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ON LOCAL CONVEXITY
OF BOUNDED WEAK TOPOLOGIES

ON BANACH SPACES

J. GOMEZ GIL

In this paper we prove that the bw topology on a Banach space E ,
i.e. the finest topology which agrees with the weak topology on bounded
sets of £, is a locally convex topology if and only if the Banach space E
is reflexive.

1. Introduction. If E is a Banach space, the bounded weak (bw)

topology is the finest topology which agrees with the weak topology on

bounded sets. Wheeler in [7, p. 251] proves that the bw topology on c0 is

not locally convex. This result gives a counterexample to a remark of Day

[2, p. 42] which said that the bw topology is locally convex always. This

fact suggests a question: Under what conditions on E is it true that bw is

a locally convex topology?. The theorem of Banach and Dieudonne (2.2)

shows that reflexivity is a sufficient condition. In this paper we obtain that

reflexivity is also a necessary condition.

2. Notations, definitions and preliminary results. The notations for

topological vector spaces are taken primarily from [6], but we employ the

definition of polarity found in [4].

DEFINITION 2.1. If £ is a locally convex space (lcs), the equicontinu-

ous weak* (ew*) topology on E' is the finest topology on Er which

coincides with the weak* topology σ(E\ E) on equicontinuous sets of E\

The following result characterizes this topology when £ is a metriz-

able lcs.

THEOREM 2.2. (Banach-Dieudonne.) Let E be a metrizable locally

convex space and Ef its dual. The ew* topology on E' is the topology of the

uniform convergence on precompact subsets of E.

For a demonstration of this theorem we refer the reader to [4] or [6].

As an immediate consequence of this theorem we have that if £ is a

metrizable lcs, the ew* topology on Er is locally convex.
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Other results about ew* may be found in [1] and [2].

DEFINITION 2.3. If E is a locally convex space, the bounded weak

(bw) topology on E is the finest topology on E which agrees with the weak

topology σ(E, E') on bounded sets.

This definition is equivalent to Day's [2, p. 41]:

"The bw topology is the collection of all subsets U of E satisfying: for

each bounded set B of £ , there is a σ(£, £")-open V with U Π B = VΠ

BΓ

Obviously the last definition is not changed if we choose the bounded

sets on a fundamental family of bounded sets in E.

As follows from [1, p. 265], the bw topology is semi-linear, i.e.

addition and scalar multiplication functions are separately continuous.

Moreover, if E is a Banach space, it can be shown [3, p. 21] that bw is a

vectorial topology if and only if it is a locally convex one.

A general result of Collins [1, p. 266], which can be extended to the

complex case, makes the following definition valid.

DEFINITION 2.4. The convex bw (cbw) topology on a locally convex

space E is the unique locally convex topology with a base of all convex

neighborhoods of 0 in the bw topology.

It is easy to see that the cbw topology is the finest locally convex

topology which agrees with the weak topology on bounded sets. In [7, p.

251] may be found the following result which characterizes the cbw

topology:

THEOREM 2.5. // E is a Ics, the cbw topology on E is that of uniform

convergence on compact subsets of the completion of (E\ β(E\ E)).

As consequence of this result and Theorem 2.2 we obtain:

COROLLARY 2.6. // E is a Banach space, the cbw topology is the

restriction to E of the ew* topology on En'.

In particular if E is reflexive we have:

COROLLARY 2.7. If E is a reflexive Banach space, the bw topology on E

is a locally convex topology.
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A different introduction and other results about this topology may be

seen in [3].

If E is a Banach space, we denote by B, B'\ S the closed unit ball of

E and E" and the unit sphere of 2?, respectively, and we will write, for

each « G N , f i w = nB, Bf; = nB" and Sn = nS.

3. The bw topology and local convexity.

LEMMA 3.1. Let E be a separable, non-reflexive Banach space. If E

contains no subspace isomorphic to I1, there exists a subset A of E which is

bw-closed but is not closed in the restriction to E of the ew* topology on E".

Proof. It is well known that for each « E N the sphere Sn is

o(E'\ £")-dense in the closed ball B^. As £ is a separable Banach space

that contains no subspace isomorphic to Z1 it follows from Rosen thai ([5],

Theorem 3) that Sn is σ(E"9 E^-sequentially dense in the ball B^9 i.e. each

z E B'ή can be approximated in σ(E"9 E') by a sequence contained in Sn.

Hence if φ E E"\E and ||ψ|| = 1, there exists for each « G N a sequence

(xk,n)k<ΞK contained in Sn and converging to n~ιφ in σ(E'\ E').
We define A — {xkn: k, n E N}. For each m E N we have

AΠBm= (vtεN,»<w)

- ({xky. k E N, n < m) U {n~xφ: n < m}) Π Bm,

and since the set {xkn: k E N, n < m) U {n~]φ: n<m} is σ(£' 7 , £ ' )-

compact, it is σ(E", E'ydosed; then the set A Π Bm is closed in the

restriction of σ(E",E') to 5 m , but this topology is the same as the

restriction of σ(E, E') to Bm. This proves that A is bw-closed.

On the other hand, let U be a neighborhood of 0 in the ew* topology;

there exists W9 ew*-neighborhood of 0 such that W + W C U9 and as W

is absorbent, there exists « 0 E N such that n^xφ E W. By the definition of

ew* topology we know there exists a F, σ ( £ " , £"^-neighborhood of 0

satisfying

W Π B" = VΠ B" .

As (xk,no)k(=κ converges to n~λφ in the σ(E", JS^-topology there exists

k0 E N such that xk^o — n~o

xφ E F a n d then

*k n = xk n ~ nolΦ + " o ^ G {V Γ) B" ) + W C W + W C U.

This proves that 0 belongs to the closure of A in the ew* topology, and

since 0 E E, 0 is in the closure of A in the restriction of ew* to E (we

denote this topology rew*). Thus A is not closed in rew*. D
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PROPOSITION 3.2. Let E be a separable Banach space that contains no

subspace isomorphic to l]. The bw topology on E is locally convex if and only

if E is reflexive.

Proof. If E is reflexive we saw in (2.7) that bw is a locally convex

topology. Conversely, if E is not reflexive, (3.1) and (2.6) prove that the

bw topology is not locally convex. D

LEMMA 3.3. Let E be a Banach space and F a closed linear subspace of

E. The bw topology of F is the restriction to F of the bw topology on E.

Proof. We denote bw(£) and bw(F) the bw topology on E and F

respectively. It is clear that the restriction of bw(£) to F is coarser than

On the other hand, if U is bw(F)-open, let V be the union of U and

E\F. It is sufficient to prove that V is bw(£)-open. If B is a bounded

subset of /?, as σ(F, F') coincides with the restriction of σ(E, Ef) to F,

there exists W, σ(E9 £")-open, such that

u n B = u n {B n F) = (w n F) n (B n F) = (wn F) n B,

and then

VΠB = {WU (E\F)) Π B,

and since W U (E\F) is σ(E, £')-open, Fis bw(£>open. D

PROPOSITION 3.4. Let E be a Banach space that contains no subspace

isomorphic to l]. The bw topology on E is locally convex if and only if E is

reflexive.

Proof. If E is not reflexive, there exists a separable nonreflexive

subspace F of E. Obviously F contains no subspace isomorphic to /'.

From (3.2) it follows that the bw topology on F is not locally convex and

then (3.3) shows that bw is not a locally convex topology on E. This fact

and (2.7) prove the theorem. D

LEMMA 3.5. There exists a subset A of I1 which is bw-closed but is not

closed in the restriction to lλ of the ew*-topology of (I1)".

Proof. For each n E N, we denote by en the sequence of

lx (0,0,..., 1,0,...) where the one is in the nth place.
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Let Ao be the set Ao = {en: n E N). For each n E N, en is a
σ(/\ /°°)-isolated point of Λo, and then A0 is a σ(/], /°°)-closed set which is
not σ(l\ /°°)-compact. Consequently Ao is not σ((lλ)"9 /°°)-closed. Thus
there exists a linear form φ that belongs to the σ((/ !)", /°°)-closure of Ao

and φ £ Λo. Obviously ||φ|| < 1 and φ E (lι)"\lι.
Now, for each n E N, we define

Λ = {"(*/> ~~ ̂ ) + ek/n:p,q,k E N,/> ^ q,p<k, q < k).

An is contained in the sphere of radius 2n + \/n of lλ and if « E N,
rc > 2, it is not hard to check that An is σ(/\ /°°)-closed.

Let F be a balanced, convex σ^/1)", /°°)-neighborhood of 0. As φ is
an accumulation point of Ao, φ + K/3n contains an infinite number of
points of Ao. If e ,̂ eq9 ek E (φ 4- V/3n) Π yl0 with/? < q < k,we have

] ^ φ = Λ ( ^ - φ) + /i(φ - ^ ) + ±(ek - φ)

Thus (φ/w + V) Π^l^isa nonempty set. This proves that φ/n belongs to
the σ((l]γ\ /°°)-closure oίAn.

Now, we define A = ^™=2An. For each m E N, we have

A Π Bm= U {ΛW:Λ ^ N , 5 < 2π2 + 1 <m«}.

This set is obviously σ(l\ /°°)-closed, and thus A is a bw-closed set.
On the other hand, as for each n E N , φ/« belongs to the

σ((/1)//, /°°)-closure of >4Λ; reasoning as in the last part of the proof of
Lemma 3.1 proves that 0 belongs to the closure on ew* of A, and as 0
does not belong to A, we see that A is not closed in the topology
restriction to /' of ew* on (/])". D

PROPOSITION 3.6. Let E be a Banach space that contains a subspace
isomorphic to lλ. Then bw is not a locally convex topology on E.

Proof. From (3.5) we get that the bw topology on Z1 is not locally
convex. Hence if E contains a subspace isomorphic to l\ Lemma 3.3 and
the conservation of bw topologies under isomoφhisms prove that bw is
not a locally convex topology on E. D

THEOREM 3.7. Let E be a Banach space, bw is a locally convex topology
on E if and only if E is reflexive.
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Proof. If E is reflexive, (2.7) gives us the result. Conversely, if bw is a

locally convex topology on E, from (3.6) it follows that E contains no

subspace isomorphic to lλ and (3.4) shows that E must be reflexive. D
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