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HARMONIC ANALYSIS ON CENTRAL
HYPERGROUPS AND

INDUCED REPRESENTATIONS

WlLFRIED H A U E N S C H I L D , EBERHARD K A N I U T H AND AJAY KUMAR

Various results from harmonic analysis and representation theory
for central locally compact groups and compact hypergroups, including
the Plancherel theorem and the Inversion formula, as well as the finite
dimensionality of irreducible representations, are extended to central
hypergroups. Moreover, representations induced from unitary represen-
tations of the maximal subgroup of a hypergroup are defined and studied.

Introduction. A locally compact hypergroup K is called central or a
Z-hypergroup if K/Z is compact, where Z is the intersection of the
maximal subgroup G(K) and the center of K. Such hypergroups arise
naturally as double coset spaces of compact subgroups of Z-groups (i.e.
locally compact groups with cocompact center). In this paper we are
primarily concerned with harmonic analysis on Z-hypergroups and their
continuous irreducible representations. The basic development of harmonic
analysis for hypergroups can be found in [7, 13, 16, 17, 19]. A survey of
the subject appeared in [15].

In §1 we prove Weil's formula and show that for arbitrary hyper-
groups K, unitary representations of subgroups of G(K) can be induced
up to K. These induced representations turn out to be very important for
our investigations. Furthermore, we discuss the extension of positive
definite functions. In §2 we confine our attention to representations of
Z-hypergroups K. After establishing the orthogonality relations and show-
ing that irreducible representations are finite dimensional, we prove that
the canonical map r: K -> Z is a local homeomorphism and decompose
the induced representations t/λ, λ E: Z. Moreover, an analogue of the
character formula is given. At last we apply some of our previous results
to show that if K is a commutative hypergroup and H a subhypergroup
such that H/H Π G(K) is compact, then characters of H extend to
characters of K. §3 contains the Plancherel theorem and the Inversion
formula for central hypergroups. Finally, in §4 we briefly study represen-
tations of double coset hypergroups and present an illustrating example.

The results of §§2 and 3 generalize the corresponding ones for central
groups [8, 9, 10] on the one hand, and most of the results of [16] and [19]
for hypergroups on the other hand. We should mention that several proofs
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are similar to those in the papers just mentioned, while some of our proofs
are even simpler than those given previously in the group case.

Notation and preliminaries. Throughout this paper K will denote a
locally compact hypergroup (same as 'convo' in [13]). The notation used is
that of [13] except 8X denotes the point mass at x, x -> x the involution on
K, and for a Borel function f on K and x G K, xf denotes the left
translation

[

and/, the right translation

fx(y) = f(y * x) = //(*) dδy * δx(z).

A representation p of K in the Hubert space Hp = H(ρ) is a mapping
of K into the algebra of bounded operators on Hp such that the following
hold:

(i) x -* (π(x)u, v) is bounded and continuous on Kfor all w, υ G Hp,
(ii) (π(δx * 8y)u, υ)~ (π(x)π(y)u, v) and T7(JC) = π(x)* for all x, y

w, v e /ίp.

is a representation of ίΓ in the sense of [13, 11.3] in case π is non-degener-
ate, since by [13, 2.2.D] it follows that μ -* (ττ(μ)w, f) is continuous on
M*(K). The notion of equivalence between representations is that of
unitary equivalence.

We shall denote the maximal subgroup of K by

and the center of K by

Z(K) = {x G K\ δx* δy = δy* δxfoτ aΆy e K}.

For a subhypergroup H of K, K/H = {x ~ x * H; x E K) is equipped
with the quotient topology, so that the natural projection/?: K -> K/H is
open and continuous. For a normal subgroup H of K (i.e. a subgroup of
G(K) which is normal in the sense that x * H = H * x for all x G K) it is
easy to show that AT/7f is a locally compact hypergroup under the
convolution defined by

f(έ)dδt*δf(z)=(fop(Z)dδχ*δy(z)
K/H JK
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for all / G Cm(K/H) and JC, y G K. For x G AT and ί G G(ΛΓ), we will
write xί for the unique element^ satisfying δx * δ, = 8y.

If # has a left Haar measure, then L\K) denotes the convolution
algebra. For / G L\K), x -*xf is continuous from K into L\K) [13,
2.2.B, 5AH]. It is easy to show that L\K) has a bounded approximate
identity {uέ; i E 1} C C^(K) such that \\ui\\ι = 1. Hence we can form the
enveloping C*-algebra C*(K) of L\K) [5, §2.7]. Since the left regular
representation of L\K)jmtf(K) is faithful, the map L\K) -> C*( if) is
injective. Finally, K = C*(K) denotes the dual space of K (resp. C*{K))
endowed with the usual topology [5, §3.1].

1. Weil's formula and induced representations. We didn't succeed
in defining induced representations in the case of an arbitrary locally
compact hypergroup K and a closed subhypergroup H of K. But the main
purpose of this section is to show that when H is a subgroup of K, then
unitary representations of H can be induced up to K. This will be done by
modifying Blattner's proof [1] for the group case.

LEMMA 1.1. Let H be a subhypergroup of K possessing a left Haar
measure. Forf G Qo(iΌ> ^et THj on K/H be defined by

THf(x)=ff(x*t)dt.

Then TH is a linear mapping from Cm{K) onto Cm(K/H). Moreover,

Proof. TH{f) is well defined since x -> jHf{x * 0 dt is constant on
left cosets of H. Let x G K and ε > 0 be given, and choose a compact
neighborhood Uo of x in ΛΓ. Then C = (Uo * supp/) Π // is a compact
subset of H with finite measure M. Because of the continuity of (x, y) ->
/(x * j>) there exists a neighborhood {/ C C/o of x such that 1^/— */!!«, <
M~λε for all y E.U. On the other hand, / ( j * t) ψ 0 for some t G H
implies (UQ * t) Π s u p p / ^ 0, hence ί G (C/o * supp/) Π H = C [13,
Lemma 4.l.B]. Thus

i y ( j ) - THf(*)\<:fjf(y* t)~f(x*t)\dt <ε

for all j G [ / . Clearly, TH is a linear mapping into C^{K/H). Given
g G Qo(-K/iϊ), the existence of a n / G Qo(ίΓ), such that 7 ^ / = g, can
be proved as in the group case [14, Ch. 3, §4.2].

Let if be a subhypergroup of K and suppose that K and H possess
left Haar measures with modular functions Δ^ and Δ^, respectively. Set
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δ(t) = ΔH(ty/2Aκ(t)~ι/2 for t G H. We arejooking for solutions φ, in

particular strictly positive, continuous ones, of the following equation:

(q) φ(x * 0 = δ(tfφ(x) for x G K, t G H.

The proof the following lemma is a slight modification of the one in

[14, Ch. 8, §1.7].

LEMMA 1.2. Let H be a subhypergroup of K. There exists a non-negative

continuous function F on K satisfying

(i) For every x G K there is at G H such that F(x * /) > 0.

(ii) IfWQK is compact, then F coincides onW*H with some function

in Cω(K).

Proof, Let x E K and U be an open relatively compact neighborhood

of e in K. Let C = (U U U)~~ and L = U~=1 C
n\ then L is an open

subhypergroup of K. Replacing Ω by U9 Gx by L * x and Kr by Cr * x in

the proof of [14, Ch. 8, §1.7], we obtain a subset Yx of L * x such that

{£/*>>*#; y G Yx} is an open locally finite covering of L * x * //.

Consider the double cosets L * x * H, x G K. They are open and pairwise

disjoint or equal (the proof in [13, (14.1.A)] does not use L = H). Choose

A C K such that K— Uχ(ΞAL * x * H is a, disjoint union, and set Y =

UxSAYx. Then {U * x * H\ x G Y] is an open, locally finite covering of

K. Take now any/G C ^ ^ ) such that/(e) > 0 and apply the above to

U= {x£K; f(x) > 0}. Since U * y = \x G ϋΓ; / / c) > 0} [13, (4.2.D)],

T7 = ΣyξΞYfγ defines a continuous function on K. If W C K is compact,

then there are only finitely many y G Y such that W * H Π t / * j ΐ £ 0 ,

so (ii) holds. Finally, if x G .ST, then Λ: G [/ * 7 * H for some j G 7 , hence

x * H Π U* y Φ 0 , and this implies F(x * /) ^f$(x * 0 > 0 for some

ί G//.

COROLLARY 1.3. Let H be α subhypergroup of K and suppose that K and

H admit left Haar measures. Then there exists a strictly positive, continuous

function q on K satisfying equation (q).

Proof. Set #(JC) = Δκ(x)~]fHF(x * t) dt.

REMARK. We will always choose q = 1 in case Δ^ = ΔK\H.

Let's now turn to the case where H is a subgroup of K and consider

any locally integrable function φ: K -> C satisfying (q); we shall call such
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a function a g-function. Then for/, g E C00(K) the following holds:

f f(x)THg(x)φ(x) dx = ί ί f(x)g(xt)φ(x) dt dx

= [ [Δκ(ϊ)f(xt)g(x)φ(xt)dxdt
JHJK

= ί [ ΔH(t)f(xt)g(x)φ(x)dtdx
JKJH

= fτHf(x)g(x)φ(x)dx.

We would like to mention that a similar computation holds in case H
is a subhypergroup of K, H and JKT being unimodular and φ = 1.

Now given/we can choose g E Cω(K) such that THg\p(s\xppf) = 1;
then 7^/ = 0 implies fκf(x)ψ(x) dx = 0. Thus by

[
a linear functional on Cω(K/H) can be defined. For φ > 0 we get a
positive (possibly unbounded) measure on K/H. If φ is an arbitrary
g-function, then so is | Φ | hence μφ is a complex measure in case μ^ is
bounded.

Applying this to the function q of Corollary 1.3 we get

LEMMA 1.4. Let K be a hyper group with left Haar measure and H a
subgroup of K. Then a positive measure dq on K/H can be chosen such that

f lίf(xt)dt)dqx=ίf(x)q(x)dx
JK/H\JH I JK

REMARK 1.5. Given K, H and q we can consider TH q: Cω(K) ->
CQ^K/H) defined by THqf'= TH{f q~~λ). THq again is a linear surjec-
tion, by the aid of which we may write WeiΓs formula in the following
way:

ί THJ(x)dqx= ίf(x)dx for/eQo(tf).
JK/H JK

As in [14, Ch. 3, 4.5 and Ch. 8, 2.3] we can extend these two formulas
to integrable functions: (i) For / E L\K) there is a null set Ao in K/H
such that / -> f(xt) E L\H) for every x £p~\A0). (ii) The function
x -> JHf(χί) dt, defined almost everywhere, is in I)(K/H).
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(iii) / [ίf(xt)dt)dqx=[f(x)q(x)dx.
JK/H\JH I JK
JK/H\

If Δ^ = Δ^| H holds, we take q — 1 and write dx instead of dqx. Now we

give a generalization of [13, Theorem 5.1.D] which will be important later

on.

LEMMA 1.6. Let K and H be as in Lemma 1.4 with ΔH = ΔK\H.

Assume further that f and g are continuous functions on K with compact

support modulo H such that

f(zt)g(xt) =f(z)g(x) forx, z G Kandt G H.

Then for y G K the functions x -»f(y * x)g(x) and x -»f(x)g(y * x) are

constant on cosets of H, and

f f(y *x)g(x)dx = f f(x)g(y *x)dx.
JK/H JK/H

Proof. Both functions are supported by some compact subset C of

K/H. Using [13, Theorem 5.1.D] and selecting h G C00(K) such that

THh\C= 1, we get

f f(x)g(y*x)dx= f(h f)(x)g(y*x)dx
JK/H JK

= f(h-f)(y* x)g(x) dx = f f (h • f)(xt)g{xt) dt dx
JK JK/HJH

= ί f [h(zt)f(zt)g(xt)dδy*δx(z)dtdx
JK/HJKJH

= ( [ ί[h(zt)dt)f(z)g(x)dδy*δx(z)dx
JK/HJ

P-'(C)\JH I

[
K/H

REMARK 1.7. It follows from the remark preceding Lemma 1.4 that

1.4-1.6 are valid also for a subhypergroup H possessing a left Haar

measure provided that H and K are unimodular.

Our next lemma deals with the relationship of left Haar measures on

K and K/H.
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LEMMA 1.8. Let H be a normal subgroup of K. Then K admits a left
Haar measure such that ΔH = ΔK\H iff K/H has a Haar measure.

Proof. If dx is a left Haar measure on K such that Δ^ = ΔK\H, then 1
is a ^-function and a left Haar measure on K/H can be defined by
JK/H THf(x) dx — j κ f(x) dx. Conversely, if dx exists, then / -»
fκ/HTHf(x) dx defines a Haar measure on K. Moreover, ΔK\H = ΔH

since

Δκ(s) f f(x) dx = f f(xs) dx = f j f{xts)dtdx

= ΔH{s)fj{x)dx

for all/ G Cm{K) and s G H.

Now we are going to define induced representations. So we are given
a hypergroup K with left Haar measure, a subgroup H of K and a unitary
representation p of H in a Hubert space Hp. Let SΓ/ denote the linear space
of all mappings ξ: K -* Hp having the following properties:

(i) I is Bourbaki measurable,
(ii) ξ(xt) = δ(t)p(t)ξ(x) for x G #and / G if.

(iii) x -»||£(;c)[|2 is locally integrable.
(ii) forces x -» (£(x), η(x)>, £, η G ̂ P, to be a ^-function, since p is

unitary. Therefore a positive measure μ̂  on K/H can be defined by
Hξ(THf) = jκf(x)U(x)\\2dx, feC^K). Clearly, f = { { ε f ; μ€ is
b o u n d e d } is a l inear s u b s p a c e of $*', a n d ( , η G f de f ine a c o m p l e x
measure μ€>η on A/fΓ by μ^(THf) = fκf(x)(ξ(x), η(x)) dx. We obtain
a positive semidefinite hermitian form (ξ, η)= μ^η(K/H) on φ, and
setting 91 = {ξ G ̂  μ̂  = 0}, one proves as in [1, Lemma 1 and Proposi-
tion 1] that % = f/9l is a Hubert space. Following [1] denote by % the
subspace of 9r/ consisting of continuous mappings having compact sup-
port modulo H. If the support of ξ G % is contained in p~~ι(C) for some
compact subset C of J^/iϊ, then supp μξ C C, hence ξ G f . For/ G C00(ΛΓ)

and v G Hp set

e(f,v)(x) = ί δ(t)-ιf(xt)P(t)vΛ.
JH

Then ε is a bilinear mapping from C ^ A) X # p into %, and for ξ = ε( /, v)
and η G ̂  suppμ^, as well as suppμ^, is contained in/?(supp/). Since
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H is a group, one gets, as in [1],

/
Jκ

Thus we obtain [1, Lemma 2]:
(i) | |ε(/,t;) | |<Λ s u p p / | |/ | | 0 0 | | t; | | , where Λ s u p p / depends only on the

compact set supp /.
(ii) If D is total in Hp, then D = {ε(/, υ); f G Cω(K\ v G D) is total

i n X
The difficulties arising from the fact that K is not necessarily a group,

are extracted in the following

LEMMA 1.9. (i) yε(f, v) = ε(yf9 v)forf G Cω(Kl v G Hp andy G K.
(ii) Ifξe% such that yξ G %, then | μ | | < | | | | | .

/. (i) Put C = supp/ and choose g G Cooί^) such that THg\
p(y*C)=\. Since, for every i j E f , supp /iM / > f ? ) η and suppμ ε ( / ϋ ) η are
contained inp( y * C), we get

f { ) { y ( f , ) ( ) , V ( ) ) dx

)[ [δ(t)-'f(zt)(p(t)v,η(x))dtdδy*δx(z)dx

= jjr(x)Jj>(tΓ\f(xt)(p(t)υ,η(x))dtdx

= fg(x)(ε(yf, v)(x), v(x)) dx = {ε{yf, v),η).
K

[ [

f
K

(ii) Let £ e % such that yξ E ^ 0 and select g e C ^ ί ) so that
THg\sυppμye = 1 and HΓ ĝH^ = 1. Then

***{fj δx(zy,v(ΞHp,\\v\\<\

1/2

</||ξ(z)|| dδy * 8x(z) < ί/| | |(z)| |2 dδy * δ,l

hence

Mil2 = [g(χ)\\yξ(χ)\\2 dx < ίg(χ)[ fu(z)\\2 dδy * δjz) I dxjκ

)||2 dx = f THLg)(x) dμξ(x).
K JK/H
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Though H is not necessarily normal, we nevertheless have

Thus we obtain

Now we are ready to define the induced representation, ξ -+fξ is a

bounded linear mapping from a dense subspace of % into itself, namely

the subspace generated by the ε(/, v)9 v E Hp, f E C^K). Hence it can

be extended to a bounded linear operator Up(y) on %.

PROPOSITION 1.10. Up: y -> Up(y) is a continuous representation of K

in %.

Proof. Given ε(/, υ), η E % and x E K, choose a compact neighbor-

hood Uo of x. Then | (υ, τj(z))|< M < oo for every z E ί/0 * supp/ and a

suitable M. Now there exists a neighborhood £/ C Uo of x such that

11// -*/H < e/Λ^ for all j E [/. Thus

\((U>(y)-U'(x))ε(f9v)9η)\

jf/U) -ί/(^)ll * I («, η(z)>| & < ε.
K

By Lemma 1.9(ii) we have \\Up{y)\\ < 1. For ε(/, v), η E X and x, y e ^

we have

f ff
JκJκ

= f ff(z*w)(v,η(w)) dwdδx*δy(z)
JκJκ y

^ / ) , o), η),/ ( J * x *
AT

i.e. t/p(x * j;) = Up(x)Up(y). Similarly, one verifies

(Up(x)ε(f, v), e(g, «)) - (ε(/, υ), ί/p(x)ε(g, 11)),

i.e. Up(x) = t/p(x)*. (Concerning the associativity see [13, §3].)

We call Up the representation induced by p and henceforth denote

by H(UP).
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We next give Blattner's description of the induced representation in
terms of positive definite measures [2] in our setting. This will turn out to
be very useful.

Let μ be a positive definite measure on the hypergroup K, i.e.
μ{f* • /) 2> 0 for all / E Cm(K\ and set Nμ={f(Ξ Cω(K); μ(f* * /)
= 0}. Then Nμ is a left ideal and left translation invariant, and Lμ =
Cω(K)/Nμ is a pre-Hilbert space with inner product (fμ,gμ) =
μ(g* * / ) . Every x 6 ί defines a linear operator Vμ(x) in Lμ by Vμ(x)fμ

— (zf)μ- We assume now that K has a left Haar measure and denote by
P{K) the set of all bounded continuous positive definite functions on K.
Let φ E P(K\ Nφ = {/ E C^K); </**/ , φ) = 0} and Hφ be the com-
pletion of Cm(K)/Nφ with respect to the inner product (/φ, gφ> =
( g * * / 5 φ ) J φ - / + ^ φ Φ defines a cyclic representation πφ of K on Hφ

such that πφ(x)fψ = (%f)φ and φ(x) = (7rφ(;c)£>, U) for some cyclic vec-
tor v. Moreover, πφ is irreducible iff φ is indecomposable (same as
irreducible in [13, §11]).

Suppose now that H is a subgroup of K and define R: C^K) -»
by R(f)(t) = δ(0/(0 Φ defines a measure μφ on ΛΓ by μφ(/) =

Given g, / E Coo(A'), choose A E C^(K) such that fHh(xt) dt = 1
for all Λ: E supp/ U supp g (Lemma 1.1). Using the fact that H C G(K),
by a lengthy, but straightforward, computation one verifies the following
formula:

μφ(f* * s) =j/h(χ)(jJiR(xf)(t)R(xg)(s)φ(H)dsdt)l dx.

(Compare the proof of [2, Theorem 1].) Thus μφ is positive definite. The
easiest way to show that x -> Vμ*(x) defines a representation of K, which
is in fact equivalent to ί/*"*, is now to show:

LEMMA 1.11. With the above assumptions and notations a linear map-
ping φ: Lμ* -> H(U^) can be defined by Φ(fμ*)(x) = R(xf)

ψ Φ is isomet-
ric and dense and satisfies φVμ*(x) = U7Γφ(x)φ for all i G l Hence
Vμ*(x) extends to a bounded linear operator on Hμ*, the completion of Lμ*,
and Vμψ: x -» Vμψ(x) is a representation of K and is equivalent to £/V

The proof is straightforward [2, Theorem 1] and follows from the
above equation. We say that K has small //-invariant neighborhoods
(K E [SIN]^) provided there exists a neighborhood basis 93 of e in K such
that tV—Vt for all / E H and V E 93. As in the group case, the above
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description of induced representations in terms of positive definite mea-
sures can now be used to prove extension results on positive definite
functions. In fact, the proofs of [11, Lemma 2.1 and Satz 2] carry over to
our situation and show the following

PROPOSITION 1.12. Let K be a hypergroup having a Haar measure, and
suppose that H is a closed subgroup of K such that K E [SIN]^. Then, given
any indecomposable γ E P(H), there exists an indecomposable φ E P(K)
such that φ \ H = γ. Consequently every irreducible representation of H is
equivalent to a subrepresentation of p\H for some irreducible representation
pofK.

A stronger extension result for commutative hypergroups will be
proved in §2.

2. Representations of central hypergroups. Recall that a locally
compact hypergroup K is called central or a Z-hypergroup if K/(Z(K) Π
G(K)) is compact. It follows from [13, 7.2.A] and Lemma 1.8 that such
hypergroups possess left Haar measures and are unimodular. In this
section K will always denote a central hypergroup unless otherwise stated
and Z a closed subgroup of G(K) Π Z(K) such that K/Z is compact. It
is easy to see then that K = CZ for some compact set C in K. Haar
measures on K, Z and K/Z will be normalized so that K/Z has measure
one and Weil's formula holds. The proof of the following proposition is
modelled after [8, §2, Proposition], but there are some difficulties arising
from the facts that x(fg) Φxfxg'm general and continuous representations
of K need not be unitary.

PROPOSITION 2.1. Let p be an irreducible representation of K. Then
(i) For each choice ofu, v9 u\ vf in Hp the function

x -+(p(x)u9v)(p(x)u', v')

is constant on cosets ofZ and defines a continuous function on K/Z.
(ii) To p corresponds a positive real number cp = fκ/z\(p(x)u> υ)\2 dx,

where u and v are any vectors of norm 1 in Hβ, and

f (p(x)u, v){p{x)u\v')dx = cp(u9 W)JΪ~ιS)
Jκ/z

for all w, v, u\ v' in Hp.

Proof. Since p is irreducible and unitary on Z, we have ρ(z) — λ(z)Ip

for z E Z, where |λ(z) |= 1. Hence the continuous function in (i) is
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constant on cosets of Z, and (i) follows. Consider

φ(u, v, u\ t/) = ί (p(x)u, υ)(p{x)u\υ')dx.
Jκ/z

For fixed «, u\ φ(w, u\ v9 v') can be represented by a bounded operator.
Specifically there exists a family Buu, of bounded operators on Hp such
that (BliM,(v'),v)=φ(u9v9u'9v').9 Lεt f(x) = (p(x)u9 v) and g(x)
— (p(x)u', t/).Then clearly/and g satisfy the hypothesis of Lemma 1.6.
Therefore

W),v)= ί (p(x)u,v)(p(y)*p(x)u',»')d*
Jκ/z

[ f(x)g(y*x)dx= ί f(y*x)g(x)dx
κ/z Jκ/z

/ (p(x)u, p(y)*v)(p(x)u'9v')d*
κ/z

for all y G K and u9 u\ v9 υ
r G Hp. Hence Buu,p(y) = p(j^)5M,M' for all

7 G # and u, u' G /fp, so that Buu, = β(u, u')ϊp, β(u, u') G C, by Schur's
Lemma. Now one easily verifies

φ(u, u', v, v') = φ(υ\ υ9 u\ u),

and this implies

β(u9u')(υ'9v)= β(v'9υ)(u9u').

It follows that β(v, υ) is constant on ||t>|| = 1. Denoting this constant by
cp9 we obtain

f (p(x)u9 v)(ρ(x)u'9 υ')dx = c (u9 u')(υ, υ').
Jκ/z

Finally, if \\u\\ = | |υ | | = 1, ur = u and υf = v9 we get

\(p(x)u,υ)\2dx.f
Recall that P(K) is the set of all bounded continuous positive definite

functions on an arbitrary hypergroup K. Moreover, let us denote by
P\K) the convex set of φ G P{K) such that φ(e) = HφĤ  = 1, and by
exP\K) the set of extreme points of P\K). It is easily seen that
\φ(y * x) - φ(x) |< 2(1 - Re ψ(y)) holds for φ G P\K) and x j G l
Using this fact one shows as in the group case [5, (13.5.2)] that on P\K)
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the weak * -topology of L°°(K) coincides with the topology of uniform

convergence on compact subsets of K. Moreover, the canonical mapping

φ -»ττφ from ex Pι(K) onto Kis open and continuous [5, (3.4.11)].

Returning now to Z-hypergroups, it is clear that cp does only depend

on the equivalence class of p.

LEMMA 2.2. The function p -> dp on K is continuous.

Proof. Let K = CZ, where C is compact, and let φ 0 E ex P\K) and

ε > 0 be given. Then by the above remarks,

V= {ττ φ ; φ E ex P 1 ^ ) such that |φ(;c) - φ o ( * ) | < efora l lx

is an open neighborhood of πψo in K. Since cπ — jK/Z\φ(x)\2 dx, it

follows that p -»dp is continuous.

THEOREM 2.3. //p w <zw irreducible representation of K, then p is finite

dimensional. Moreover, the dimension function p -> dD is locally bounded on

K.

Proof. Let {el9 e2,... ,en} be an orthonormal set in Hp. Then

( ) e u e i ) ^ d x < [ \\p(x)eι\\2 dx < 1
K/Zi=\ JK/Z

by Proposition 2.1. Hence /t < c~λ and therefore dp< c~ι. Since p -* cp is

continuous, p -> d is locally bounded.

If p = πψ G i^, φ E ex P'( Jf), then p(z) = φ(z)/ p for all z E Z and

φ IZ E Z. We therefore have a canonical mapping r: K -> Z defined by

πφ -» φ IZ. Clearly, r is continuous.

THEOREM 2.4. Let p and σ be irreducible representations of K such that
r(p) = r(σ).

(i) If p and σ are inequiυalent, then

I (p(x)u, v)(σ(x)u\ υ')dx — 0
'K/Z

for all u,υ E Hp and u\ υ' E Hσ.

(ii) If [ex>... ,ed } is an orthonormal basis of Hp, then

if i — k and j — /,
Jκ/zχ' '' J/ [0 otherwise.
J (p(x)el9ej)(p(x)ek9eι)dx=

K/Z
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Proof, (i) follows as in [8, Theorem 6.1] using Lemma 1.6 ap-
propriately, and (ii) is a consequence of Proposition 2.1.

LEMMA 2.5. For λ <Ξ Z, r~\λ) = supp Uλ.

Proof. Let TΓ = πφ G supp Uλ; then by [5, (3.4.4)] φ can be uniformly
approximated on compact subsets of K by positive definite functions
associated with Uλ. But <ί/λ(z)£, ξ) = λ(z)||£||2 for ξ G H(Uλ) and z G
Z, and this implies φ | Z = λ, i.e. πφ G r~λ(\). Conversely, if π — τrφ G
r - 1(A), then we show that (/**/, φ ) < μλ(/* * / ) , where μλ denotes the
positive definite measure on K defined by λ. Choose h G C^0(K) such
that Tzh—\. Then easy computations show

(f**f,φ)=[ [if (f(y)f(χ)φ(y * χ)h(χt)h(ys) dx dy) ds dt
JZJZ\JKJK I

= f f h(x)h(y)ψ(y * x) f J(t)λ(ή dt

= / |
κ I Jκ/z

2

dx dy

(see the discussion before Lemma 1.11). Thus the positive linear func-
tional/-* (/, φ) is majorized by the positive linear functional/ -» μ λ(/).
By [5, (2.5.1)] and Lemma 1.11, given η G H^, there exist an operator T
on Hn and ξ G Hπ such that

for all fGCω(K) and hence for all f G C*(K). This shows that
kernel Uλ C kernel 77φ, i.e. πφ G supp t/λ.

We should mention that the proof of the following theorem does not
require any structure theory and is much simpler than the one given in the
group case in [10, Theorem (1.4)].

THEOREM 2.6. The canonical map r: K -» Z is a local homeomorphism.

In particular, r is an open map and r~λ{\) is discrete for all λ (Ξ Z.

Proof. We first show that r is locally injective and r - 1 (λ) is discrete
for every λ G Z. Let πQ = πψQ G K, φ0 G ex Pι(K) and assume r is not
injective on every neighborhood of 7ΓO in K. By the earlier discussion and
[5, 3.4.11], the mapping φ -> ττφ as a mapping from ex P\K) onto K is
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open. Let A = CZ, C compact and Vn = {πφ; φ E exP^A), |φ(x) -

Ψo(x) K 1/Λ for all x E C}. Then Fπ is an open neighborhood of 7r0, and

there exist πn = ^ and pn = TΓ̂  in Vn such that r(πn) = r(pn) but πn=£ ρn.

Let φπ(x) = <*„(*)$„, {„> ( Λ > 0 ) and ψπ(χ) - (pn(x)ηn, ηn) (n > 1)

and set δ = / ^ / z | φo(^) |2 d* > 0. Then for sufficiently large n,

8
2 ''

by Theorem 2.4. Now if * = cz, c E C, z G Z, then the integrand is

—I ΦΛ(^) "" Ψ«(c) I— 2//ι. This is a contradiction.

It remains to show that r is open. For this notice that if E C Z and

λ G £ , then ker C/λ D ΠτG/Γker [/τ. In fact, if for / E C^AΓ) we define

ε λ ( / ) E i / ( ί / λ ) b y

fzf(yz)λ(z) dz9

then the set of all e λ (/),/ E C^A"), i s t o t a l i n H{Uλ), and we have

for φ,/,gGQo(A:). Hence <[/λ(φ)ελ(/), βλ(g)> is the limit of the

(C/T(φ)ετ(/), eτ(g)>, T E E, and the same holds for a E C*(A) instead

of φ E CQ^K) by continuity and density arguments.

Let now V C Abe open and set.4 = r~~\Z\r{V)). Then^4 is closed.

In fact, if ττ0 E A, then r(ττ0) E r(A) Qr(A) = ( Z \ r ( F ) ) , hence

ker £/^o)3 p | (ker[/τ;τEZ\KF)} = Π kerτr?

τrG/4

i.e. r'^riwo)) CA C K\V and τr0 E A. But ^ = r - ^ ^ ^ ) ) and A closed

implies r(yί) is closed by the same arguments.

PROPOSITION 2.7. H(Uλ) is a Hubert algebra for every λ £ Z.

Proof. H(UX) consists of all Bourbaki measurable functions/: K -» C

such that x -»|/(JC) P is integrable mdf(xt) = λ(7)/(x) for x E A, ί E Z.

Set # = i/(ί/λ), and let 4̂ denote the subspace of all continuous functions
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i n H. F o r / E A a n d g E H w e d e f i n e g* G H a n d fog^A b y g * ( x )

= g ( i ) a n d

Then ll/o g | | < | |/ | | . ||g||, andΛ becomes a Hubert algebra. Put φ = ε(φ, 1)
for φ E C00(iΓ); then for g E 4̂ we have

Φ°g(*) = ί φ ( * * .y)g(jθ<ί)> = ί [<p(x*yt)Ht)g(y)dtdyJκ/z Jκ/zJz

= ί [φ(χ* yt)g({ytf)dtdy= ίφ{χ* y)g{y)dy
Jκ/zJz Jκ

Choose φn E C00(iQ, n E N, such that ί7λ(φ«)g ^ g, i.e. g =
lim^^^ φn o g E v4 o A. Hence A ° 4̂ is dense in i/. Now g -> φ o g and
ί/λ(φ) are continuous mappings in H, so we obtain ψ ° g— Uλ(φ)g for
all g E i/ and φ E C00(K). Finally, by Lemma 1.6, we have /o g(χ) =
Iκ/zf(y)s(y * •*) 4v f°Γ all/, g E 4̂. Thus/->/° g can be extended to H
by setting /o g(x) = jκ/zf(y)g(y * x) J j f or / E H and g G l Again,
| |/o g\\ < ii/ii ||g||5 hence every/ E ^ is bounded, and /f is the maximal
Hubert algebra.

For every p G r - 1 ( λ ) = supp ί/λ we select an orthonormal basis
{ep...,ed) of Hp and define the coordinate functions p/y(x) =
(p(x)ez, e >, 1 < /, 7 ^ ί/p. Then ptJ E 4̂, the subspace of all continuous
functions in H(Uλ). If kp = c"1, then

is an orthonormal system in H(Uλ) (Theorem 2.4). Let LJ

p denote the
linear span of {ptj\ 1 < / < rfp}, 1 </ < J p .

PROPOSITION 2.8. 5 is an orthonormal basis for H(Uλ), i.e. H(Uλ) =
®{LJ

p; p<Ξr~\λ), l < / < r f p } . ί7λ w equivalent to the direct sum

Proof. First we observe that

PiM*y) = Σ P^
/ c = l
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Moreover, using Proposition 2.1 and denoting by ° the product in the
Hubert algebra H(Uλ) (see the proof of Proposition 2.7), we obtain

Define now Jp to be the linear span of {ρ/7; 1 < /, j < dp). Then Jp is a
right ideal in H(Uλ). In fact, for/ G H(Uλ) and x G K,

=JKZ

k

Next we claim that LJ

p is ί/^invariant and Uλ \ LJ

p is equivalent to p.
The equality

Uλ(χ)ρiJ{y) = pu(χ * y) = ΣPu(*)Pιj(y)

shows that Uλ{x)ρij G LJ

p. For the isomoφhism φ: LJ

p -> ίΓp defined by
Φ(ky2Pij) = e/?wehave

hence φUλ(x) = p(x)φ. Finally, let £ denote the orthogonal complement
of Θ {LJ

p\ p G ̂ ( λ ) , 1 <7 < rfp) and assume E φ 0. Then, since supp t/λ

is discrete (Theorem 2.6), there exists an irreducible subspace F oί E (see
[20, Theorem 1.7]). For a suitable p G r~1(λ), C/λ | JF is equivalent to p,
hence to Uλ\Lp. Let ψ be an intertwining operator and put

For φ G C Q ^ ^ ) we have

Φ o M. = c/*(φ)M;. = φ ( ( c / λ ( φ μ / 2

P ; 1 ) ) = Φ(Φ

On the other hand,

Φ ( P H ° P , I) = Φ(cpP<i) =cput.
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Choosing now φn E Cm(K) such that pu = lim φn, it follows that

u ° Pn) = ̂ P l imφ(φ w ° p π )

^ l i m φ π o M. = kι/2pu °ut^J9,

since /p is a right ideal. Thus « ( E f Π / p = 0, a contradiction. Hence

# ( t / λ ) = ®{LJ

p; p E r~ 1(λ), 1 <y < dp}, and this implies immediately

the assertion on Uλ.

It should be mentioned that the following theorem is proved in a

similar way as the character formula in [19, Theorem 2.15].

THEOREM 2.9. A continuous function h on K satisfies

h(y)h(z) — I h(x * y * x * z) dx and h(e) Φ 0

if and only if h(y) = c ptr p(y) for some p E K.

Proof. Applying Proposition 2.1, one shows as in the case of a

compact hypergroup that every function c p t rρ, p E K, satisfies the above

formula. Conversely, suppose h(e) Φ 0 and the given equation holds for

h. Then

h(y)h(t) - f h(x * yt * x)dx = h(yt)h(e)

for y E K, t E Z. In particular, λ(t) =h(e) h(t) defines a character on

Z. Since h(yt) = λ(t)h(y) for y E K and / E Z, for every p E supp Uλ

we can define a bounded operator Tp on Hp by

(Tpξ,η)=[ h(x)(p{x)ξ,η)dx, ξ,ηeHp.Jκ/z

AsO Φh E H(Uλ), there exists a p such that Tp φ 0. Now, by Lemma 1.6

(h(e)Tpξ,η)=f ί h(x*y*x)(p(y)ξ,η)dxdy
JK/ZJK/Z

= ί ί h(y*x)(p(x*y)ξ,η)dxdy,
JK/ZJK/Z
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and again using Lemma 1.6 repeatedly, it follows that

(p(a)h(e)Tpξ9η) = ί f h(y* x)(p(a * x)p(y)ξ9 η) dx dy
JK/ZJK/Z

= f ί h(y*a*x)(p(x)p(y)ξ,η) dy dx
JK/ZJK/Z

= ί [ h(x * y * x)(p(y)p(a)ξ9 η) dx dy
JK/ZJK/Z

= {h(e)Tpp(a)ξ,η).

T h e r e f o r e Tp i s a s c a l a r o p e r a t o r , Tp — alp. L e t {el9...9ed} b e a n
o r t h o n o r m a l b a s i s i n Hp. T h e n f o r z E K,

P

ah(z)d = h(z)Σ f Hy){p(y)ei> ei) dy
i=\JK/Z

— \ I h(x * y * x * z)tτp(y) dx dy
J Jf / "~7 J V~ / 7

is./ /L, I\/ ΔΊ

— I I h(y * z)trp(x * y * x) dx dy
Jκ/zJκ/z

od ( h{y*z)trp{y)dy
J If /Ύc
Jκ/z

p

Σ ί h(y)(p(y)p(z)eneι)dy
i=XJK/Z

Hence h(z) = cptrp(z), where p is the conjugate representation of p.

REMARK 2.10. If K is a commutative central hypergroup, then using
Lemma 1.6 and Theorem 2.4, it can easily be shown that every bounded
multiplicative continuous function χ: K -> C is hermitian, i.e. satisfies
X(*) =x(*) for all x G #(see [4]).

We conclude this section with a generalization of [16, Corollary 2.3
and Proposition 3.6].

THEOREM 2.11. Let K be a commutative hypergroup and H a subhyper-
group of K such that H/H Π G(K) is compact. Then every character of H
extends to a character of K.
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Proof. Let χ E H, F = H Π G(K) and λ = χ | F. We first claim that

if a E supp κU
λ

9 then α | F — λ. Assuming that a \ F φ λ, by the regular-

ity of L\F) there exists an/ E L\F) such that/(αJF) ^ 0 and/(λ) = 0.

It follows that κU\g * μf) = 0 for all g E C00(iΓ) since

(C/λ(g*f

Hence

0 — g* Mrί") ~ έ(«)/( α l^) for all g E

which contradicts f(a \ F) ¥^ 0.

We show next that if h E C^H) such that /ΓC/λ(g * μΛ) = 0 for all

g E C00(iO, then HU\h) - 0. It clearly suffices to show that

IF M0(Ψ * Λ)(0 ώ = 0 for all ψ E Cω(H). But this follows easily from

the assumption, since

0 =KU\g * μh)ξ(φ, l)(e) = Jfλ(/)[(φ * g) | i/ * *](/) dt

forallφ, g E Cooί^).

Let now Δ = {a E K\ a\F= λ); then by what we have verified

above

{ / e l W /ία) = 0 for alia E Δ} C { / 6 L W ; Uλ{f) = 0).

Assume χ ί Δ|fΓ and choose/ 6 C ^ ( ί ί ) such that TFf - 1 on

f(e) > 0. Then by the orthogonality relations

0= f a(x)χ(x)dx = f f a(xt)χ(xt)f(xt) dt dx
JH/F JH/FJF

= ί «( ^

for all a E Δ. Thus

for α E Δ and g E C ^ ίΓ), and therefore

κU
λ{g*μf.-) = 0 forallgEC

This shows HU\f- χ) = 0. But χ E supp/ /ί/
λ (Lemma 2.5), so

7//

a contradiction.
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3. Plancherel theorem and Inversion formula. Our proof of the
Plancherel theorem follows the lines of [9, Theorem 4.1]. But there seem to
be some gaps in the proof given in [9], one concerning the application of
Fubini's theorem on page 435. To be very careful, we include the follow-
ing

LEMMA 3.1. Forf E L\K) andλGZ defineeλ(f) onKby

eλ(f)(x) = p ^ X ) ifJ\ZeLι(Z),
[θ otherwise.

Then the function (x, λ) -» ελ(f)(x) on K X Z is measurable.

Proof. Notice first that for / E Qo(AΓ), εx(f) = </> 1) e H(Uλ) in
the notation of §1. Let / E L\K\ u E C&(K) and g=f*u. Then

xg\Z E L ](Z) for all x E # , and the mapping x -* xg\Z from Γ̂ into
L\Z) is continuous and bounded byll/HJIT̂ wU^ [14, Ch. 7, §3.3]. Hence
(x, λ) ->Λg|Z(λ) = ελ(g)(x) is continuous o n ί X Z .

Now/can be approximated by a sequence fn ~ f * un, unE: C^(K).
Thus, following [14, Ch. 3, §4.7] one shows the existence of a null set Af in
K/Z such that for every x <£p~\Af) the integrals jz\f(xt) - fn(xt)\dt
tend to zero. Hence ̂ (/J | Z converges to x / | Z in L\Z) for x ςέ p'\Af),
and z ? " 1 ^ ) is locally null by Weil's formula. Thus p~~x(Af) X Z is
locally null in K X Z, and on the complement we have ελ(/)(x) =
]imn^ελ(fn)(x). By [3, Ch. IV, §4, Theorem 2] (x, λ)-* cλ(/)(x) is
measurable.

THEOREM 3.2. (Plancherel formula). For f9gE: L\K) Π L 2(iO the
function λ -> Σ p e r - i ( λ ) fcptr(ρ(/)p(g)*) w in L ] (Z) and satisfies

kptr(p(f)p(g)*)dλ.

For /, g E L^ϋΓ) Π L2(K) we have X / | Z , Λ g | Z E L*(Z) Π
L2(Z) o u t s i d e / ? " ^ ) for some set A of measure zero in K/Z. So we can
apply the Plancherel formula for abelian locally compact groups to the
functions xf\ Z and xg \ Z:

(f>g)=f f At)xg(t)dtdx
JK/ZJZ
f f

JK/ZJZ

[ελ(f)(x)ελ(g)(x)dλdx
K/ZJZ
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Putting first f—g one can see that (x, λ) -» ελ(/)(x)ελ(g)(x) is in
L\K/Z X Z,dx X dλ), and Fubini's theorem applies:

(i) x -> ελ(/)(.x)ελ(g)(;c) is in L\K/Z) for almost every λ E Z;

(ii) λ -> /*/z ελ(/X*K(g)(*) <& i s i n ^ ( Z ) ; and
(iii) </, g> = / f /^ / zβλ(/)(x)βλ(g)(x) <foc dλ.

From (i) it follows that ελ(/) G H(Uλ) for almost all λ G Z . Let
λ G Z be such that ε λ(/), ελ(g) G #(f/ λ ). Then for the basis
{kx/1

Pij\ p G Γι(λ)9 1 < /,y < dp) of ^ ( ί / λ ) we have

( ) ) j J { ) { ) { { ) ) dtdx

Thus the following holds:

, eλ(g)>

= Σ Σ

= Σ Σ *

= Σ *ptr(p(/)p(g) ).

Now both assertions follow by means of (ii) and (iii).
We didn't succeed in proving that a Borel measure μ on K can be

defined by

μ(E) = (\EΠr-{(λ)\dλ.

Even in the case of a Z-group it is not clear at all whether λ ^>\E Γ) r~\λ)\
is measurable.

We are going to prove now the Inversion formula for linear combina-
tions of functions in L\K) Π P(K). We would like to mention at this
point that if K is a hypergroup such that K/G(K) is compact, then a
continuous positive definite function is easily seen to be bounded. In
particular, this holds for Z-hypergroups.

LEMMA 3.3. /// G L\K) Π P(K), then p(f) is a positive operator for
all pGK.
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Proof. Let λ denote the left regular representation of Lλ{K) in L2(K)
as well as its extension to C*{K). We have

, g)=f [g(χ)g(y)f(χ *y)dxdy>0
JKJK
f [

JKJK

for all g E Cm(K). Hence λ(/) > 0 and λ(/) = T*T for some Γ E
λ(C*(K)). Suppose we have already shown that λ is faithful on C*(K).
Then for p E K9

- P(λ-'(r r)) = pίλ-HΓW pίλ-HΓ)) ̂  o.

Let Z — Z(K) Π G(K), r: K -+ Z and φ = r(p). Since p is a subrepresen-
tation of ί/φ, it suffices to show that kernel λ C kernel Uφ, i.e. Uφ is
weakly contained in λ in the sense of [5, §3.4]. To this end, as in the group
case, one has to prove that every positive definite function x -»
(ί/ φ (*)£,£), ξ E H(Uφ), can be uniformly approximated on compact
subsets of K by sums of positive definite functions associated with λ. Of
course, £ can be assumed to be ε(g, 1) for some g E Cω(K). Choosing
h E C^(K) such that Tzh = 1, we have

Now, given a compact subset C of .fiΓ, there exist compact sets D in K
and E'mZ such that

Choosing suitable disjoint coverings D — Um

=]Vj, E = \Jr

ι=λWι and y. E
^ , / 7 e ^ and i j \

where | Wt\ denotes the Haar measure of Wt and χv the characteristic
function of Vp we conclude that (Uψ(x)ε(g, 1), ε(g, 1)> can be uniformly
approximated on C by 2 J= λ

THEOREM 3.4. (Inversion formula). For f G [L\K) Π P(K)] (the lin-
ear span ofL\K) Π P(K)) andx E K the function

λ - Σ Λptr(p(/)p(jc) )
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belongs to Lι(Z) and satisfies

Proof. Notice first that it follows from [13, 11.4.B] as in [5, (13.4.8)]
that translates of functions in L\K) Π P(K) belong to [L\K) Π P(K)].

Therefore (and for linearity reasons) we can confine ourselves to the
case/E L\K) Π P(K) and x = e. Choose un E C^(K) such that ||wΛ||
= 1 and | | /* un * w* — f\\x -» 0. Since / is continuous and H/H^ = f(e),
we can assume that

/ ( e ) > / * w π * i ι ί ( e ) and /(e) = lim / * un * u*(e).

A S < * / * M W E P(ίΓ), [12, (D. 39)] yields

0 < trp(w* * / * MΠ) < tr(p(/)p(wπ * u*))

< t r p ( / ) | | p ( ^ * O | | < trp(/) .

Moreover, | trp(g) |< c/pllgll! holds for g E L ] (^). We define now F and
Fπ on Z by

= Σ kptxp(f) and Fn(λ) = Σ kptrp(f*un*u*n).
f><Er~\λ) '

Let λ E Z such that F(λ) = oo. Then for M > 0 we find p,,... ,pw G
r~\\) so that ΣΓ=i kp tτp,(/) > M + 1. It follows that for some N E N,

2 A:P|trp f(/*Mπ* O > M for all /i > TV,
i = l

i.e. F Λ (λ) -> oo. If F ( λ ) < oo, then for ε > 0 there a r e p l 9 . . . , p m E r~\λ)

such that

Σ kptτp(f)<e.

On the other hand, there exists TV E N so that
m

2 * P i ( t r P l . ( / ) - t r P ι ( / un*u*))<ε
ι = l

for n>N; hence

— Σ kpiTP(f) + Σ ^p( t ΓP/(/) ~ t Γ P , ( / * Mn *

<2ε.
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Thus ^(λ) = lim Fn(λ). Setting Gn = mi{Fk; k > n}, we get 0 < Gn(λ) <
Fn(λ), Gπ(λ) -» F(λ) and, by Theorem 3.2,

/> π (λ) rfλ </> B (λ) dλ = </, «„* * un)Jz Jz

= f*un*un(e)<f(e).

[3, Ch. IV, §36, Theorem 5] now shows that F G L\Z) and

lim ίFn(λ) dλ = hm (Gn(λ)dλ = (F(λ)dλ.
Jz Jz Jz

Finally, we obtain

f(e) = lim/* un * u*(e) = Km fFπ(λ) dλ

4. Representations of double coset hypergroups and an example.
Let if be a compact subhypergroup of K with normalized Haar measure
mH. The the double coset space K//H is again a hypergroup with
convolution defined by

[
where i = HzH for z G K [13, §14]. Jewett [13, §14] describes the connec-
tion between representations of K and those of K//H by means of
positive definite functions. For irreducible representations we need a more
precise description.

For any representation π of AT, we will denote by π the corresponding
representation of K//H defined by

π(x) = tn{mH * δx * mH) for x G K.

LEMMA 4.1. Let K and H be as above. For π G K the restriction of °π to
its essential subspace K^ is irreducible, and in this way one obtains every

Proof. Notice first that π φ 0 yields ^(m^) φ 0 and ^(m^) is a
hermitian projection. The subspace E = π^m^H^ is ^-invariant, and
π\E±=0. From τr(i)η = π(mH)π(x)η for η G E it follows that every
η φ 0 is cyclic for π\E. Thus ir\E is irreducible and E is the essential
subspace K$ of 7r.
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Conversely, starting with p E (K//H), we choose η E Hp9 η φ 0,
and define ψ E P(K//H) by ψ(i ) = (P(X)TJ, 17). ψ is indecomposable
and φ G P(K), defined by φ(jc) = ψ(x), as well. Hence there is a 77 E #
such that φ(x) = (TΓ(JC)£, £) for some £ E //„ (compare [13, 11.3, 11.4
and 14.4]). From φ(t) = 1 for every / E i/ it follows that π(0£ = &
hence π(mH)ί; = £. Thus ξ is a cyclic vector for TΓ | ίΓrf. Finally

<#(JC){, 0 = (^(m^πίx)^ ξ) = fφ(t * x) dt =

holds; hence # | JSΓ̂  is equivalent to p [13, 11.4D].

REMARK 4.2. In a similar way we can obtain every cyclic representa-
tion of K//H as 771 K$ from some cyclic π of £\

Every finite-dimensional irreducible representation TΓ of ΛΓ is uniquely
determined by its normalized trace χπ defined by

Xv(x) = d-χ tτir(x)

for xEK, and dim KΦ = trπ(mH) = fHtτπ(t) dt holds. If τ τ | # =
θ p G / j m^H{ρ) - p is the decomposition of π\H into irreducible represen-
tations, then

txπ(t)dt= Σ yn^H
H JH

e//
by the orthogonality relations. Thus π Φ 0 iff fHtrπ(t) dt Φ 0, and for
p = π I Kj we have

trρ(x) = t r#(x) = tr(7r(;c)7r(m//)) = f tvπ(x * /)Λ.

Hence

dt)

and
In particular, for a Z-hypergroup # we get in view of Theorem 2.4:

COROLLARY 4.3. (K//H) can be identified with the set of normalized
traces, i.e. with
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We will now use this description to compute among others the irreducible
representations of a certain non-commutative Z-hypergroup.

EXAMPLE 4.4. For a prime /?, let Ω̂  and Δ^ be the set of /?-adic
numbers (resp. /?-adic integers) and Ak— [z E ίlp; zn = 0 for n < k)
(it 6 Z). Concerning the notations see [12, §10]. For x̂  6 Δ^ (1 < i < 4)
and z G Ω ; we write (xX9 x2, x39 x4, z) for the matrix

/
1

0

0

10

xx

1

0

0

x2

0

1

0

2

χ4

x3

1

and denote by G the group of these matrices. Clearly G is a Z-group with
center {(0,0,0,0, z); z G Ωp}. Put (/) = (ί,0,0,0,0) and H = {(0; / G
Δ^}. We are going to study the Z-hypergroup K— G//H. First we
compute it as a set, then determine the convolution, and finally describe
the set of irreducible representations of K in terms of the normalized
traces.

(a) For* = (xl9x29 x39 x4, z)andj; = (yu y2, y3, y49 w) G Owe have

x — y iff x. = y. for 2 < / < 4 and z — w E x4 Δ^.

Thus we can identify AT with the set

and we will write

Λ = {x2,x3,x4, [Z]XΛ) GK.

(b) Since G is a group the convolution on K is given by

Now

hence

otherwise,
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where di denotes the normalized Haar measure on the compact group
X — y4Δp/(x4 + y4)Δp. It follows at once that

G(K) = {(x2, * 3 ,0 , [z]0); x29 x3 GΔp,ztΞ Ώp]

and

Z = G(K) Π Z(K) = {(0,0,0, [z]0); z G Ώp).

Notice that G(K), and hence K, is non-abelian.
(c) Now the set E{G) of normalized traces on G can be easily

computed, since G is a nilpotent group of step 2. For χ G E(G) we have
χ | C E C, where C = {(0,0,0,0, z); z E Ω ^ Qp. C is the union of the
annihilators A(C, Ak)9 which can be identified with Λ_^+1 C Ω̂  by
w ^>λw, where λ^ is defined by

f ik-\ k-\

=exp2iri 2 ^ ' Σ ^ + w

u
for z E Λm (m < k),

otherwise.

Now we put

.E 0(G) = [ χ E E(G); χ\C G A[C, ΔpJ],

and for /c > 0,

£,(G) = (x E £(G); χ | C E ^t(C, Λ A )\^(C, Λ^,)}-

For G ^ { x £ G; xf. E Ak for 1 < / < 4} the following hold:
(i) x I G\GΛ = 0 for x E Ek(G); and

(ii) ^ ( G ) | G ^ - (Λ^)4 X (A(C, Ak)\A(C, Ak_x)) for k > 0 and

Thus we have for λ7 G A ^ ( l < / < 4) and w E Λ_A:+1\Λ_A:+2:

4

ι = l

0 otherwise.
We mention that, since the index of Gk in G is p4k, the dimension of a

representation corresponding to an element of Ek(G) isp4k.
Now it follows that

Jt9090,090)Λ=p-kf λ^ds

O otherwise;
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where ds is the normalized Haar measure on Ak9 which equals pk dt, dt
the Haar measure on H.

Since (x,, x29 x39 x49 z)(*,0,0,0,0) = (xx + t, x29 x3, x4, z), we have

H

Γ 4

\ ( Ύ \ ' \ ( 7\ if y C A ( j — Ί ^ ά\

otherwise.

Thus if can be identified with

((A,)3 X Λ,) U U ((Λ,) 3 X (A_A + 1\A_Λ + 2))

via (λ2, λ3, λ4, w) -* χ ( λ 2 j λ 3 j λ 4,w ), which is defined by

elsewhere.

Define^ = r~l(A(C, Δp)) and

^ Λ , . , ) ) forA:>0,

where r: K -* Z is the mapping studied in §2. These subsets of K are both

open and closed, and for the dimension of some p G Kk we get

</p - dim K. = d π ( χw(t) dt = p*k ,p-^ = / , " .

Thus the function p -* dp is continuous on K and the topology on K is
that of uniform convergence on compact subsets of K.
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