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ENUMERATION OF SELF-DUAL CONFIGURATIONS

E. M. PALMER AND R. W. ROBINSON

A variety of combinatorial structures are self-dual in the sense that
opposite elements have opposite properties. We provide a general enu-
meration theorem for these which has a number of interesting applica-
tions including the enumeration of self-dual boolean functions and 2-col-
orings of the vertices of polyhedra in which opposite vertices have
different colors. Our method involves a modification of Pόlya's enumera-
tion theorem.

Introduction. Suppose that each of the twenty vertices of a dodeca-
hedron is given one of two colors, say black or white. Then there are the
following three enumeration problems that arise for these 2-colored con-
figurations:

(1) What is the number of 2-colorings with an equal number of points
of each color?

(2) What is the number of self-complementary 2-colorings, in which
the configuration is unchanged on interchanging the colors?

(3) What is the number of self-dual 2-colorings, in which opposite
points have different colors?

Note that we always regard two such colorings as equivalent if one
can be brought into coincidence with the other by a rotation or reflection
of the dodecahedron.

The answer to the first question, namely 1648, can be obtained by
applying Pόlya's enumeration theorem [12] to the cycle index of the
automorphism group of the dodecahedron. The number of self-comple-
mentary colorings is 140 and this can be calculated using the approach of
Read [13] in determining the number of self-complementary graphs.
Finally, the number of self-dual colorings is 20, and this latter invariant
can be computed using the modification of Pόlya's theorem presented in
this paper. Our approach is reminiscent of the enumeration of orientations
of a graph [5, p. 128] where the appropriate permutation group is
expressed in terms of two sets of variables. The resulting enumeration
theorem can be used in a variety of interesting situations. We present
applications to necklaces, polyhedra, and boolean functions.

Enumeration Theorem for Self-Dual Configurations

In this section we introduce our notation, provide a brief review of
Pόlya's enumeration theorem [12] and conclude with our modification for
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self-dual configurations. The presentation is virtually self-contained but a
more substantial background for the theory including proofs can be found
in the book Graphical Enumeration [5].

We consider the functions from X to Y and a permutation group A
with object set X. Then two functions/ and g are A-equivalent if there is a
permutation a and A such that/(αx) — g(x) for all x in X. For the sake
of simplicity we initially consider the important special case that Y is a 2
element set, e.g. Y — {0,1}. Statements of the results for general Y are
given at the end of the section.

An example is provided by taking as X the set of 6 vertices of the
octahedron, while A is the octahedral group of order 48 and Y is the set
{0,1} of two colors, zero for white and 1 for black. Then each function
represents a coloring of the vertices and the Λ-equivalence classes corre-
spond to the colorings in which the vertices are no longer distinguished by
their labels.

Pόlya's theorem can be used to enumerate these colorings with the
number of white points as an enumeration parameter. The enumeration
makes use of the cycle index, denoted by Z(A), of the permutation group A.
For each permutation a in A, and each positive integer /c, \etjk(a) be the
number of cycles of length k in the disjoint cycle decomposition of α.
Then Z(A) is the polynomial in the variables α,, a2, α 3 , . . . defined by

For example, the cycle index of the octahedral group acting on the 6
vertices of the octahedron is

+ la\a\ + %a\ + 6a\)

(a\ + 6a2a4 + 3a*a2 + Sa6

THEOREM 1. (Pόlya) The number of A-equiυalence classes of functions
/: X -> {0,1), where \f'λ{\) |— r, is the coefficient of zr in the polynomial
obtained from Z(A) by substituting 1 + zk for each variable ak\ symbolically
this polynomial is Z(A,\ + z).

On applying this result to our example we obtain

1 + z + 2z2 + 2z3 + 2z4 + z5 + z6
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as the enumerator of 2-colorings of the vertices of the octahedron. The
coefficient of zr is the number of 2-colorings with r black vertices and
6 — r white vertices. The middle coefficient is the number of colorings
with an equal number of vertices of each color. The two colorings with 3
points of each color are displayed in Figure 1.

FIGURE 1. The colorings of the octahedron with 3 points of each color.

Now suppose that involutions on X and Y are given. Each is denoted
by an asterisk and we assume that the following commutative law is
satisfied by all a in A and x in X:

In our example, where X is the set of vertices of the octahedron, we
shall consider the involution which interchanges opposite vertices of X
and the one that interchanges the two colors in Y.

The complement f of the function/is defined by

for all x. A function is self-complementary if it is ^4-equivalent to its
complement. Each of the two colorings of the octahedron in Figure 1 is
seen to be self-complementary.

Next we state the theorem for enumerating self-complementary func-
tions with range Y — (0,1} and the transposition on Y as its involution.

THEOREM 2. The number of A-equivalence classes of self-complementary
functions is obtained by setting the variables ak in the cycle index of A equal
to 0 if k is odd and 2 if k is even; symbolically this number is
Z(Λ;0,2,0,2,...).

This result follows from de Bruijn's generalization of Pόlya's theorem
[2, p. 179] and was used by Read to count self-complementary graphs and
digraphs [13]. It appears that the result was known to Redfield, as
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evidenced by an example in his paper [14, p. 443]. The basic idea has been
extended by de Bruijn to an arbitrary number of colors which are
interchangeable under some fixed permutation [3], thus permitting the
enumeration of those functions which are left in the same equivalence
class by this permutation.

The dualf* of the function/is defined by

for all x. In our example, the dual of a coloring of the octahedron is
obtained by assigning to each vertex the color of the opposite vertex.

A function/is self-dual if

for all x. Thus, in the example, a coloring is self-dual if opposite points
have opposite colors. Hence the first octahedron in Figure 1 is self-dual
while the second is not. Note that, as in this example, whenever the
involution on X is also an element of A, self-dual functions are also
self-complementary.

The problem of enumerating A -equivalence classes of self-dual func-
tions can be handled by introducing a modification of the cycle index of A
which keeps track of the cycles in the permutations which mix elements c
of X with x*. Consider any permutation a in A and let c = (xxx2 * * * **)
be one of the cycles in its disjoint cycle decomposition. It follows from the
commutativity of * with a that c* = (x*x* * * x*) is another such cycle
called the dual of c. If c — c*, it is self-dual. We denote by Z*(A; sk,t%)
that modification of Z(A) in which the variables sk correspond to the
self-dual cycles of k elements, while t\ corresponds to a pair of different
dual cycles.

THEOREM 3. The number of A-equiυalence classes of self-dual functions

f: X -» {0,1}, with transposition as the involution on (0,1}, is obtained from

Z*(A\ sk9tl) by setting sk = 0 and t\ — 2 for all k\ symbolically this

number is Z*(A; 0,2).

In our example we find this modified cycle index to be

+ (si + 6s2s4 + 3φ2 + 8ί6 + 6ήt\)}.

On setting sk = 0 and t\ = 2 for all k we obtain the number 1. The single
self-dual coloring of the octahedron is the first graph in Figure 1.
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The proof consists of a straightforward application of Burnside's
Lemma [5, p. 38]. The group A is represented as acting on the self-dual
functions from X to Y. For each a in A its representation a' is defined by

for all x in X and all self-dual functions /. It is easily checked that a'f is
also self-dual. The A -equivalence classes of self-dual functions are just the
orbits of self-dual functions determined by this representation of A. On
applying Burnside's Lemma we have the result that the number of these
orbits is

ά\ Σ N{a)

where N(a) is the number of self-dual functions left fixed by a'. We now
express N(a) in terms of the cycle decomposition of a.

Suppose/is self-dual and is fixed by α', i.e. a'f — /. Then/(αx) = f{x)
for all x and so / must be constant on the elements of each cycle of a. In
particular, if x is an element of a self-dual cycle of α, so is x* and hence
f(x) = /(%*). On the other hand, since/is self-dual, we have/(x*) = f(x)*
by definition. It follows that/(;c) =f(x)*, contrary to the fact that the
involution * on Y has no fixed points. Therefore N( a) — 0 whenever a has
any self-dual cycles.

Now consider a dual pair of cycles c and c* of α. There are exactly
two ways in which a self-dual function/can be constant on these cycles:
either/sends the elements of c to 0 and those of c* to 1 or vice versa.

For each k — 1,2,3,..., let uk be the number of self-dual cycles in a
of length k while υk is the number of dual pairs of cycles of length k. The
observations made above prove that

N(a) = Π 0M*2ϋ*.
k

Here we use the convention that a0 — 1 even when a — 0. On summing
this expression for N(ά) over all a and dividing by \A\ we have the
number of orbits of self-dual functions expressed symbolically as
Z*(Λ;0,2). D

In a more general context we need not require Y — {0,1}. Suppose
instead that the * operation on Y consists of m transpositions and n fixed
points, so that the preceding theorems correspond to the case m — 1,
n = 0. Then Theorems 1, 2, and 3 are generalized as follows.
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THEOREM Γ. The number of A-equivalence classes of functions f: X -» Y
with equal numbers of colors from each dual pair in Y is the constant term in

THEOREM 2'. The number of A-equivalence classes of self-complemen-
tary functions is

Z(A; «, n + 2m, n, n + 2m,...).

THEOREM 3'. The number of A-equiυalence classes of self-dual functions
is

Z*{A;n,n + 2m).

Theorems Γ, T and 3' can be proved in much the same way as
Theorems 1, 2, and 3.

Applications

The enumeration theorems for self-dual configurations can be used to
count a variety of interesting structures. We shall discuss the particular
cases of necklaces, polyhedra, and boolean functions.

1. Necklaces. We count 2-colored necklaces with n — 2m beads in
which opposite beads have different colors. When n = 10, there are four
such self-dual necklaces and they are displayed in the next figure:

FIGURE 2. The four self-dual 2-colored necklaces of 10 beads

The duality involution on the beads of a necklace is given by a 180°
rotation. Of course the involution on the colors is the transposition.

Necklaces of n — 2m beads can be enumerated by applying Pόlya's
theorem to the dihedral group D2m on n objects. Similarly Theorem 3 can
be applied once Z*(D2m) is known. For the cyclic group C2 m, the
modified cycle index is

(i) z*{c2m, sk, tl) = j-2 <p{k)tl""k + j^2
2\k\m 2k\m
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where φ denotes the Euler totient function. This formula follows quickly
from the observations that cycles in Clm are self-dual if and only if they
have even length.

For the dihedral group we have

(2) Z*(D 2 w; sk9 tl) = \z*{C2m, sk, t2

k)

It follows from Theorem 3 that on setting t\ — 2 and sk — 0 for all k
in the latter expression, we obtain the number of self-dual, 2-colored
necklaces on n = 2m beads. On carrying out the substitution, this number
can be written

4 m 2\k\m

where [x\ is the greatest integer in x. The numerical values of this sum for
2 < n < 20 are presented in Table 1. Also included in the table for
purposes of comparison are the corresponding values for necklaces with
equal numbers of black and white beads, and for necklaces which are
self-complementary under the interchange of black and white. The former
is found by Theorem 1 to be the coefficient of xm in

Z{D2mΛ+xΛ+x\...)

which can be put more explicitly as

\[2[m/2\
Am

By Theorem 2 one finds that the number of self-complementary
2-colored necklaces is

Z(D2m,0,2,0,2,...),

which simplifies to
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2w

2

4

6

8

10

12

14

16

18

20

self-dual

1

1

2

2

4

5

9

12

23

34

self-complementary

1

2

3

6

10

20

37

74

143

284

m beads of each color

1

2

3

8

16

50

133

440

1387

4752

TABLE 1. 2-colorednecklaces with 2m beads.

The numbers of self-dual colorings of necklaces are closely related to

two other sequences. A tournament is locally transitive if for each point υ

the subtournament induced by the points adjacent from v is transitive as

well as the subtournament induced by the points adjacent to v. Brouwer

[1] has enumerated these by showing that they correspond to certain shift

registers [4, p. 172]. In our notation, the numbers of locally transitive

tournaments of order m is Z*(C2 m; 0,2), i.e. self-dual 2-colorings of

necklaces in which reflection is not permitted.

2. Polyhedra. Next we consider the problem of coloring with two

colors the lattice points which are solutions of the equation x2 + y2 + z2

< m s o that opposite points have different colors. It is easily seen that this

problem as well as many others similar to it, can be handled by Theorem

3. The main difficulty then is to calculate the cycle indexes of the groups

involved and to express them in the two variables sk and tk. The various

configurations enumerated correspond in solid state chemistry to arrange-

ments of point charges having zero electric field gradient and are used in

the study of quadrupole splitting in the Mόssbauer spectra of certain ionic

crystals [8].

First we shall classify the integer solutions of x2 + y2 + z2 = m. If

(a, b, c) is a solution, then the opposite or dual vertex (-a, -b, -c) is also a

solution. When m = 1, there are exactly 6 solutions, namely (1,0,0),

(0,1,0), (0,0,1), (-1,0,0), (0,-1,0), and (0,0,-1), and these solutions

constitute the vertices of the octahedron. Such solutions which have two

coordinates equal to zero, we call type I solutions. There are five others

and each has associated with it a different polyhedron. These are listed in

Table 2. The rotations and reflections of the sphere which permute the
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ype

I

II

III

IV

V

VI

Polyhedron

octahedron
cuboctahedron
cube
truncated
octahedron
truncated
cube
truncated
cuboctahedron

Number of
Vertices

6

12

8

24

24

48

Typical
Vertex

(α,0,0)
(a,a,0)
(a, a, a)
(a,b,0)

(a, a, b)

{a, b, c)

TABLE 2. The six types of polyhedra whose vertices

are solutions of x1 + y2 + z2 = m.

solutions of one type form a transitive representation of the octahedral
group of order 48. It is easy to calculate directly all the terms in the cycle
indexes of these representations and we have collected this information in
Table 3. Recall that the variables sk correspond to self-dual cycles in
which k/2 opposite pairs of vertices are permuted, while tl refers to a pair
of cycles, each permuting the k opposite vertices of the other. Note that
type I solutions, which form the vertices of a regular octahedron, give rise
to the cycle index which was taken as an example for the enumeration
theorem for self-dual configurations. The type III solutions form a cube
and the corresponding cycle index terms in Table 3 agree with the cycle
index formula worked out for boolean functions of three arguments in the
next section.

Number of

permutations 1

I t\

II t\2

III if

iv t24

V t24

VI tf

6

s*U
tl
s\Λ
tί
t\2

rotations
3

s\t\

t\

4t\

A2

tf

8

tl
tt
tM

Ί
4
A6

6

s2t\

s2ήt4

2

s\t\

A2

siA°

tf

1

si
si
s\2

4 2

sf

reflections
6

s2s4

SAt\

tl
s2A
ύ
t\2

3

s2tt
t4t4

t\

t\t\

A2

tf

8

si
s2s6

st
st
si

6

t2t2

f t2t4

A2

tΐA°
tf

TABLE 3. Cycle structures of six types of representation
of the octahedral group.

Here are some of the details which explain the entries in this table for
the cube.

Column 1. The identity rotation. All 8 vertices are fixed so the entry is
8
ltl
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Column 2. There are 2 rotations of order 4 about each of the 3 axes
through opposite faces. Hence there are 6 permutations. Each has 2 cycles
of order 4.

Column 3. The 3 squares of the rotations of order 4. Each has 4 cycles
of order 2.

Column 4. There are two rotations of order 3 about each of 4 axes
through opposite pairs of points. The two opposite points on this axis are
fixed and the others move in cycles of order 3. Hence these 8 permuta-
tions are each of type t\t\.

Column 5. There is one rotation of order 2 about each of 6 pairs of
opposite edges. The vertices are all moved in cycles of order 2 but two of
these are self-dual. Hence there are 6 permutations described by s\t\.

The next 5 columns for reflections are determined by the rotations
followed by the reflection which interchanges opposite vertices. Then the
number of permutations is the same as for the corresponding number of
rotations. A few simple observations facilitate the compilation of the
entries for the reflections. They can all be obtained from the correspond-
ing rotation entry by the following rules:

(a) ίf*+i always becomes s2(2λ:+i) a n c * vice versa.
(b) t\k and s4k are always unchanged.
To show how the enumeration theorem for self-dual configurations

can be applied to count self-dual colorings, consider the solutions of
x2 + y2 + z2 < 4. There are two solutions of type I, and one each of
types II and III. Using Table 3, we can express the contributing portion of
the cycle index of the octahedral group represented on all the vertices of
these solutions as follows:

48

It can be seen that we have simply multiplied the entries in each column
including the multiplicity 2 of the type I solution and omitted all terms
involving sk. According to Theorem 3, setting t\ — 2 in this expression
gives the number of self-dual colorings, namely 1376.

The cycle index formulas in Table 3 were also used in [8] with
Theorems 2 and 3 to calculate the numbers of self-dual and self-comple-
mentary configurations for each individual type of solution. These results
are found in Table 4. We have also included all numbers of configurations
with an equal number of vertices of each color. As in the case of
necklaces, these are found from Theorem 1 to be the middle coefficient of
Z(A91 + z) for each choice of A.
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Octahedron

Cubactahedron

Cube

Truncated

octahedron

Truncated

cube

Truncated

cuboctohedron

Dodecahedron

Icosadodecahedron

Icosahedron

1

3

3

120

114

351120

20

280

4

lementar

2

8

6

1384

v m vertices
of each color

2

30

6

57168

1128

6642048

140

280

10

TABLE 4. 2-colored polyhedra.

56846

671826149514

1648

1295266

18

Rotations

identity

opposite faces

fixed (6 pairs)

opposite vertices

fixed (10 pairs)

opposite edges

fixed (15 pairs)

Reflections

The reflection that

interchanges opposite

vertices is followed by

each of the rotations

above

Number of

Permutations

1

24

20

15

Vertices Edges Faces

24

20

15

,20

tt

.2.6

.10

s2s6

.4.8
l \ l 2

,30

tψ

,2 2.12

.15

.12
l2

.12

Φ!

.2.4

si

φ\

TABLE 5. Cycle structures of the group of the dodecahedron.
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The same theoretical approach applies to coloring the vertices of the
dodecahedron and many other related polyhedra. In Table 5 we display
the terms in the cycle index of three representations of the group of the
dodecahedron. Once the terms for the rotations are found, the same rules
(a) and (b) above are used to find the entries for the reflections. The dual
of the dodecahedron is the icosahedron and so the last column in Table 5
gives its cycle index. The line graph of the dodecahedron is called the
icosadodecahedron and its cycle index is given by the terms in the
preceding column of the table.

The cycle indexes for many other related configurations were calcu-
lated in [8] and used to compute the numbers of self-dual colorings,
self-complementary colorings and colorings with an equal number of
vertices of each color. Table 4 includes the results for the three configura-
tions of Table 5.

3. Boolean functions. Pόlya [11] calculated the number of boolean
functions composed of n statements for n < 4 by observing that the
problem was equivalent to counting the number of ways of coloring the
vertices of the rc-cube Qn with two different colors, say black and white. A
complete treatment of this enumeration problem requires a formula for
the cycle index of the group of Qn. Slepian [15] found a formula for this
cycle index, which can also be obtained by applying an algorithm of
Harrison and High [7]. A compact general formula, found in the book
Graphical Enumeration [5, p. 112] and verified in [9], can also be used and
we shall follow the notation and definitions of the latter two references in
the present discussion.

A boolean function is self-dual if it is unchanged when all of its n
statements and the proposition itself are negated. Therefore these corre-
spond to 2-colorings of the vertices of the fl-cube in which opposite
vertices have different colors. To count these using Theorem 3 we require
the cycle index of the group of the «-cube to be expressed in two sets of
variables: sk for self-dual cycles and t2

k for pairs of dual cycles.
The group Qn of the π-cube can be viewed as the exponentiation

group [S^]5". The object set of this exponentiation group is the set of
functions from (1,...,«} into (0,1}; Sn acts on the domain, and S2 acts
independently on the image of each domain element. The duality involu-
tion is obtained from the identity on the domain and the transposition on
each image. That is, if/: ( 1 , . . . ,n] -> (0,1} then/*(x) = 1 — f(x) for all
1 < x < n. It is easy to see that this involution is in the center oΐ[S2]

s\
According to [9], in order to find the ordinary cycle index of [S2]

Sn we
first substitute the operators Im for each variable am in the cycle index
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Z(Sn) of the symmetric group. To obtain Z([S2]
S") we let Z(Sn; Il9... ,/J

act on Z(S2) as required in Theorem 2 of [9].
For the n-cube these operators are defined by

\k=\ I r=\

where

1 ^ / r

and the second sum is over all divisors k of w/(m,w). Here (ra,w)
denotes the greatest common divisor of m and w. However, we wish to
express the right side of (3) in terms of the two variables sr and tr. That is,
each a}; must be expressed as s?rt°r

9 with ir = ur + vr.
Suppose a = (12 m\ a cycle of length m, and (α, r) is a typical

element of [S2]
Sm. Then, following the notation of our paper [9] on the

exponentiation group, we have

β = τ(m)τ(m — 1) τ(2)τ(l),

and, of course, since β E S2 we can write β = (0)(l) or β = (01). In order
to calculate ur we shall provide a formula for the number of self-dual
transpositions in the powers of (α, T). This will enable us to find ur for
any r. We start by establishing the pattern of dual elements in a self-dual
cycle under fairly general conditions.

LEMMA. Let * be an involution on Xwith no fixed points and let a be a
permutation of X which commutes with *. Then in any self-dual cycle of
length i of α, / is even and aι/2 maps each element to its dual.

Proof. Let us say that for some x E l w e have a'x — x and akx Φ x
for 1 < k < i. If the cycle containing x is self-dual then amx — x* for
some 1 < m < /. In fact m < i since * has no fixed points. Now

2m _ w γ * _ ((ymχ\* — Y** m x

so i divides 2m. Thus Ϊ = 2m. D

Now it is convenient to denote the number of self-dual cycles of
length r in (α, τ)p by wr(α, τ) p . By the Lemma we have the relation

(4) u2(a, r) = 2/&w2A:(a> τ)>

where the sum is over all k \ r such that r/k is odd. This is because the rth
power of a self-dual 2&-cycle is the product of k self-dual transpositions
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just if r is an odd multiple of k. By Mόbius inversion, (4) can be solved for
ulr(a, T) explicitly:

(5) «2,(«,r )=7Σ'

with the same sum over k as in (4).
It only remains to establish the numbers of self-dual transpositions,

which are given by

(6) H2(«,T)' =

2<™./0-i if β = (o)(i) and m/ (m, p) is even, or

if β = (01) and [m, p]/ (m, p) is odd,

0 otherwise.

Here [m, p] denotes the least common multiple of m and p. Recall that
a = (12 " - m) and β is the product of the m coordinate permutations
from S2. On the cartesian product {l,2,...,m} X {0,1} we see that if
β = (0)(l) then (a, T) induces two cycles of the form

«l,0><2,ε 2) ( m , ε m »

and its dual

« l , l ) ( 2 , ε * ) •••{m, ε * ) )

Now we seek to partition the cartesian product into two functional subsets
B and C which are interchanged by (α, T). We can start by choosing B or
C to contain the pair (1,0). If we say that < 1,0) E 2?, then the partition is
determined by (1,1) E C and the requirement that in each cycle the pairs
must alternate between those in B and those in C. This is not possible if n
is odd. If n is even, the partition is possible in only one way since it
doesn't matter which set is called B and which is called C If we now
consider the /?th power of (α, T), each of the original m-cycles of pairs is
broken into the product of (p, m) disjoint cycles, each of length m/( /?, m).
On choosing a partition into functional sets B and C interchanged by
(a9τ)p

9 each dual pair of cycles presents the same binary choice that was
available when p — 1. Thus there are 2{m'p)~{ different self-dual trans-
positions in (α, T) if m/(p, m) is even, since the two functional sets can
have their names interchanged without affecting the transposition. Of
course there are none if m/(p, m) is odd.

On the other hand, if β = (01) then (α, T) induces the single cycle
«l,0><2,e2) --(m, ε m )( l , 1><2, ε*) (m, ε*». A partition into two
functional subsets B, C which are interchanged by (α, T) would have
alternate pairs of the cycle in B and alternate pairs in C We can specify
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that one pair be in either B or C. Suppose (1,0) E B. Then (1,1) E C and
so m must be odd. If m is odd there is just one such division with
(1,0) E B. As interchanging the names of B and C makes no difference to
the self-dual transposition determined, there is just one such induced by
(α, T) in this case if m is odd and none if m is even. Now the^th power of
(α, T) permutes our set of pairs in (2m, p) disjoint cycles, each of length
2m/(2m, p). If the lengths are odd then typical dual pairs (1,0) and
(1.1) fall into different cycles of (a,τ)p. This was seen in the case
β = (0)(l) to require even length cycles in order to allow a partition into a
self-dual functional subsets. Accordingly the latter is only possible if
2m/(2m, p) is even, when dual pairs like (1,0) and (1,1) fall into the
same cycle. Then, as seen for/? = 1, the half cycle length m/(2m, p) must
be odd. This implies that m and p are divisible by equal powers of 2, or
equivalently [m, p]/(m9 p) is odd. In that case the number (2m, p) of
cycles can be written (m, p). In choosing a partition into functional
subsets B, C to be duals interchanged by (a9τ)p, each of these cycles
offers a binary choice. However in the end the names of B and C can be
interchanged, and so there are exactly 2(m'p)~ι self-dual transpositions in
(α, τ)p. That concludes the justification of (6).

We can now use equations (3), (5) and (6) to express Im(af) and
Im(a2), i.e., β = (0)(l) and (01) respectively, in terms of sk and tk. For
small values of m the results are summarized in Table 6.

m

1

2

3

4

5

6

ij

t\

ήs

Φ
t2t

Φ

[ah

2

2
3

ls2s4

6
5
2t8s s

S2

s4

s2s6

si
s s3

s s5

TABLE 6. Values of Im.

In [9] it was shown that the cycle index of the exponentiation group
[B]A is found by forming cartesian products of the polynomials Im(Z(B)).
We need to adapt the cartesian product to distinguish self-dual cycles
from others. The product w X Vj (where u and v are each either t or s)
represents an /-cycle and ay-cycle of functions on disjoint domains. We
obtain a function on the union of these domains by choosing one function
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from each cycle. Evidently such a function is mapped back to itself only

after [i, j] steps. There are ij pairs of functions and hence ij/[i9 j] = (i, j)

disjoint cycles of functions on the union domain. For a cycle to be

self-dual we know from the Lemma that any function in it must be

mapped to its dual in exactly [/', j]/2 steps. This requires each portion to

be mapped to its dual, i.e., each of u and v must be s and [/, j]/2 must be

an odd multiple of both i/2 and j/2. This is equivalent to [/, j]/(i9 j)

being odd since i and 7 must be even when u and υ are s. Thus for a pair

of variables we can express the cartesian product rule as

\s[lιj] if u = v = s and [1, 7 ] / (/, 7) is odd,
( 7 ) M : X l ? : = , . λ

y [*<#> otherwise.

In taking the cartesian product between pairs of monomials, each

monomial represents functions on a certain domain being permuted in

cycles of various lengths. Thus for functions on the unions of these two

domains we should multiply together the contributions on all pairs of

cycles, one from each monomial. This is accomplished by specifying that

X is distributive over in all monomials. As usual the specificiation of

the carteisan product is completed by requiring that it be bilinear with

respect to the addition and scalar multiplication in the ring of formal

power series in tλ9 sl912, s29. - over the rationals.

We shall now illustrate the whole procecdure by calculating the

number of self-dual boolean functions composed of 3 statements, or what

is the same, the number of ways of coloring the vertices of the cube Q3

with two colors so that opposite vertices have different colors. The

automorphism group of Q3 is the exponentiation group [S2]
S3 and the

cycle index of this group is calculated step by step in our article [9]. Here

we shall introduce the deviations which allow us to express it with the two

sets of variables sk and tk. First we substitute the operator Im for each

variable am in Z(S3):

(8) Z(S3; /„ I2, 73) = ^ ( Z , 3 + 3/,/2 + 21,).

These terms in (8) act on Z(S2) as follows:

(9) /,3(Z(S2)) = /,(Z(52)) X 7,(Z(5 2)) X /,(Z(S2)),

7,/2(Z(S2)) - J,(Z(S2)) X I2(Z(S2)).

From the definitions of the operators Im it follows that

(10) U { ) )
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The right side of (10) can be expressed for m = 1,2 and 3 in terms of sk

and tk by using Table 6. The result is

From (9) and the definition of the cartesian product X for polynomi-
als we have

7,3(Z(S2)) = \

= τ({ΐ x {ι x

) X \{t] + s 2 ) X \ { ή + s 2 )

3/. 2 X /,2 X s 2 + 3tf Xs2X s2 + s2X s2X s 2 )

X X X

Having determined the images of Z(S2) under /j3

? /,/2 and 73 we have
by linearity its image under Z(S3; Ix, I2, 73):

3!2 •{'? I2t2

4 //

Note that this formula agrees pleasantly with the values in Table 3 for the
cube which were derived in rather a different manner. It now follows from
Theorem 3 that we can calculate the number of self-dual colorings of Q3

by setting t\ = 2 and sk — 0 for each fc in this expression. The result is 3
and each of these configurations is shown in Figure 3.

FIGURE 3. The self-dual colorings of the cube.
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The number of self-complementary colorings is obtained by setting tk —
sk = 0 whenever k is odd and tk = sk = 2 when k is even. Here the result
is 6 and the reader can quickly find the three in addition to those already
depicted in Figure 3.

We have used this method to calculate the number of self-comple-
mentary and self-dual boolean functions for n = 1 through 6 statements
and our results appear in Table 7. For comparison the number of boolean
functions taking each of the two range values equally often (evenly
valued) is included.

n
1

2

3

4

5

6

self-dual
1

1

3

7

83

109950

self-complementary
1

2

6

42

4094

98210640

evenly valued*
1

2

6

74

169112

39785643746726

TABLE 7. Boolean functions.

The numbers of self-complementary colorings of the ft-cube for « < 6
also appear in [6].

Related Problems

The enumeration theorems given earlier can be modified so as to
count achiral configurations when the domain group A is supplied with a
homomorphism onto S2. The configurations which are simultaneously
achiral and self-dual can be enumerated in this manner, and these results
will appear elsewhere. However in general it appears quite difficult to
enumerate those that are simultaneously achiral and self-complementary.
The only case in which the latter has been accomplished is that of
self-complementary achiral necklaces [10].
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