ATOROIDAL, IRREDUCIBLE 3-MANIFOLDS AND 3-FOLD BRANCHED COVERINGS OF S^{3}

Teruhiko Soma

Abstract

Suppose M is a closed orientable 3-manifold. Then H. Hilden et al. proved that M is a 3 -fold branched covering of S^{3} branched over a fibered knot. In this paper we prove that, if M is irreducible and atoroidal, then M is either a 3 -fold branched covering of S^{3} branched over a simple, fibered knot, or a 2 -fold branched covering of a closed orientable 3-manifold whose Heegaard genus is at most one.

Hilden [4], Hirsch [5] and Montesinos [11] proved independently that a closed, connected and orientable 3 -manifold M is a 3 -fold irregular branched covering of S^{3} branched over a knot K. Further, it is known that K may be chosen to be a fibered knot. We do not know a reference for this refinement, which we need for our main theorem, so we give in §1 a sketch of the proof, shown to us by Hilden. Our main result is:

Theorem. Let M be a closed, connected and orientable 3-manifold. Suppose M is atoroidal and irreducible. Then at least one of the following holds.
(i) M is a 3-fold (cyclic or irregular) branched covering of S^{3} branched over a simple, fibered knot.
(ii) There exist a closed, connected and orientable 3-manifold N whose Heegaard genus is at most one and a simple link L in N such that M is a 2-fold branched covering of N branched over L.

Here M atoroidal means M contains no embedded incompressible torus. As is well known, classifying closed orientable 3-manifolds essentially reduces to the case of atoroidal irreducible 3-manifolds, by the Unique Prime Decomposition Theorem [9] and the Torus Decomposition Theorem [6], [7].

Recently Thurston announced that, if an atoroidal and irreducible 3-manifold M is a regular (in particular cyclic) branched covering of a closed, orientable 3-manifold, then M has a geometric structure (i.e. M admits a complete riemannian metric in which any two points have isometric neighborhoods). By this result and our Theorem, if M is a closed, orientable 3-manifold which is atoroidal and irreducible, then M
has a geometric structure or is a 3-fold irregular branched covering of S^{3} branched over a simple, fibered knot.

By similar methods (see [15] for details) one can prove:
Suppose that Σ is a homotopy 3-sphere, not necessarily irreducible. Then Σ is a 3-fold irregular branched covering of S^{3} branched over a simple, fibered knot K.

If the branch set K is a torus knot, then Σ is a graph manifold. By Montesinos [10, p. 249, Lemma 1], Σ is homeomorphic to S^{3}. Hence any homotopy 3-sphere is homeomorphic to S^{3} or a 3-fold irregular branched covering of S^{3} branched over a fibered, hyperbolic knot.

We would like to thank Professors Mitsuyoshi Kato, Hiroshi Noguchi and the referee for helpful comments and suggestions. We also would like to thank Professor Hugh M. Hilden for informing us of his useful results.

1. Preliminaries. In this paper we work in the piecewise linear category and every 3-manifold is orientable.

Let L be a link in S^{3} and $\omega: \pi_{1}\left(S^{3}-L\right) \rightarrow \Theta_{3}$ a transitive representation, where Θ_{3} is the symmetric permutation group of 3 -symbols. We say that ω is simple if it represents each meridian by a transposition in Θ_{3}. Then we denote by $M(L, \omega)$ the 3-fold irregular branched covering of S^{3} (branched over L) which is determined by ω. We consider a regular projection of L. Let B be a 3-ball in S^{3} as shown in Figure 1(a). In Figure $1(\mathrm{a}), \alpha, \beta$ and γ are three different transpositions in Θ_{3} such that $\omega\left(x_{\alpha}\right)=\alpha, \omega\left(x_{\beta}\right)=\beta, \omega\left(x_{\gamma}\right)=\gamma$, where x_{α} (resp. $\left.x_{\beta}, x_{\gamma}\right)$ is the Wirtinger generator associated to an overpass x_{α}^{\prime} (resp. $x_{\beta}^{\prime}, x_{\gamma}^{\prime}$).

We change the pair (L, ω) to $\left(L^{\prime}, \omega^{\prime}\right)$ as shown in Figure $1(\mathrm{~b})$. By Montesinos [11], $M(L, \omega)$ is homeomorphic to $M\left(L^{\prime}, \omega^{\prime}\right)$. We say that ($L^{\prime}, \omega^{\prime}$) is obtained by doing a double-Montesinos move on (L, ω) in B. We note that the number of components of L is equal to that of L^{\prime}.

Figure 1(a)

Figure 1(b)
Now we give a sketch of the proof of the following theorem of Hilden.

Theorem (Hilden). Every closed, connected 3-manifold M is a 3-fold irregular branched covering of S^{3} branched over a fibered knot.

Sketch of proof. By Hilden [4], Hirsch [5] or Montesinos [11], M is a 3 -fold irregular branched covering of S^{3} branched over a knot K. Let ω be the representation associated to the branched covering. By Alexander's Theorem, K is represented by a closed braid (see [1, p. 42, Theorem 2.1]). By doing some double-Montesinos moves on (K, ω), we obtain a new pair ($K^{\prime}, \omega^{\prime}$) such that K^{\prime} is represented by a closed positive braid (i.e. each crossing of the representation is positive). Figure 2 indicates the result. By Stallings [16, Theorem 2], K^{\prime} is a fibered knot.

Let F be a 2 -manifold embedded in a 3 -manifold M. Then a 2 -disk D embedded in M is called a compressing disk for F in M if $F \cap D=\partial D$ and ∂D is not contractible in F. If F has a compressing disk in M, then we say that F is compressible in M, otherwise incompressible in M.

Let X be a submanifold of a manifold Y. Then we denote by $N(X, Y)$ a regular neighborhood of X in Y.

Let K be a knot in S^{3}. Then $E(K)=S^{3}-\operatorname{int} N\left(K, S^{3}\right)$ is called the exterior of K in S^{3}. We say that K is simple if $E(K)$ contains no incompressible torus which is not isotopic to $\partial E(K)$ in $E(K)$.

Let V be an unknotted solid torus in S^{3} and K a knot in S^{3} which is contained in V and such that ∂V is incompressible in $V-K$ and K is not isotopic in V to a core c of V. Let $f: V \rightarrow S^{3}$ be an embedding such that $f(c)$ is knotted in S^{3} and $f(l)$ is homologous to zero in $S^{3}-$ int $f(V)$, where l is a meridian of the solid torus $S^{3}-\operatorname{int} V$. We set $T=f(\partial V)$. Then T is an incompressible torus in $E(f(K))$ which is not isotopic to $\partial E(f(K))$. We say that $f(c)$ is the companion of $f(K)$ for $T, f(K)$ is the satellite of $f(c)$ for T and K is the preimage of $f(K)$ for T. By Myers [12, Proposition 9.11], if $f(K)$ is a fibered knot, then $f(c)$ and K are also fibered knots and $g(f(c)), g(K)<g(f(K)$), where $g(K)$ denotes the genus of K.

Figure 2

Let T be a torus in an atoroidal, irreducible 3-manifold M and D a compressing disk for T in M. Let $f: D \times I \rightarrow M$ be an embedding such that $f\left(D \times\left\{\frac{1}{2}\right\}\right)=D$ and $f(D \times I) \cap T=f(\partial D \times I)$, where $I=[0,1]$. We say that $S=(T-\operatorname{int}(T \cap f(D \times I))) \cup f(D \times\{0\}) \cup f(D \times\{1\})$ is a 2-sphere obtained by doing surgery on T along D. Obviously $S \cap D=\varnothing$.

Since M is irreducible, S bounds a 3-ball B in M. If $B \cap D=\varnothing$, then T bounds a solid torus $B \cup f(D \times I)$ in M with a meridian disk D. If $B \supset D$, then T bounds a compact 3-manifold $N=\overline{(B-f(D \times I))}$ in M such that $(N, \partial D)$ is homeomorphic to $(E(K), m)$, where K is a knot in S^{3} and $m \subset \partial E(K)$ is a meridian of a solid torus $N\left(K, S^{3}\right)=S^{3}-$ int $E(K)$. Then we say that ($N, \partial D$) is a knot space-meridian pair. Let l be a simple loop in ∂N which meets ∂D transversely at a single point (hence l is not contractible in ∂N) and is homologous to zero in N. Then we say that l is a longitude of $(N, \partial D)$.

Let A, B be two manifolds. Then we denote by $A \cong B$ that A is homeomorphic to B.

We prove the following three lemmas.

Lemma 1. Let M be a connected, closed 3-manifold which is irreducible and atoroidal. Let $p: M \rightarrow S^{3}$ be a 3-fold irregular branched covering branched over a knot K. If K is a composite knot, then M is a 2-fold branched covering of S^{3} branched over a prime factor K_{0} of K.

Remark. By Gordon and Litherland [3, Theorem 2], K_{0} is simple. By Myers [12, Proposition 9.11], if K is fibered, then K_{0} is also fibered.

Proof. Since K is composite, there exists a 2-sphere S embedded in S^{3} which bounds two 3-balls B_{1}, B_{2} in S^{3} such that $B_{1} \cap B_{2}=S$ and $\alpha_{i}=B_{i} \cap K$ is a knotted arc in B_{i} for $i=1,2$. Since the representation associated to p is simple and S meets K transversely at two points, $p^{-1}(S)$ consists of two 2-spheres S_{1}, S_{2} such that $p \mid S_{1}: S_{1} \rightarrow S$ is a homeomorphism and $p \mid S_{2}: S_{2} \rightarrow S$ is a 2 -fold branched covering branched over $K \cap S$. Since M is irreducible, either $p^{-1}\left(B_{1}\right)$ or $p^{-1}\left(B_{2}\right)$ is disconnected. We may assume that $p^{-1}\left(B_{1}\right)$ consists of two components N_{1} and N_{2} such that $\partial N_{i}=S_{i}$ for $i=1,2$. Then $p \mid N_{2}: N_{2} \rightarrow B_{1}$ is a 2 -fold branched covering branched over α_{1}. If N_{2} is a 3-ball, then α_{1} is unknotted in B_{1} by the Branched Covering Theorem [13], a contradiction. Thus $M-\operatorname{int} N_{2}$ is a 3-ball. We may extend $p \mid S_{2}: S_{2} \rightarrow S$ to a 2 -fold branched covering q : $\tilde{C} \rightarrow C$ branched over an unknotted arc α in C, where \tilde{C}, C are 3-balls. Then $p \mid N_{2} \cup q: N_{2} \cup_{S_{2}} \tilde{C} \rightarrow B_{1} \cup_{S} C$ is a 2 -fold branched covering branched over a knot $K_{0}=\alpha_{1} \cup \alpha$ in $B_{1} \cup_{S} C \cong S^{3}$. Obviously we have $N_{2} \cup_{S_{2}} \tilde{C} \cong M$. By the above remark, K_{0} is simple. Hence, in particular, K_{0} is a prime factor of K. This completes the proof.

Lemma 2. Let T_{1}, T_{2} be tori and $p: T_{1} \rightarrow T_{2}$ a covering. Suppose that l is a simple loop in T_{1} which is not contractible in T_{1}. Then l is isotopic to a simple loop l_{1} in T_{1} such that $p\left(l_{1}\right)$ is a simple loop in T_{2} and $p \mid l_{1}: l_{1} \rightarrow p\left(l_{1}\right)$ is a covering. (We say that l_{1} is in good position with respect to p.)

Proof. We suppose that every loop is oriented. Let α, β be generators of $\pi_{1}\left(T_{2}\right) \approx Z \times Z$. Then we suppose that a map $p \mid l: l \rightarrow T_{2}$ represents $n(p \alpha+q \beta)$ in $\pi_{1}\left(T_{2}\right)$, where $n, p, q \in Z, n \neq 0$ and $(p, q)=1$. Let l_{2} be a simple loop in T_{2} which represents $p \alpha+q \beta$ in $\pi_{1}\left(T_{2}\right)$. Let $\pi: S^{1} \rightarrow l_{2}$ be an n-fold cyclic covering and $i: l_{2} \rightarrow T_{2}$ an inclusion. Since $p \mid l$ is homotopic to $i \circ \pi, i \circ \pi$ has a lift $\tilde{\pi}$ with respect to p. Then it is easy to show that $l_{1}=\tilde{\pi}\left(S^{1}\right)$ satisfies the conclusions of Lemma 2.

Lemma 3. Let M_{0} be a compact, connected 3-manifold whose boundary consists of n tori $T_{1}, \ldots, T_{n}(n \geq 1)$, and let $M_{k}(k=1, \ldots, n)$ be a compact, connected 3-manifold such that ∂M_{k} is an incompressible torus in M_{k}. If $M=M_{0} \cup_{T_{1}=\partial M_{1}} M_{1} \cdots \cup_{T_{n}=\partial M_{n}} M_{n}$ is atoroidal, then each T_{k} is compressible in M_{0}.

Proof. If $n=1$, the proof is trivial. We suppose $n>1$. Then it suffices to prove that T_{1} is compressible in M_{0}. We set $P=M_{0} \cup_{T_{1}=\partial M_{1}} M_{1}$ and $Q=M-\operatorname{int} M_{1}$. Then $M=P \cup_{T_{2}=\partial M_{2}} M_{2} \cdots \cup_{T_{n}=\partial M_{n}} M_{n}$. By induction on n, for $k>1, T_{k}$ is compressible in P.

We suppose that T_{1} is incompressible in M_{0}. Since $T_{1}=\partial M_{1}$ is incompressible in M_{1}, it also is in P. Since $T_{k}(k>1)$ is compressible in P, $\left(j \circ i_{k}\right)_{*}: \pi_{1}\left(T_{k}\right) \rightarrow \pi_{1}(P)$ is not injective, where $i_{k}: T_{k} \subset M_{0}$ and j : $M_{0} \subset P$. Since $j_{*}: \pi_{1}\left(M_{0}\right) \rightarrow \pi_{1}(P) \approx \pi_{1}\left(M_{0}\right) *_{\pi_{1}\left(T_{1}\right)} \pi_{1}\left(M_{1}\right)$ is injective, $\left(i_{k}\right)_{*}$ is not injective. Hence there exists a compressing disk D_{k} for T_{k} in M_{0}. By using an elementary innermost disk technique, we may assume $D_{k} \cap D_{l}=\varnothing$ for $2 \leq k<l \leq n$. Let $S_{k}(k=2, \ldots, n)$ be a 2 -sphere in M_{0} obtained by doing surgery on T_{k} along D_{k} such that $S_{k} \cap S_{l}=\varnothing$ for $k \neq l$. Then S_{k} bounds a compact 3-manifold N_{k} in Q such that $N_{k} \supset M_{k}$ $\cup D_{k}$. Since T_{1} is compressible in Q,

$$
\begin{aligned}
j_{*}^{\prime} \circ i_{*}^{\prime}: \pi_{1}\left(T_{1}\right) & \rightarrow \pi_{1}\left(Q-\operatorname{int}\left(N_{2} \cup \cdots \cup N_{k}\right)\right) \rightarrow \pi_{1}(Q) \\
& \approx \pi_{1}\left(Q-\operatorname{int}\left(N_{2} \cup \cdots \cup N_{k}\right)\right) * \pi_{1}\left(N_{2}\right) * \cdots * \pi_{1}\left(N_{k}\right)
\end{aligned}
$$

is not injective, where $i^{\prime}: T_{1} \subset Q-\operatorname{int}\left(N_{2} \cup \cdots \cup N_{k}\right)$ and $j^{\prime}: Q-$ $\operatorname{int}\left(N_{2} \cup \cdots \cup N_{k}\right) \subset Q$. Since j_{*}^{\prime} is injective, i_{*}^{\prime} is not injective. Hence T_{1} is compressible in $Q-\operatorname{int}\left(N_{2} \cup \cdots \cup N_{k}\right) \subset M_{0}$, a contradiction. Thus T_{1} must be compressible in M_{0}. This completes the proof.
2. Proof of Theorem. Let M be a closed, connected 3-manifold which is atoroidal and irreducible, and let $p: M \rightarrow S^{3}$ be a 3-fold irregular branched covering branched over a fibered knot K.

We suppose K is not simple, that is, int $E(K)$ contains an incompressible torus T which is not isotopic to $\partial E(K)$. Then $p^{-1}(T)$ consists of one, two, or three tori in M.

Let X be a compact orientable 2 -manifold which is properly embedded in a compact 3 -manifold Y. We denote by Y_{X} the compact 3-manifold obtained by splitting Y along X.

We use a weighted graph to study the configuration of $p^{-1}(T)$ in M.
To each component of $M_{p^{-1}(T)}$, we associate a vertex v with weight i and denote the component by $M(v)$. The weight i indicates that $p \mid M(v)$: $M(v) \rightarrow p(M(v))$ is an i-fold branched or unbranched covering. Let V be a solid torus in S^{3} bounded by T. Obviously V contains K. We color a vertex v black if $p(M(v))=V$, otherwise white.

To each component of $p^{-1}(T)$, we associate an edge e with weight i and direction, and denote the component by $T(e)$. The weight i indicates that $p \mid T(e): T(e) \rightarrow T$ is an i-fold covering. We say that v is a vertex of e if $\partial M(v)$ contains $T(e)$. An edge e is directed, $v_{1} \underset{e}{v_{2}}$, means $T(e)$ is compressible in the component of $M_{T(e)}$ which contains $M\left(v_{2}\right)$ (we note that M is atoroidal). An edge may have two directions. The two ends of an edge have opposite colors.

Thus we obtain the weighted graph Γ associated to ($M, p^{-1}(T)$).
The valency of a vertex v is the number of all edges of Γ with v as a common vertex.

Lemma 4. The graph Γ associated to $\left(M, p^{-1}(T)\right)$ satisfies the following properties.
(i) Let v_{0} be a white vertex of Γ with valency 1 and e_{0} the unique edge with v_{0} as a vertex. Then e_{0} is directed only away from v_{0}.
(ii) Let v_{1} be a black vertex of Γ with weight 1 (hence the valency of v_{1} is 1) and e_{1} the unique edge with v_{1} as a vertex. Then e_{1} is directed only toward v_{1}.
(iii) The total sum of the weights of all edges with v as a common vertex is equal to the weight of v.
(iv) Γ is a tree.
(v) The number of all black vertices of Γ is at most two. The number of white vertices is at most three.

It follows that Γ is one of the five graphs Γ_{i} in Figure 3. (Lemma 4 does not determine the directing of the edge e in Γ_{2} nor of e_{1} in Γ_{4}.)

Figure 3

Proof of Lemma 4. (i) If $T(e)$ is compressible in $M\left(v_{0}\right)$, then T is compressible in S^{3} - int V, a contradiction.
(ii) Since $p \mid M\left(v_{1}\right): M\left(v_{1}\right) \rightarrow V$ is a homeomorphism, $M\left(v_{1}\right)$ is a solid torus. Hence $T\left(e_{1}\right)=\partial M\left(v_{1}\right)$ is compressible in $M\left(v_{1}\right)$.
(iii) If $p \mid M(v): M(v) \rightarrow V$ (or $S^{3}-$ int V) is i-fold, then $p \mid \partial M(v)$: $\partial M(v) \rightarrow T$ is also i-fold. This gives (iii).
(iv) Let e be an edge of Γ. Since $T(e)$ bounds a compact 3-manifold N in M such that $\partial N=T(e)$ (see $\S 1), T(e)$ separates M into two components. Therefore Γ is a tree.
(v) If Γ has three black vertices v_{1}, v_{2}, v_{3}, then every $p \mid M\left(v_{i}\right)$: $M\left(v_{i}\right) \rightarrow V$ is 1 -fold. Hence $p \mid M\left(v_{i}\right)$ is a homeomorphism. This contradicts that the branch set K of p is contained in V.

Proof of Theorem. By Lemma 1 we may assume the branch set K is a prime, fibered knot. We prove the theorem by induction on $g(K)$. Let Γ be the graph associated to $\left(M, p^{-1}(T)\right.$). By Lemma 2, we may assume that every non-contractible simple loop in $p^{-1}(T)$ is in good position with respect to $p \mid p^{-1}(T): p^{-1}(T) \rightarrow T$.

Case 1. $\Gamma=\Gamma_{1}$.
Let D be a compressing disk for $T(e)$ in $M(v)$. We set $\partial D=\mu$. Then $m=p(\mu)$ is a meridian of V. It is easy to show that $p^{-1}(m)$ is either connected (i.e. $p^{-1}(m)=\mu$) or has three components $\mu_{1}(=\mu), \mu_{2}, \mu_{3}$. If
the latter case holds, we may extend $p \mid T(e): T(e) \rightarrow T$ to a 3-fold unbranched covering $q: V_{1} \rightarrow V$, where V_{1} is a solid torus with meridians $\mu_{1}, \mu_{2}, \mu_{3}$. Then $q \cup p \mid M\left(v_{0}\right): V_{1} \cup_{T(e)} M\left(v_{0}\right) \rightarrow S^{3}$ is a 3-fold unbranched covering. This contradicts that S^{3} has no non-trivial covering. Hence we have $p^{-1}(m)=\mu$. Then we may extend $p \mid T(e): T(e) \rightarrow T$ to a 3-fold cyclic branched covering $r: V_{2} \rightarrow V$ branched over a core c of V, where V_{2} is a solid torus with a meridian μ. Then $r \cup p \mid M\left(v_{0}\right): V_{2}$ $\cup_{T(e)} M\left(v_{0}\right) \rightarrow S^{3}$ is a 3 -fold cyclic branched covering branched over c. Since c in S^{3} is the companion of K for T, c is fibered and $g(c)<g(K)$. If $\left(M\left(v_{0}\right), \mu\right)$ is a knot space-meridian pair, then $V_{2} \cup_{T(e)} M\left(v_{0}\right) \cong S^{3}$. By the Branched Covering Theorem, c (hence V) is unknotted in S^{3}. Therefore $T=\partial V$ is compressible in a solid torus $S^{3}-\operatorname{int} V$, a contradiction. Hence $M(v)$ is a solid torus with a meridian μ. Therefore we have $V_{2} \cup_{T(e)} M\left(v_{0}\right) \cong M$. By [3, Theorem 2], c is simple. Thus $r \cup p \mid M\left(v_{0}\right)$ satisfies the conclusion of (i).

Case 2. $\Gamma=\Gamma_{2}$ and $\partial M\left(v_{2}\right)$ is compressible in $M\left(v_{2}\right)$.
Let D be a compressing disk for $T(e)$ in $M\left(v_{2}\right)$. We set $\mu=\partial D$. Then $m=p(\mu)$ is a meridian of V. If $p^{-1}(m) \cap T(e)$ consists of two components μ, μ^{\prime}, we may extend $p \mid T(e): T(e) \rightarrow T$ to a 2 -fold unbranched covering $q: V_{1} \rightarrow V$, where V_{1} is a solid torus with meridians μ, μ^{\prime}. Then

$$
q \cup\left(p \mid\left(M-\operatorname{int} M\left(v_{2}\right)\right)\right): V_{1} \cup_{T(e)}\left(M-\operatorname{int} M\left(v_{2}\right)\right) \rightarrow S^{3}
$$

is a 3-fold unbranched covering, a contradiction. Therefore we have $p^{-1}(m) \cap T(e)=\mu$. Since $p \mid M\left(v_{2}\right): \quad M\left(v_{2}\right) \rightarrow V$ is a 2-fold (cyclic) branched covering, by the Equivariant Dehn's Lemma [8, Theorem 5], we may assume $g \cdot D=D$ for all $g \in G$, where $G\left(\cong Z_{2}\right)$ is the group of the branched covering. By the argument of Gordon and Litherland [3], $p(D)$ is a meridian disk of V and $p(D) \cap K$ is a single point. By Schubert [14, $\S 14$, Satz 1], K is a composite knot. This contradicts our assumption. Thus Case 2 cannot occur.

Case 3. $\Gamma=\Gamma_{2}$ and $\partial M\left(v_{2}\right)$ is incompressible in $M\left(v_{2}\right)$.
We set $M_{0}=M-\operatorname{int} M\left(v_{2}\right)$. Let D be a compressing disk for $T(e)$ in M_{0}. By a remark in $\S 1$, either M_{0} is a solid torus with a meridian disk D, or $\left(M\left(v_{2}\right), \partial D\right)$ is a knot space-meridian pair. We set $\partial D=\mu$.
(3.1) We suppose M_{0} is a solid torus. If $p \mid \mu: \mu \rightarrow p(\mu)$ is a 2 -fold covering (resp. a homeomorphism), then we may extend $p \mid T(e): T(e) \rightarrow T$ to $q: M_{0} \rightarrow V_{1}$ which is a 2-fold branched covering branched over a core c of V_{1} (resp. a 2-fold unbranched covering), where V_{1} is a solid torus with a
meridian $p(\mu)$. Then

$$
p \mid M\left(v_{2}\right) \cup q: M=M\left(v_{2}\right) \cup_{T(e)} M_{0} \rightarrow V \cup_{T} V_{1}
$$

is a 2-fold branched covering branched over a link $K \cup c$ (resp. a knot K). We set $N=V \cup_{T} V_{1}$. Thus $p \mid M\left(v_{2}\right) \cup q$ satisfies the conclusions of (ii).
(3.2) We suppose that $\left(M\left(v_{2}\right), \mu\right)$ is a knot space-meridian pair. By the argument of (3.1), we may extend $p \mid T(e): T(e) \rightarrow T$ to a 2-fold branched or unbranched covering $r: V_{2} \rightarrow V_{3}$, where V_{2}, V_{3} are solid tori with meridians $\mu, p(\mu)$ respectively. Then

$$
p \mid M\left(v_{2}\right) \cup r: M\left(v_{2}\right) \cup_{T(e)} V_{2} \rightarrow V \cup_{T} V_{3}
$$

is a 2 -fold branched covering. Since $\left(M\left(v_{2}\right), \mu\right)$ is a knot space-meridian pair, $M\left(v_{2}\right) \cup_{T(e)} V_{2}$ is homeomorphic to S^{3}. Hence we have $\pi_{1}\left(V \cup_{T} V_{3}\right)$ $=1$, so $V \cup_{T} V_{3}$ is homeomorphic to S^{3}. By Fox [2, pp. 165-166], the branch set of $p \mid M\left(v_{2}\right) \cup r$ is connected. Therefore $r: V_{2} \rightarrow V_{3}$ must be an unbranched covering, so $p \mid \mu: \mu \rightarrow p(\mu)$ is a homeomorphism. Let λ be a longitude of $\left(M\left(v_{2}\right), \mu\right)$. Since $l=p(\lambda)$ is homologous to zero in V, l is a meridian of V. Since $V \cup_{T} V_{3} \cong S^{3}$, we may assume $l \cap p(\mu)$ consists of a single point. Since $p \mid \mu: \mu \rightarrow p(\mu)$ is a homeomorphism, $p^{-1}(l) \cap \mu$ consists of a single point. Hence $p^{-1}(l) \cap T(e)$ is connected, i.e. $p^{-1}(l) \cap$ $T(e)=\lambda$. Therefore we may extend $p \mid T(e): T(e) \rightarrow T$ to a 2 -fold branched covering $s: V_{4} \rightarrow V$ branched over a core c of V, where V_{4} is a solid torus with a meridian λ. Then $s \cup p \mid M_{0}: V_{4} \cup_{T(e)} M_{0} \rightarrow S^{3}$ is a 3-fold irregular branched covering branched over c. Since c in S^{3} is the companion of K for T, c is a fibered knot and $g(c)<g(K)$. We set $N=N\left(D, M_{0}\right)$. Since $\lambda \cap \mu$ consists of a single point, $B_{1}=V_{4} \cup_{T(e) \cap N} N$ is a 3-ball in $V_{4} \cup_{T(e)} M_{0}$. Since $\left(M\left(v_{2}\right), \mu\right)$ is a knot space-meridian pair, $B_{2}=M\left(v_{2}\right) \cup_{T(e) \cap N} N$ is a 3-ball in M. Since

$$
V_{4} \cup_{T(e)} M_{0}-\operatorname{int} B_{1} \cong \overline{\left(M_{0}-N\right)} \cong M-\operatorname{int} B_{2}
$$

we have $V_{4} \cup_{T(e)} M_{0} \cong M$. Hence the result follows by induction.
Case 4. $\Gamma=\Gamma_{3}$.
By Lemma 3, $T\left(e_{2}\right)$ is compressible in $M(v)$. Let D_{2} be a compressing disk for $T\left(e_{2}\right)$ in $M(v)$. We set $\mu_{2}=\partial D_{2}$ and $m_{2}=p\left(\mu_{2}\right)$. Since $p\left(D_{2}\right) \subset$ V, m_{2} is a meridian m of V. If $p^{-1}(m) \cap T\left(e_{2}\right)$ consists of two components $\mu_{2}, \mu_{2}^{\prime}$, then we may extend $p \mid T\left(e_{2}\right): T\left(e_{2}\right) \rightarrow T$ to a 2-fold unbranched covering $q: V_{1} \rightarrow V$, where V_{1} is a solid torus with meridians $\mu_{2}, \mu_{2}^{\prime}$. Then

$$
q \cup p \mid M\left(v_{2}\right): V_{1} \cup_{T\left(e_{2}\right)} M\left(v_{2}\right) \rightarrow S^{3}
$$

is a 2 -fold unbranched covering, a contradiction. Hence we have $p^{-1}(m)$ $\cap T\left(e_{2}\right)=\mu_{2}$. Then we may extend $p \mid T\left(e_{2}\right): T\left(e_{2}\right) \rightarrow T$ to a 2 -fold branched covering $r: V_{2} \rightarrow V$ branched over a core c of V, where V_{2} is a solid torus with a meridian μ_{2}. Then

$$
r \cup p \mid M\left(v_{2}\right): V_{2} \cup_{T\left(e_{2}\right)} M\left(v_{2}\right) \rightarrow S^{3}
$$

is a 2 -fold branched covering branched over c. If $\left(M\left(v_{2}\right), \mu_{2}\right)$ is a knot space-meridian pair, then $V_{2} \cup_{T\left(e_{1}\right)} M\left(v_{2}\right) \cong S^{3}$. This gives a contradiction as in Case 1 . Hence M_{1} is a solid torus with a meridian μ_{2}. Therefore we have $V_{2} \cup_{T\left(e_{2}\right)} M\left(v_{2}\right) \cong M$. Thus $r \cup p \mid M\left(v_{2}\right)$ satisfies the conclusion of (ii).

Case 5. $\Gamma=\Gamma_{4}$.
We may extend a homeomorphism $p \mid T\left(e_{1}\right): T\left(e_{1}\right) \rightarrow T$ to a homeomorphism $q: V_{1} \rightarrow V$, where V_{1} is a solid torus bounded by $T\left(e_{1}\right)$. Then

$$
q \cup p \mid\left(M\left(v_{0}\right) \cup_{T\left(e_{2}\right)} M\left(v_{1}\right)\right): V_{1} \cup_{T\left(e_{1}\right)}\left(M\left(v_{0}\right) \cup_{T\left(e_{2}\right)} M\left(v_{1}\right)\right) \rightarrow S^{3}
$$

is an unbranched 2 -fold covering, a contradiction. Thus Case 5 cannot occur.

Case 6. $\Gamma=\Gamma_{5}$,
Let D_{i} be a compressing disk for $T\left(e_{i}\right)$ in $M-\operatorname{int} M\left(v_{i}\right)$ for $i=1,2,3$. By Lemma 3 we may assume $D_{i} \subset M(v)$ and $D_{i} \cap D_{j}=\varnothing$ for $i \neq j$. We set $\mu_{i}=\partial D_{i}$. Since $p\left(D_{i}\right) \subset V, m_{i}=p\left(\mu_{i}\right)$ is a meridian of V. We may assume $m_{1}=m_{2}=m_{3}(=m)$. Since $p \mid M\left(v_{i}\right): M\left(v_{i}\right) \rightarrow S^{3}-\operatorname{int} V$ is a homeomorphism, $\left(M\left(v_{i}\right), \mu_{i}\right)$ is a knot space-meridian pair. Let λ_{i} be a longitude of $\left(M\left(v_{i}\right), \mu_{i}\right)$. We may assume $l=p\left(\lambda_{1}\right)=p\left(\lambda_{2}\right)=p\left(\lambda_{3}\right)$. Then l is a longitude of $\left(S^{3}-\operatorname{int} V, m\right)$. We may extend a homeomorphism $p \mid T\left(e_{i}\right): T\left(e_{i}\right) \rightarrow T$ to a homeomorphism $q_{i}: V_{i} \rightarrow \bar{V}$, where V_{i} (resp. \bar{V}) is a solid torus with a meridian λ_{i} (resp. l). Then

$$
p \mid M(v) \cup\left(\bigcup_{i=1}^{3} q_{i}\right): M(v) \cup_{T\left(e_{1}\right)} V_{1} \cup_{T\left(e_{2}\right)} V_{2} \cup_{T\left(e_{3}\right)} V_{3} \rightarrow V \cup_{T} \bar{V}
$$

is a 3-fold irregular branched covering over K in $V \cup_{T} \bar{V}\left(\cong S^{3}\right)$. As in Case 3 we have

$$
M(v) \cup_{T\left(e_{1}\right)} V_{1} \cup_{T\left(e_{2}\right)} V_{2} \cup_{T\left(e_{3}\right)} V_{3} \cong M
$$

Obviously K in $V \cup_{T} \bar{V}$ is the preimage of $K\left(\right.$ in $\left.V \cup_{T}\left(S^{3}-\operatorname{int} V\right)\right)$ for T. Hence the result follows by induction. This completes the proof.

References

[1] J. S. Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Studies No. 82, Princeton Univ. Press (1975).
[2] R. H. Fox, A note on branched cyclic coverings of spheres, Rev. Mat. Hisp.-Amer., 32 (1972), 158-166.
[3] C. M. Gordon and R. H. Litherland, Incompressible surfaces in branched coverings, (to appear).
[4] H. M. Hilden, Three-fold branched coverings of S^{3}, Amer. J. Math., 98 (1976), 989-997.
[5] U. Hirsch, Über offene Abbildungen auf die 3-Sphäre, Math. Zeit., 140 (1974), 203-230.
[6] W. Jaco and P. Shalen, Seifert Fibered Spaces in 3-Manifolds, Memoirs of Amer. Math. Soc. Vol. 21 No. 220, Amer. Math. Soc., (1979).
[7] K. Johanson, Homotopy Equivalences of 3-Manifolds With Boundaries, Lecture Notes in Math., Vol. 761, Springer-Verlag (1979).
[8] W. H. Meeks III and S.-T. Yau, The equivariant Dehn's lemma and loop theorem, Comment. Math. Helv., 56 (1981), 225-239.
[9] J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math., 84 (1962), 1-7.
[10] J. M. Montesinos, Surgery on links and double branched covers of S^{3}, "Knots, Groups and 3-Manifolds", (ed. by L. P. Neuwirth), Ann. of Math. Studies No. 84, Princeton Univ. Press (1974), 227-259.
[11] _, Three manifolds as 3-fold branched covers of S^{3}, Quart. J. Math. Oxford, (2) 27 (1976), 85-94.
[12] R. Myers, Companionships of knots and the Smith conjecture, Trans. Amer. Math. Soc., 259 (1980), 1-32.
[13] Proceedings of the Smith Conjecture Conference at Columbia University (to appear).
[14] H. Schubert, Knoten und Vollringe, Acta Math., 90 (1953), 131-286.
[15] T. Soma, A homotopy 3-sphere and 3-fold branched coverings of S^{3}, (preprint).
[16] J. R. Stallings, Constructions of fibered knots and links, Proc. Symp. Pure Math., 32 (2) (1978), 55-60.

Received June 1, 1982 and in revised form November 22, 1982.

Waseda University
Nishi-Waseda, Shinjuku
TOKyo 160, Japan

