere (j = 0 ,1 , . . . ,/c) into V extends to a

map of the (j' + l)-ball into U.

PROPOSITION 4.2. Suppose X is a compact subset of a finite dimensional

ANR Γ, π: T -» T/K(X) is the decomposition map for the decomposition

K( X) into points and the components of X, and g is a compact subset of T

withπ(g) I'dimensional and cell-like and 7τ~ιτr(g) = g. Then:

(1) g has Property UVk if and only if each component of X contained in

g has Property UVk.

(2) g is cell-like if and only if each component of X contained in g is

cell-like.

(3) g is strongly Zp-acyclic if and only if each component of X contained

in g is strongly Zp-acyclic.

Proof. Each of the reverse implications is known with that in (3)

following from the Vietoris-Begle Mapping Theorem [Be], with that in (2)

contained in [Sh] or [K], and with that in (1) contained in [Mo]. We shall

prove the forward implication in (1); a similar argument establishes (3)

while (2) follows from (1) and the finite dimensionality of g.

Choose a pointy E π(g) and let £/be a neighborhood of π~\y). The

O-dimensionality of π(X) and the 1-dimensionality of ττ(g) imply the

existence of a compact 0-dimensional set A in g — X separating π~ι(y)

from g — U; explicitly, g — A is expressed as the union of mutually

separated sets E and F containing ττ~λ(y) and g — U, respectively.

Name disjoint open subsets WE and WF containing E and F, respec-

tively, with WE C U such that Cl WE Π Cl WF C A. Furthermore, use the

fact that A is 0-dimensional to name an open set WA9 with A C WA C

C\WA C U — π~\y)9 such that each component of WA is contractible in

U. Because g satisfies Property UVk by hypothesis, there is a neighbor-

hood V of g such that any map of a y-sphere (j = 0 ,1 , . . . ,k) into V

extends to a map of the (j + l)-ball into WE U WA U WF. Let V = V -

C\{WA U WF).

Let/denote a map of they-sphere SJ into V(l <j< k). It extends to

a map/of the (j + l)-ball BJ+] into WE U WA U WF. In order to excise

its image from the part outside U9f~
ι(C\ WF) can be separated from SJ by

a finite collection of connected locally flat y-manifolds {/z} in f~[(WA)

bounding pairwise disjoint connected (j + l)-manifolds {Dz} in Int BJ + \

and the choice of WA can be used to redefine the map / on each /),,



300 R. J. DAVERMAN AND J. J. WALSH

sending it into U. Upon reassembly, one has a map F of BJ+1 into

f(BJ+ι - U A ) U t / C (WEU WA) U ί/C ϊ/.

In case A: = 0, replacing F b y the component of F containing T Γ " 1 ^ ) , we

have as well that maps of 0-spheres in V extend to maps of 1-cells into U.

5. The preservation of ANR's. The purpose of this brief section is

to emphasize a somewhat neglected fact, which provides a mild condition

under which a Z-acyclic decomposition of an ANR yields another ANR.

THEOREM 1. (Dydak, Hurewicz.) Suppose G is a Z-acyclic decomposi-

tion of an ANR X into nearly \-movable compacta, and suppose that X/G is

finite dimensional. Then X/G is an ANR.

Proof. The Vietoris-Begle Mapping Theorem [Be], coupled with the

hypothesis that elements of G are Z-acyclic, implies that X/G is homo-

logically locally /c-connected (as measured by Cech homology) over Z for

each integer k > 0. According to a result of Dydak [Όv Theorem 1], the

hypothesis that elements of G are nearly 1-movable implies that X/G is

LC\ Work of Hurewicz [H] (cf. [D2, Theorem 3.2]) then implies that X/G

is LCk for each k >: 0. Finally, the finite dimensionality of X/G yields

that X/G is an ANR.

COROLLARY 5.2. // G is a Z-acyclic decomposition of an n-manifold M

into nearly λ-moυable compacta and if M/G is finite dimensional, then

M/G is a generalized n-manifold.

REMARK 1. If G is a Z-acyclic decomposition of a finite dimensional

space X, must X/G be finite dimensional? This turns out to be equivalent

to the question of whether cell-like maps can raise dimension [E2]

REMARK 2. If G is a Z-acyclic decomposition of an ANR X such that

X/G is an ANR, must the elements of G be nearly 1-movable? It seems

reasonable to believe they must be. In case G has just a single nondegener-

ate element, Shrikhande [Sk] has shown it to be nearly 1-movable.

6. Several examples.

EXAMPLE 1. Suppose T is a compact PL π-manifold, n > 3. There

exists a defining sequence S for a Z-acyclic (hence, Z^-acyclic for all

p > 0) upper semicontinuous decomposition G of T such that no g E G is
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cell-like and T/G fails to be an ANR. In fact, at each point T/G fails to
be locally 1-connected.

Construction, Let ξ denote the strongly Z-acyclic but not cell-like
continuum (£ fails to have Property UVλ) described by Case-Chamberlin
[CC]. The product X of £ with a Cantor set can be regarded as a subset of
Int Γ, since X is 1-dimensional. Let τrx\ T -> T/K( X) denote the natural
map, with the notation set forth in the statement of the Main Theorem.

There is a decomposition G satisfying the conclusions of the Main
Theorem. In particular we have a diagram

t "Λ τ/κ(x)

T/G

and it follows from conclusions (1) and (3) that π = π ° ττχl is a well-de-
fined cell-like map.

The decomposition G is Z-acyclic if and only if π is a Z-acyclic map,
which necessarily holds because π is expressed as the composition of two
Z-acyclic maps. However, no element of G can be cell-like (or have
Property f/K1), for otherwise conclusion (1) of Proposition 4.2 (with
conclusion (3) of the Main Theorem) would force a component £ X point
of X in g (guaranteed by conclusion (2) of the Main Theorem) to have
Property 1-ί/F, which runs contrary to properties of £.

If T/G were locally 1-connected at some point π(g), then Theorem 3
of [Mc2] would show that g has Property UVλ. Hence, T/G fails to be an
ANR.

EXAMPLE 2. Suppose p is a prime and T is a compact PL ^-manifold,
n > 3. There exists a defining sequence § for a Z^-acyclic upper semicon-
tinuous decomposition G of T such that no g E G is strongly Z-acyclic
and T/G fails to be an ANR (at each point T/G fails to be locally
1-connected).

Construction. Proceed exactly as in the construction of Example 1,
only use the /7-adic solenoid in place of the Case-Chamberlin continuum ξ.
That solenoid is strongly Z^-acyclic but not strongly Z-acyclic. Conclusion
(3) of Proposition 4.2 can be used to establish that no g E G can be
strongly Z-acyclic, for otherwise a subset of g homeomorphic to that
solenoid would be strongly Z-acyclic as well.
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The next examples display a sharp contrast to McMillan's result

[Mc2] that the elements of a Z-acyclic decomposition of S3 whose

associated decomposition space is an ANR are necessarily cell-like.

EXAMPLE 3. Suppose T is a compact PL λz-manifold, n > 4. There

exists a defining sequence § for a Z-acyclic (hence, Z^-acyclic for all

p > 0) upper semicontinuous decomposition G such that T/G is an ANR

but no g G G is cell-like.

Construction. For « > 5, consider any PL homology (n — 2)-cell H (to

prevent ambiguity, H is a compact, Z-acyclic (^ — 2)-manifold) that is

not simply connected. Let X be the image of any embedding in T of the

product of H with a Cantor set. There is such an embedding since the

homology w-cell H* = H X [0,1] X [0,1] embeds in Sn (this holds essen-

tially because πx(H*) is generated by the image of πλ(dH*)9 so the union

of H* and a contractible ^-manifold bounded by 3//*, attached together

along 3//*, is a homotopy π-sphere.)

The construction of G proceeds as in the construction of Example 1.

No element g E G can be cell-like, for that would force a component Y of

X in g to be cell-like, in contradiction to Y = H being a noncontractible

ANR.

Since H is an ANR, it is nearly 1-movable and condition (3) of the

Main Theorem and Proposition 4.1 insure that each g E G is nearly

1-movable. By Condition (4) of the Main Theorem, T/G is finite dimen-

sional. Hence, Theorem 5.1 establishes that T/G is an ANR.

In dimension n — 4, we start with a PL homology 3-cell H which is

not simply connected such that H X [0,1] embeds in S4 (the examples of

Mazur [Ma] have this property since each is the boundary of a contract-

ible 4-manifold whose double is homeomorphic to S4). Choose a 2-dimen-

sional subpolyhedron P of H to which H collapses, and set X equal to the

image of an imbedding in T of the product P X [0, 1].
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