COLORINGS OF HYPERMAPS AND A CONJECTURE OF BRENNER AND LYNDON

Giuliana Bianchi and Robert Cori

Abstract

In this paper the following result is obtained: Let α and β be two permutations such that $\alpha \beta$ is transitive and $\alpha^{p}=\beta^{q}=1$ (where p and q are distinct primes). Then the set of all permutations commuting both with α and β is either reduced to the identity or one of the three cyclic groups C_{p}, C_{q} or $C_{p q}$.

Introduction. In this paper we answer a question raised by J. L. Brenner and R. C. Lyndon in [1]. They consider a pair of permutations (α, β) acting on a finite set of n elements such that $\alpha^{3}=\beta^{2}=1$ and $\alpha \beta$ is transitive. Such a pair may be considered as a (combinatorial) map with exactly one face in the terminology of [2], [4], [6] and [8], Brenner and Lyndon computed the automorphism group of such a map (which is necessarily a cyclic group) for $n \leq 12$. The groups they find are $1, C_{2}, C_{3}$ and C_{6} and they conjectured that no other groups can arise.

In what follows we prove a more general result and show that if $\alpha \beta$ is transitive and if p and q are primes $(p \neq q)$ such that $\alpha^{p}=\beta^{q}=\mathbf{1}$ then the automorphism group of (α, β) is one of $1, C_{p}, C_{q}, C_{p q}$. It remains an open question to know whether $C_{p q}$ can be found for arbitrary large values of $n(n \gg p q)$

Our main tool is the introduction of the concept of colorings of a hypermap. These colorings count in a certain way the number of fixed points of an automorphism of (α, β) when it acts on the set of cells (i.e. orbits of α, β and $\alpha \beta$). One step in the proof is to show that an automorphism of prime order cannot have exactly one fixed point in the set of cells: such a result is well known in the theory of Riemann surfaces ([5], p. 266).

All the permutations we consider act on a finite set Ω of n elements. We will also use the following conventions:

The product $\alpha \beta$ of two permutations α and β is the permutation defined by $\alpha \beta(x)=\alpha(\beta(x))$; for a subset Ω^{\prime} of $\Omega, \alpha \Omega^{\prime}$ denotes the set $\left\{\alpha x \mid x \in \Omega^{\prime}\right\}$, which has the same cardinality as Ω^{\prime}; a permutation α is regular if all its orbits have the same length, which is also the order of α; the number of orbits of the permutation θ will be denoted by $z(\theta)$; a permutation is transitive if $z(\theta)=1$.

A hypermap is a pair (α, β) of permutations such that the group $\langle\alpha, \beta\rangle$ generated by them is transitive on Ω. The orbits of α, β and $\alpha \beta$ are the cells of the hypermap.

An automorphism of (α, β) is an element φ of $\operatorname{Sym}(\Omega)$ that commutes with α and β. By the transitivity of $\langle\alpha, \beta\rangle$ for any x and y in Ω there exists θ in $\langle\alpha, \beta\rangle$ such that $x=\theta y$ and as for any integer $k, \varphi^{k}(x)=$ $\theta \varphi^{k}(x)$ we have

$$
\varphi^{k} x=x \quad \text { if and only if } \varphi^{k} y=y
$$

hence an automorphism of (α, β) is a regular permutation.
In order to study the automorphism group of a hypermap we are led to examine for a given permutation θ the set of regular permutations φ commuting with θ. This will be done in detail in the next paragraph.
I. Commuting permutations. We state here for later use some elementary facts about a pair of commuting permutations α and β of a finite set. Throughout this section it will be assumed that α, β act on a finite set Ω of n elements and that the group $\langle\alpha, \beta\rangle$ generated by α and β is abelian.

We write Ω / α for the set of α-orbits. As α and β commute, the actions of α, β on Ω induce actions of α on Ω / β and of β on Ω / α.

Lemma I.1. If $G=\langle\alpha, \beta\rangle$ is transitive, then any element θ of G is regular.

Proof. For any x and y in Ω there exists φ in G such that $y=\varphi x$, since $\theta^{m} x=x$ and as $\langle\alpha, \beta\rangle$ is abelian, $\theta^{m} y=\varphi \theta^{m} x=y$.

Lemma I.2. If $G=\langle\alpha, \beta\rangle$ is transitive on Ω, then α is transitive on Ω / β, and G is also transitive on the set of all intersections $A \cap B$ for $A \in \Omega / \alpha, B \in \Omega / \beta$. Therefore these intersections all have the same cardinality.

Proof. The first statement is clear. If $A, A^{\prime} \in \Omega / \alpha$ and $B, B^{\prime} \in \Omega / \beta$, then $A^{\prime}=\beta^{k} A$ and $B^{\prime}=\alpha^{h} B$ for some h and k in Z. Then

$$
\alpha^{h} \beta^{k}(A \cap B)=\alpha^{h}\left(A^{\prime} \cap B\right)=A^{\prime} \cap B^{\prime}
$$

Lemma I.3. Let r be the common value of $|A \cap B|, n=|\Omega|$, let a, b be the orders of α and β. Then there exist a_{1}, b_{1} such that $n=a_{1} b_{1} r, a=a_{1} r$, $b=b_{1} r$. If b is prime then $|\Omega / \alpha|=1$ or b.

Proof. As any A and B are both unions of $A_{i} \cap B_{j}, r$ divides a and b, so that $a=a_{1} r, b=b_{1} r$. Since α and β are regular $|\Omega / \alpha|=n / a$, $|\Omega / \beta|=n / b$ and there are $n^{2} / a b$ disjoint intersections $A \cap B$. Thus $n=r \cdot\left(n^{2} / a b\right)$ and $n=a b / r=a_{1} b_{1} r$. If b is prime then $r=1$ or b and $n / a=b$ or 1 .

Lemma I.4. If $\langle\alpha, \beta\rangle$ is transitive, and a, b, r are as above, then there exists an integer k relatively prime with r such that $\alpha^{n / b}=\beta^{n k / a}$.

Proof. Since α is transitive on Ω / β, and $|\Omega / \beta|=n / b$ then $\alpha^{n / b}$ stabilizes each $B \in \Omega / \beta$; it also stabilizes each $A \cap B$ as $\alpha A=A$. As α is transitive on A of length $a, \alpha^{n / b}=\alpha^{a / r}$ is transitive on $C=A \cap B$. Similarly $\beta^{n / a}$ is transitive on C. For a particular C the restrictions of $\alpha^{n / b}$ and $\beta^{n / a}$ to C generate the same cyclic group of order r, then for some k such that $(k, r)=1, \alpha^{n / b}$ and $\beta^{n K / a}$ have the same action on C. Thus the element $\alpha^{n / b} \beta^{-n k / a}$ of $\langle\alpha, \beta\rangle$ has at least one fixed point by I.1, it is the identity.
II. Colorings. Throughout this section we assume that φ is a regular permutation of order m acting on a finite set Ω of n elements.

A coloring on the set Ω is a map λ defined on Ω with values in an abelian group R. For any permutation α and any coloring λ of Ω we define another coloring $D_{\alpha} \lambda$ by setting

$$
D_{\alpha} \lambda(x)=\lambda(\alpha(x))-\lambda(x)
$$

A coloring is said to be orthogonal to α if $D_{\alpha} \lambda$ is constant on Ω. In this case $\lambda\left(\alpha^{k}(x)\right)=\lambda(x)+k \cdot u$ where u is the constant value of $D_{\alpha} \lambda$. The length l of an orbit of α must verify $l u=0$ in the abelian group. As we will only consider colorings orthogonal to φ, we will assume that R is the additive group $Z / m Z$. Thus the relation $m u=0$ is satisfied for any u.

We are now interested in the extension of a coloring vanishing on a transversal T of Ω / φ, and having a given value v on an element x not in T. For such an x there exists a unique \bar{x} in T and an integer $h(1 \leq h \leq m)$ such that $\varphi^{h}(\bar{x})=x$.

Lemma II.1. For v in $Z / m Z$, there exists a coloring λ orthogonal to φ, vanishing on T and such that $\lambda(x)=v$ if and only if the equation in u, $h u \equiv v$, has a solution in $Z / m Z$.

Proof. If $D_{\alpha} \lambda$ is a constant u, then $\lambda(x)=\lambda(\bar{x})+h u$ so that $h u=v$. If this equation has a solution u_{0} say, then for any y in Ω there exists \bar{y} in T such that $y=\varphi^{l}(\bar{y})$; setting $\lambda(y)=l u_{0}$ we obtain the coloring λ.

Lemma II.2. Let $\langle\varphi, \alpha\rangle$ be abelian and λ be a coloring orthogonal to φ. Then $D_{\alpha} \lambda$ is constant on the orbits of φ.

Proof. We have to show that $D_{\alpha} \lambda(\varphi x)=D_{\alpha} \lambda(x)$. But as $D_{\alpha} \lambda(\varphi(x))$ $=\lambda \alpha \varphi x-\lambda \varphi x$ and since α and φ commute:

$$
\begin{aligned}
D_{\alpha} \lambda \varphi(x) & =\lambda \varphi \alpha x-\lambda \alpha x+\lambda \alpha x-\lambda x+\lambda x-\lambda \varphi x \\
& =D_{\varphi} \lambda(\alpha x)+D_{\alpha} \lambda(x)-D_{\varphi} \lambda(x)
\end{aligned}
$$

As $D_{\varphi} \lambda$ is constant, also the result follows. Remark that $D_{\alpha} \lambda$ defines a coloring on Ω / φ. For A in $\Omega / \varphi, D_{\alpha} \lambda(A)$ denotes the common value of $D_{\alpha} \lambda(x)$ for x in A.

Lemma II.3. Let $\langle\varphi, \alpha\rangle$ be abelian and transitive on Ω. Then there exists a coloring λ orthogonal to φ, such that

$$
\sum_{A \in \Omega / \varphi} D_{\alpha} \lambda(A) \equiv z(\alpha) \quad \text { in } Z / m Z
$$

Proof. Let $|\Omega|=n, \alpha$ have order a, and let r be the cardinality of the intersection of an orbit of α with one of φ. As α is transitive on Ω / φ there exists x such that $T=\left\{x, \alpha x, \ldots, \alpha^{n / m-1} x\right\}$ is a transversal of Ω / φ. Let $y=\alpha^{n / m} x$; we claim that there exists λ vanishing on T and such that $\lambda(y)=z(\alpha)=n / a$.

By Lemma I. 4 there exists k such that $\varphi^{n / a \cdot k}=\alpha^{n / m}$; then $y=$ $\varphi^{n / a \cdot k}(x)$. By II. 1 such a λ exists if the equation

$$
n k u / a \equiv n / a
$$

has a solution in $Z / m Z$.
But since $(k, r)=1$ there exist u, v, such that $u k+v r=1$. Then

$$
n k u / a+n v r / a=n / a
$$

and as $n r / a=m$ (I.3), we are done.
Lemma II.4. Let $G=\langle\varphi, \alpha\rangle$ be abelian. Then there exists a coloring λ such that $D_{\varphi} \lambda$ is constant on G-orbits and such that

$$
\sum_{A \in \Omega / \varphi} D_{\alpha} \lambda(A)=z(\alpha)
$$

Moreover if φ is of prime order and fixes only one orbit of α then λ can be found orthogonal to φ.

Proof. By Lemma II. 3 for any G-orbit Ω_{h} there exists a coloring λ_{h} such that $D_{\varphi} \lambda_{h}$ is constant on Ω_{h} and

$$
\sum_{A \in \Omega_{h} / \varphi} D_{\alpha} \lambda_{h}(A)=z\left(\alpha_{h}\right)
$$

where α_{h} is the restriction of α to Ω_{h}. Taking for λ the union of the λ_{h} we have the result, since $z(\alpha)=\sum z\left(\alpha_{h}\right)$. If φ is of prime order, then by I. 3 $\left|\Omega_{h} / \alpha\right|=1$ or m. In the first case, Ω_{h} is an α orbit fixed by φ. This occurs only once, for h_{0} say; the equation to solve in $\Omega_{h_{0}}$ is $k u \equiv 1(\bmod m)$ which gives $u=k^{-1}$ in $Z / m Z$. In the second case $\left|\Omega_{h} / \alpha\right|=m$ and the equation to solve is $m k^{\prime} u \equiv m(\bmod m)$ which is satisfied by any u, in particular for $u=k^{-1}$. We thus can choose λ such that $D_{\alpha} \lambda=u$ on any $\Omega_{h} \cdot D_{\alpha} \lambda$ is thus constant.

Lemma II.5. Let $G=\langle\varphi, \alpha\rangle$ be abelian and such that the intersection $A_{i} \cap B_{j}$ of an orbit of φ with one of α contains at most one element. Then for any coloring λ orthogonal to φ we have

$$
\sum_{A \in \Omega / \varphi} D_{\alpha} \lambda(A)=0
$$

Proof. It suffices to show that the sum vanishes on each α orbit in Ω / φ. Let C be such an orbit; under the hypothesis of the lemma, there exists an orbit Γ in Ω of length $|C|$ and $\Sigma_{c \in C} D_{\alpha} \lambda(c)=\Sigma_{x \in \Gamma} D_{\alpha} \lambda(x)$. But $\Gamma=\left\{x, \alpha x, \ldots, \alpha^{k} x\right\}$ and the last sum is $\sum_{i=0}^{k}\left(\lambda \alpha^{i+1} x-\lambda \alpha^{i} x\right)$ which vanishes as $\alpha^{k+1} x=x$.

Lemma II.6. Let α and β be any two permutations commuting with φ, then for any coloring λ orthogonal to φ one has

$$
\sum_{A \in \Omega / \varphi} D_{\alpha \beta} \lambda(A)=\sum_{A \in \Omega / \varphi} D_{\alpha} \lambda(A)+\sum_{A \in \Omega / \varphi} D_{\beta} \lambda(A)
$$

Let Γ be any subset of Ω having exactly one element in each cycle of φ. Then

$$
\sum_{A \in \Omega / \varphi} D_{\alpha \beta} \lambda(A)=\sum_{x \in \Gamma} D_{\alpha \beta} \lambda(x)
$$

Since $D_{\alpha \beta} \lambda(a)=\lambda(\alpha \beta(a))-\lambda(\beta(a))+\lambda(\beta(a))-\lambda(a)$ we have

$$
\sum_{A \in \Omega / \varphi} D_{\alpha \beta} \lambda(A)=\sum_{x^{\prime} \in \beta(\Gamma)} D_{\alpha} \lambda\left(x^{\prime}\right)+\sum_{x \in \gamma} D_{\beta} \lambda(x)
$$

But $\beta(\Gamma)$ is also a subset of Ω having one element in each cycle of φ and the result follows.

III. The main theorems.

Theorem 1. Let $H=(\alpha, \beta)$ be a hypermap φ an automorphism of H of prime order p. Then the number of cells fixed by φ is necessarily different from one.

Proof. Let us show that the assumption that φ fixes exactly one cell leads to a contradiction. Suppose that this cell is an orbit of α (a similar proof holds for an orbit of β or $\alpha \beta$). If φ fixes no other cycle of α then $z(\alpha)-1$ is clearly divisible by p. Then by Lemma II. 4 there exists a coloring orthogonal to φ such that $\sum_{A \in \Omega / \varphi} D_{\alpha} \lambda(A) \equiv 1(\bmod p)$, but by Lemma II. 6 .

$$
\sum_{A \in \Omega / \varphi} D_{\alpha \beta} \lambda(A)=\sum_{A \in \Omega / \varphi} D_{\alpha} \lambda(A)+\sum_{A \in \Omega / \varphi} D_{\beta} \lambda(A)
$$

and Lemma II. 5 insures the nullity of $\sum_{A \in \Omega / \varphi} D_{\alpha \beta} \lambda(A)$ and $\Sigma_{A \in \Omega / \varphi} D_{\beta} \lambda(A)$. As no cycle of either β or $\alpha \beta$ is fixed by φ, we have thus found a contradiction and Theorem II. 1 is proved.

Lemma III. 1 Let φ be a permutation of order p^{2} commuting with α of order p. Then for any λ orthogonal to φ

$$
p \sum_{A \in \Omega / \varphi} D_{\alpha} \lambda(A) \equiv 0 \quad\left(\bmod p^{2}\right)
$$

Proof. We can assume that $\langle\varphi, \alpha\rangle$ acts transitively on Ω; the general case is then obtained by summing over the orbits of $\langle\varphi, \alpha\rangle$.

Since α is of order p, by Lemma I. 3 the cardinality of the intersection of a cycle of φ and one of α is either 1 or p. If it is 1 , then by Lemma II. 4 we have

$$
\sum_{A \in \Omega / \varphi} D_{\alpha} \lambda(A) \equiv 0 \quad\left(\bmod p^{2}\right)
$$

If it is p, then Ω / φ has only one element. Let $\varphi=\left(b_{1}, b_{2}, \ldots, b_{p^{2}}\right)$. The $\operatorname{sum} \Sigma_{A \in \Omega / \varphi} D_{\alpha} \lambda(A)$ equals $D_{\alpha} \lambda\left(b_{1}\right)$ and we find

$$
D_{\alpha} \lambda\left(b_{1}\right)=\lambda\left(\alpha\left(b_{1}\right)\right)-\lambda\left(b_{1}\right)
$$

But as φ and α commute and φ is a cycle, α is a power of φ and $\alpha=\varphi^{\iota p}$, $0 \leq i \leq p-1$. Thus as λ is orthogonal to $\varphi, \lambda\left(\alpha\left(b_{1}\right)\right)=\lambda\left(\varphi^{i p}\left(b_{1}\right)\right)=$ $\lambda\left(b_{1}\right)+i p u$, so that $D_{\alpha} \lambda\left(b_{1}\right)=i p u$, as required.

We are now able to prove our main theorem.

Theorem 2. Let p and q be two distinct primes α and β be two permutations such that
(1) $\alpha \beta$ is a cycle,
(2) $\alpha^{q}=\beta^{p}=1$.

Then the automorphism group of (α, β) is either trivial or one of $C_{p}, C_{q}, C_{p q}$.
Proof. It is clear that Aut $\langle\alpha, \beta\rangle$ is cyclic.

Let now φ be an automorphism of prime order, clearly φ fixes one cell of the hypermap (α, β) : the unique cycle of $\alpha \beta$. By Theorem 1 it fixes one more cell, if this cell is of length one then φ is the identity, if it is of length p or q then clearly φ has orbits of length dividing p or q and φ is of order p, q or 1 . This proves that $\operatorname{Aut}\langle\alpha, \beta\rangle$ is of order $p^{u} q^{v}$. To obtain the complete result we will show that assuming the existence of an automorphism of order $m=p^{2}$ (or $m=q^{2}$ similarly) we have a contradiction. Let φ be such an automorphism, let λ be the coloring constructed in Lemma II. 3 for $\alpha \beta$, we have

$$
\sum_{A \in \Omega / \varphi} D_{\alpha \beta} \lambda(A) \equiv z(\alpha \beta) \quad(\equiv 1)\left(\bmod p^{2}\right)
$$

But by Lemma II.6:

$$
1 \equiv \sum_{A \in \Omega / \varphi} D_{\alpha \beta} \lambda(A) \equiv \sum_{A \in \Omega / \varphi} D_{\alpha} \lambda(A)+\sum_{A \in \Omega / \varphi} D_{\beta} \lambda(A) \quad\left(\bmod p^{2}\right)
$$

and

$$
\sum_{A \in \Omega / \varphi} D_{\beta} \lambda(A) \equiv 0 \quad\left(\bmod p^{2}\right)
$$

as the cardinality r of the intersection of a cycle of φ and one of β is 0 or 1 (r dividing p^{2} and q).

We thus have using Lemma III. 1 and multiplying by p the above equality:

$$
p \equiv p \sum_{A \in \Omega / \varphi} D_{\alpha} \lambda(A) \equiv 0 \quad\left(\bmod p^{2}\right)
$$

Which is the contradiction we are looking for.
Acknowledgement. The authors wish to thank R. C. Lyndon for many helpful comments on a preliminary version of this work.

References

[1] J. L. Brenner and R. C. Lyndon, Permutations and cubic graphs, Pacific J. Math., 104 (1983), 285-315.
[2] R. Cori, Un code pour les graphes planaires et ses applications, Astérisque, Société Mathématique de France, 27 (1975).
[3] R. Cori, A. Machí, J. G. Penaud and B. Vauquelin, On the automorphism group of a planar hypermap, European J. Combin., 2 (1981), 331-334.
[4] J. Edmonds, A combinatorial representation for polyhedral surfaces, Notices Amer. Math. Soc., 7 (1960), 646.
[5] H. M. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag (1980).
[6] A. Jacques, Sur le genre d'une paire de substitutions, C. R. Acad. Sci. Paris, série A.B, 267 (1968), 625-627.
[7] V. A. Liskovets, A census of non isomorphic planar maps, Colloquia Matematica Societatis János Bolyai (1-25), (1978)-Algebraic method in graph theory, p. 479-494.
[8] T. R. S. Walsh, Hypermap versus bipartite maps, J. Combinatorial Theory-Ser. B, 18 (1975), 155-163.

Received December 9, 1981 and in revised form May 24, 1982.

University of Bordeaux I
351, Cours de la Liberation
33405 Talence Cedex, France

