ENDOSCOPIC GROUPS AND BASE CHANGE C/R

D. Shelstad

We consider a real reductive group G with complex points $G(\mathbf{C})$, Galois automorphism σ, and real points $G(\mathbf{R})=\{g \in G(\mathbf{C}): \sigma(g)=g\}$. In general, an irreducible admissible representation Π of $G(\mathbf{C})$ equivalent to its Galois conjugate $\Pi \circ \sigma$ need not be a lift from $G(\mathbf{R})$, even if G is quasi-split over \mathbf{R}. Following the results of L-indistinguishability we might expect this phenomenon to be related to the fact that σ-twisted conjugacy on $G(\mathbf{C})$ need not be "stable", and therefore attempt to match the various "unstable" combinations of σ-twisted orbital integrals on $G(\mathbf{C})$ with stable orbital integrals on certain groups $H(\mathbf{R})$. The principle of functoriality in the L-group would then suggest, with reservations in the nontempered case, a relation between the σ-twisted characters of representations of $G(\mathbf{C})$ fixed up to equivalence by σ and the "dual lifts" to $G(\mathbf{C})$ of stable characters on the groups $H(\mathbf{R})$.

In this paper we define the relevant groups $H \ldots$ they turn out to be the endoscopic groups from L-indistinguishability ... and prove a matching theorem for orbital integrals. As a preliminary to the proposed dual liftings of characters we also study the "factoring" of Galois-invariant Langlands parameters for $G(\mathbf{C})$.

1. Introduction. We begin with two simple examples. Let $G(\mathbf{C})=$ \mathbf{C}^{x} and $\sigma(z)=\bar{z}^{-1}, z \in \mathbf{C}^{x}$, so that $G(\mathbf{R})=\{g \in G(\mathbf{C}): \sigma(g)=g\}$ is the unit circle in \mathbf{C}^{x}. A quasicharacter on \mathbf{C}^{x} fixed by σ, i.e., trivial on the positive reals, need not be of the form $z \rightarrow \chi(z \sigma(z))=\chi(z / \bar{z})$, with χ a character on the unit circle. At the same time $z \in \mathbf{C}^{x}$ is stably σ-conjugate to $-z$, but not σ-conjugate (see [Sh6] for definitions). Let $f \in C_{c}^{\infty}\left(\mathbf{C}^{x}\right)$ and write $f(r, \theta)$ for $f\left(r e^{i \theta}\right)$. Set $H_{1}=H_{2}=G$, so that $H_{1}(\mathbf{R})=S^{1}$. Let

$$
f_{1}\left(e^{i \theta}\right)=\frac{1}{2} \int_{0}^{\infty}(f(r, \theta / 2)+f(r, \theta / 2+\pi)) d r / r
$$

and

$$
f_{2}\left(e^{i \theta}\right)=\frac{1}{2} e^{i \theta / 2} \int_{0}^{\infty}(f(r, \theta / 2)-f(r, \theta / 2+\pi)) d r / r
$$

for $-\pi<\theta<\pi$. Then both f_{1} and f_{2} extend smoothly to S^{1}. If χ is a character on S^{1} then $f \rightarrow \int_{-\pi}^{\pi} \chi\left(e^{i \theta}\right) f_{1}\left(e^{i \theta}\right) d \theta$ is a distribution on \mathbf{C}^{x} representing the usual lift of χ to $G(\mathbf{C})$, i.e., representing the quasicharacter $z \rightarrow \chi(z \sigma(z))$. On the other hand, $f \rightarrow \int_{-\pi}^{\pi} \chi\left(e^{i \theta}\right) f_{2}\left(e^{i \theta}\right) d \theta$ lifts χ to the quasicharacter $z=r e^{i \theta} \rightarrow \chi(z \sigma(z)) e^{i \theta}$. We have therefore recovered the remaining Galois-invariant quasicharacters on \mathbf{C}^{x}.

For a general group, however, there are difficulties more akin to those for L-indistinguishability. Consider $G=\mathrm{SL}_{2}$. Let

$$
H(\mathbf{R})=\left\{r(\theta)=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\right\} .
$$

Note that if $\theta \neq 0(\bmod \pi)$ then $r(\theta)$ and $r(\theta+\pi)$ are stably σ-conjugate in $G(\mathbf{C})$ but not σ-conjugate (see [Sh6, Lemma 2.5.2]). For $f \in C_{c}^{\infty}\left(\mathrm{SL}_{2}(\mathbf{C})\right.$), define

$$
f_{H}(r(\theta))=e^{i \theta / 2}\left(e^{i \theta}-e^{-i \theta}\right)\left(\Phi_{f}^{\sigma}(\theta / 2)+\Phi_{f}^{\sigma}(\theta / 2+\pi)\right)
$$

for $-\pi<\theta<\pi$, where

$$
\Phi_{f}^{\sigma}(\theta)=\int_{G(\mathbf{C}) / H(\mathbf{R})} f\left(\sigma(g) r(\theta) g^{-1}\right) \frac{d g}{d \theta}
$$

$d g$ denoting a Haar measure on $G(\mathbf{C})=\mathrm{SL}_{2}(\mathbf{C})$. It can be shown that f_{H} extends to a C^{∞} function on $H(\mathbf{R})$. Then $f \rightarrow \int_{H(\mathbf{R})} \chi f_{H}$ is a distribution on $\mathrm{SL}_{2}(\mathbf{C})$ (see [Sh6, §5.4] for an explicit formula). L. Clozel has shown that this distribution is, up to a constant, the twisted character of a Galois-fixed equivalence class of representations of $\mathrm{SL}_{2}(\mathbf{C})$. It is easily verified that all such classes of (irreducible, admissible) representations of $\mathrm{SL}_{2}(\mathbf{C})$ which are not lifts from $\mathrm{SL}_{2}(\mathbf{R})$ are lifts in this way.

Returning to the general problem, we find it convenient to consider $G(\mathbf{C})$ as the group of real points on a group \tilde{G}, and σ as the restriction to $\tilde{G}(\mathbf{R})$ of an algebraic automorphism α of \tilde{G} (cf. §2). Also, since ($\tilde{G}, \alpha)$ is our starting point, rather than G itself, we may as well assume that G is quasi-split over \mathbf{R}.

In this paper we will be concerned with the matchings for α-twisted orbital integrals on $\tilde{G}(\mathbf{R})$; this includes the problem of determining what it is they should match. Theorem 7.1 is our main result, and $\S \S 2$ to 6 are preparation for it. Also, as both a check on our definitions and a preliminary to the proposed dual liftings, we will consider the question of "factoring" Galois-invariant Langlands parameters for $G(\mathbf{C})$ or, equivalently [L1] α-invariant parameters for $\tilde{G}(\mathbf{R})$. Theorem 8.1 is the main result.

In [Sh6] we started a study of the matching problem for α-twisted orbital integrals. We found that, despite various "technical" difficulties, the jump formulas for twisted orbital integrals on $\tilde{G}(\mathbf{R})$ are closed related to those for ordinary orbital integrals on $G(\mathbf{R})$. Making convenient technical assumptions, we then put together a matching theorem involving the endoscopic groups from L-indistinguishability. In this paper we start afresh, making none of the technical assumptions of [Sh6]. We first define
the notion of endoscopic group for (\tilde{G}, α). This turns out to be the same as the notion of endoscopic group in L-indistinguishability [L3], [Sh4]. However, there is new information in the data for an endoscopic group H for (\tilde{G}, α) and it is this information which allows us to formulate a matching theorem without the assumption (4.3.2) of [Sh6]. Moreover in relating the embeddings ${ }^{L} H \hookrightarrow{ }^{L} \tilde{G}$ relevant to our present problem to the embeddings ${ }^{L} H \hookrightarrow{ }^{L} G$ from L-indistinguishability we find a remarkable quasicharacter on $\tilde{H}(\mathbf{R}) \simeq H(\mathbf{C})$ which allows us to dispense with the "cross-section for the norm" in [Sh6] (cf. Lemma 6.4).

As always, the twisted orbital integrals must be normalized. The normalization factors will be written in a form suitable for global applications [L3] and, more specifically, in a form to reflect the connection with L-indistinguishability for real groups. The proof of Theorem 7.1 itself relies heavily on the proof of the matching theorem for L-indistinguishability (see [Sh5] for an outline of the latter proof).

We will follow the notation of [Sh1]-[Sh7] as closely as possible, especially with respect to L-group data. However, we now write $G(\mathbf{C})$ and $G(\mathbf{R})$ in place of \mathbf{G} and G. The definitions in this paper may be presented in greater generality (cf. [Sh7]); in the general case there is no such intimate tie with L-indistinguishability.
2. The groups G, \tilde{G} and the automorphism α. Let G be a connected reductive linear algebraic group defined over \mathbf{R}. Assume that G is quasisplit over \mathbf{R}. In fixing the usual L-group data, we take G itself for G^{*}, a quasi-split inner form of G, and the identity map for ψ, an inner twist from G to G^{*}. Then B^{*} will be a Borel subgroup over \mathbf{R} in G, and T^{*} a maximal torus over \mathbf{R} in B^{*}. We form the dual $\left({ }^{L} G^{0},{ }^{L} B^{0},{ }^{L} T^{0},\left\{X_{r}\right\}\right)$ with $r \in \Sigma\left({ }^{L} B^{0},{ }^{L} T^{0}\right)$, the set of simple roots of ${ }^{L} T^{0}$ in ${ }^{L} B^{0}$. In fact it will be convenient to have fixed a root vector X_{r}, for any root r of ${ }^{L} T^{0}$ in ${ }^{L} G^{0}$. We therefore fix a Chevalley basis and take for $\left\{X_{r}, r \in \Sigma\left({ }^{L} B^{0},{ }^{L} T^{0}\right)\right\}$ the vectors so provided. Then ${ }^{L} G={ }^{L} G^{0} \rtimes W$, with σ_{G} denoting the action of $1 \times \sigma \in W$ on ${ }^{L} G^{0}$. See [Sh 3, 4, or 5] for further explanation of the notation.

Let \tilde{G} be the group obtained from G by restriction of scalars from \mathbf{C} to \mathbf{R}. We realize \tilde{G} as $G \times G$ with Galois automorphism $\sigma_{\tilde{G}}:(x, y) \rightarrow$ $\left(\sigma_{G}(y), \sigma_{G}(x)\right)$. Then $\tilde{B}^{*}=B^{*} \times B^{*}$ will be the distinguished Borel subgroup defined over \mathbf{R} and $\tilde{T}^{*}=T^{*} \times T^{*}$. We realize the L-group ${ }^{L} \tilde{G}$ of \tilde{G} as follows. Set ${ }^{L} \tilde{G}^{0}={ }^{L} G^{0} \times{ }^{L} G^{0},{ }^{L} \tilde{B}^{0}={ }^{L} B^{0} \times{ }^{L} B^{0},{ }^{L} \tilde{T}^{0}={ }^{L} T^{0} \times{ }^{L} T^{0}$, $X_{\left(r, r^{\prime}\right)}=\left(X_{r}, X_{r^{\prime}}\right)$ for all roots r, r^{\prime} of ${ }^{L} T^{0}$ in ${ }^{L} G^{0}$, and define $\sigma_{\tilde{G}}$: ${ }^{L} \tilde{G}^{0} \rightarrow{ }^{L} \tilde{G}^{0}$ by $\sigma_{\tilde{G}}(g, h)=\left(\sigma_{G}(h), \sigma_{G}(g)\right), g, h \in{ }^{L} G^{0}$. Then ${ }^{L} \tilde{G}={ }^{L} \tilde{G}^{0} \rtimes W$, with $\mathbf{C}^{x} \times 1$ acting trivially and $1 \times \sigma$ by $\sigma_{\tilde{G}}$.

Let $\alpha: \tilde{G} \rightarrow \tilde{G}$ be the automorphism $(x, y) \rightarrow(y, x)$. We take the standard dual automorphism (cf. [Sh7]) of α, and denote it by α also. Thus:

$$
\alpha((g, h) \times w)=(h, g) \times w, \quad g, h \in{ }^{L} G^{0}, w \in W
$$

3. Endoscopic groups for (\tilde{G}, α). The following is a special case of the definitions in [Sh7]. Let $s \in{ }^{L} \tilde{G}^{0}$. Then we set $N(s)=s \alpha(s)$, $\operatorname{Cent}\left(N(s),{ }^{L} \tilde{G}^{0}\right)=\left\{g \in{ }^{L} \tilde{G}^{0}: g^{-1} N(s) g=N(s)\right\}$ and Cent ${ }_{\alpha}\left(s,{ }^{L} \tilde{G}^{0}\right)=$ $\left\{g \in{ }^{L} \tilde{G}^{0}: g^{-1} s \alpha(g)=s\right\}$. Call $s \alpha$-semisimple if Cent ${ }_{\alpha}\left(s,{ }^{L} \tilde{G}^{\alpha}\right)$ is reductive. In $\S 4$ we will observe that s is α-semisimple if and only if $N(s)$ is semisimple (cf. Lemma 4.2). Let \tilde{Z}^{W} be the group of W-invariants in the center of ${ }^{L} \tilde{G}^{0}$. Thus $\tilde{Z}^{W}={ }^{L} \tilde{G}^{0} \cap \operatorname{Center}\left({ }^{L} \tilde{G}\right)=\left\{\left(g, \sigma_{G}(g)\right) \times 1 \times 1: g \in\right.$ Center $\left.\left({ }^{L} G^{0}\right)\right\}$. Also

$$
\operatorname{Cent}_{\alpha}\left(s z,{ }^{L} \tilde{G}^{0}\right)=\operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}^{0}\right), \quad s \in{ }^{L} \tilde{G}^{0}, z \in \tilde{Z}^{W}
$$

We will now use s to denote a coset of \tilde{Z}^{W} in ${ }^{L} \tilde{G}^{0}$ and $\operatorname{Cent}{ }_{\alpha}\left(s,{ }^{L} \tilde{G}^{0}\right)$ to denote $\operatorname{Cent}_{\alpha}\left(a,{ }^{L} \tilde{G}^{0}\right)$ for a in the coset s. Following [Sh7], we consider tuples

$$
\left(s,{ }^{L} H_{s}^{0},{ }^{L} B_{s}^{0},{ }^{L} T_{s}^{0},\{Y\}, \rho_{s}\right)
$$

where
(i) $s \in{ }^{L} \tilde{G}^{0}$ is a coset of \tilde{Z}^{W} consisting of α-semisimple elements,
(ii) ${ }^{L} H_{s}^{0}=\left(\operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}^{0}\right)\right)^{0}$,
(iii) ${ }^{L} B_{s}^{0}$ is a Borel subgroup of ${ }^{L} H_{s}^{0}$,
(iv) ${ }^{L} T_{s}^{0} \subset{ }^{L} B_{s}^{0}$ is a maximal torus in ${ }^{L} H_{s}^{0}$,
(v) $\{Y\}$ is a set of root vectors for the simple roots of ${ }^{L} T_{s}^{0}$ in ${ }^{L} B_{s}^{0}$,
(vi) $\rho_{s}: W \rightarrow \operatorname{Aut}\left({ }^{L} H_{s}^{0},{ }^{L} B_{s}^{0},{ }^{L} T_{s}^{0},\{Y\}\right)$ is a homomorphism which factors through $\operatorname{Gal}(\mathbf{C} / \mathbf{R})$ and is "realized in $\operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}\right)$ ", i.e. $\rho_{s}(w)=$ ad $\left.n(w)\right|_{H_{s}^{0}}, \quad w \in W$, for some $n(w) \in{ }^{L} \tilde{G}^{0} \times w$ such that $n(w)^{-1} a \alpha(n(w))=a$ for each a in the coset s.

Let ${ }^{L} H_{s}={ }^{L} H_{s}^{0} \rtimes W$, the action of W on ${ }^{L} H_{s}^{0}$ being that defined by ρ_{s}. Often we will write σ_{s} for the automorphism $\rho_{s}(1 \times \sigma)$, and abbreviate $\left(s,{ }^{L} H_{s}^{0}, \ldots, \rho_{s}\right)$ by $\left(s,{ }^{L} H_{s}\right)$.

Two tuples

$$
\left(s,{ }^{L} H_{s}^{0},{ }^{L} B_{s}^{0},{ }^{L} T_{s}^{0},\{Y\}, \rho_{s}\right) \quad \text { and } \quad\left(s^{\prime},{ }^{L} H_{s^{\prime}}^{0},{ }^{L} B_{s^{\hookrightarrow}}^{0}{ }^{L} T_{s^{\prime}}^{0},\left\{Y^{\prime}\right\}, \rho_{s^{\prime}}\right)
$$

are equivalent if there exists $g \in{ }^{L} \tilde{G}^{0}$ such that ${ }^{L} H_{s^{\prime}}^{0}=g^{-1}{ }^{L} H_{s}^{0} g,{ }^{L} B_{s^{\prime}}^{0}=$ $g^{-1 L} B_{s}^{0} g, \quad{ }^{L} T_{s^{\prime}}^{0}=g^{-1 L} T_{s}^{0} g, \quad\left\{Y^{\prime}\right\}=\left\{\operatorname{Ad} g^{-1}(Y)\right\}$ and if $n(w) \in$ Cent ${ }_{\alpha}\left(s,{ }^{L} \tilde{G}\right)$ realizes $\rho_{s}(w)$ then $g^{-1} n(w) g$ lies in Cent ${ }_{\alpha}\left(s^{\prime},{ }^{L} \tilde{G}\right)$ and realizes $\rho_{s^{\prime}}(w), w \in W$. The set of all equivalence classes will be denoted
$\subseteq(\tilde{G}, \alpha)$. Using the results of the next section and Lemma 2.3.3 of [Sh4], we may show that $\subseteq(\tilde{G}, \alpha)$ is a finite set. Since this fact will not be needed we omit the proof.

Finally, we call a quasi-split group H over \mathbf{R} an endoscopic group for (\tilde{G}, α) if some ${ }^{L} H_{s}$ as above is an L-group for H.
4. The relation between endoscopic groups for (\tilde{G}, α) and endoscopic groups for G. By the endoscopic groups for G we mean the groups " H " of [Sh4], i.e. essentially the groups of [L1]. The set $\mathfrak{S}(G)$, or $\mathfrak{S}(G, 1)$ in the more general notation of [Sh7], and the tuples used in its definition will be taken from [Sh4] (. . .there is a small difference in the definitions of [L3]).

We embed ${ }^{L} G$ "diagonally" in ${ }^{L} \tilde{G}$, i.e. by the map $g \times w \rightarrow(g, g) \times w$, $g \in{ }^{L} G^{0}, w \in W$, and will frequently identify ${ }^{L} G$ with its image in ${ }^{L} \tilde{G}$. As in [Sh4], Z^{W} will denote the set of W-invariants in the center of ${ }^{L} G^{0}$.

By an α-conjugacy class in ${ }^{L} \tilde{G}^{0}$, we will mean a set $\left\{g^{-1} a \alpha(g)\right.$; $\left.g \in{ }^{L} \tilde{G}^{0}\right\}$, where $a \in^{L} \tilde{G}^{0}$.

Lemma 4.1.
(i) Each α-conjugacy class in ${ }^{L} \tilde{G}^{0}$ contains an element of the form $(x, 1), x \in{ }^{L} G^{0}$.
(ii) For $x \in{ }^{L} G^{0}$, $\operatorname{Cent}_{\alpha}\left((x, 1),{ }^{L} \tilde{G}^{0}\right)=\operatorname{Cent}\left(x,{ }^{L} G^{0}\right)$.

Here, of course, $\operatorname{Cent}\left(x,{ }^{L} G^{0}\right)$ has been identified with its image in ${ }^{L} \tilde{G}$ under the diagonal map.

Proof. Let $a=\left(g_{1}, g_{2}\right) \in{ }^{L} \tilde{G}^{0}, g=\left(1, g_{2}\right)$. Then $g^{-1} a \alpha(g)=$ $\left(1, g_{2}^{-1}\right)\left(g_{1}, g_{2}\right)\left(g_{2}, 1\right)=\left(g_{1} g_{2}, 1\right)$, so that (i) is proved. (ii) is also a simple calculation.

Lemma 4.2. $a \in{ }^{L} \tilde{G}^{0}$ is α-semisimple if and only if $N(a)=a \alpha(a)$ is semisimple.

Proof. Let $a \in{ }^{L} \tilde{G}^{0}$. Choose $g \in{ }^{L} \tilde{G}^{0}$ such that $g^{-1} a \alpha(g)=(x, 1)$, for suitable $x \in{ }^{L} G^{0}$. Then

$$
\operatorname{Cent}_{\alpha}\left(a,{ }^{L} \tilde{G}^{0}\right)=g \operatorname{Cent}_{\alpha}\left((x, 1),{ }^{L} \tilde{G}^{0}\right) g^{-1}=g \operatorname{Cent}\left(x,{ }^{L} G^{0}\right) g^{-1} .
$$

On the other hand, $N(a)=g(x, x) g^{-1}$, so that

$$
\operatorname{Cent}\left(N(a),{ }^{L} \tilde{G}^{0}\right)=g\left(\operatorname{Cent}\left(x,{ }^{L} G^{0}\right) \times \operatorname{Cent}\left(x,{ }^{L} G^{0}\right)\right) g^{-1} .
$$

The lemma then follows from standard facts.

Lemma 4.3. Let s be a coset of \tilde{Z}^{W} in ${ }^{L} \tilde{G}^{0}$ consisting of α-semisimple elements. Then there exists $g \in^{L} \tilde{G}^{0}$ such that $s^{\prime}=g^{-1} s \alpha(g)$ has the property that $\left\{a \alpha(a): a \in s^{\prime}\right\}$ is contained in ${ }^{L} G^{0}$. Then $\left\{a \alpha(a): a \in s^{\prime}\right\}$ is contained in a unique coset of Z^{W} in ${ }^{L} G^{0}$. This coset, to be denoted $N\left(s^{\prime}\right)$, consists of semisimple elements.

Proof. Let $a \in s$. Choose $g \in{ }^{L} \tilde{G}^{0}$ such that $g^{-1} a \alpha(g)=(x, 1)$, where $x \in{ }^{L} G^{0}$ is semisimple. Let $s^{\prime}=(x, 1) \tilde{Z}^{W}$. Then if $b \in s^{\prime}, b \alpha(b)=$ $(x, x)\left(z \sigma_{G}(z), z \sigma_{G}(z)\right)$, for some $z \in \operatorname{Cent}\left({ }^{L} G^{0}\right)$. Thus, with our identifications, $b \alpha(b) \in x Z^{W}$, a coset of Z^{W} in ${ }^{L} G^{0}$ consisting of semisimple elements. The rest is clear.

Lemma 4.4. Each element of $\subseteq(\tilde{G}, \alpha)$ has a representative $\left(s,{ }^{L} H_{s}\right)$ such that $\left(N(s),{ }^{L} H_{s}\right)$ is a representative for an element of $\subseteq(G)$ i.e. such that $\{a \alpha(a): a \in s\}$ is contained in ${ }^{L} G^{0}(\ldots$ so that $N(s)$ is defined $),{ }^{L} H_{s}^{0}$ coincides with $\left(\operatorname{Cent}\left(N(s),{ }^{L} G^{0}\right)\right)^{0}$, and ρ_{s} is "realized in $\operatorname{Cent}\left(N(s),{ }^{L} G\right) . "$

Proof. We may take $s=(x, 1) \tilde{Z}^{W}$, some $x \in{ }^{L} T^{0}$. Then $N(s)=x Z^{W}$ and $\operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}^{0}\right)=\operatorname{Cent}\left(N(s),{ }^{L} G^{0}\right)$. We may also assume that ${ }^{L} T_{s}^{0}=$ ${ }^{L} T^{0},{ }^{L} B_{s}^{0}={ }^{L} B^{0} \cap{ }^{L} H_{s}^{0}\left(\ldots{ }^{L} T^{0}\right.$ and ${ }^{L} B^{0}$ being identified with their images in $\left.{ }^{L} \tilde{G}^{0}\right)$ and that $\{Y\}=\left\{X_{r}: r \in \Sigma\left({ }^{L} B^{0} \cap{ }^{L} H_{s}^{0},{ }^{L} T^{0}\right)\right\}$. Then ρ_{s} is a homomorphism of W into $\operatorname{Aut}\left({ }^{L} H_{s}^{0},{ }^{L} B^{0} \cap{ }^{L} H_{s}^{0},{ }^{L} T^{0},\{Y\}\right)$. Suppose that $\rho_{s}(w)=$ ad $\left.n(w)\right|_{L_{H_{s}^{0}}}$, where $n(w) \in{ }^{L} \tilde{G}^{0} \times w$ satisfies $n(w)^{-1}(x, 1) \alpha(n(w))=(x, 1)$ (cf. (vi) in §3). Then $n(w)^{-1}(x, x) n(w)=$ (x, x). Also, if $n(w)=\left(n_{1}(w), n_{2}(w)\right) \times w$ then calculation shows that for $w \in \mathbf{C}^{x} \times 1$ we have $n_{1}(w)=n_{2}(w)$ lies in the center of ${ }^{L} H_{s}^{0}$ and for $w=1 \times \sigma$ we have $n_{1}(w)=x n_{2}(w)$. Thus for all $w \in W, \rho_{s}(w)=$ ad $\left.m(w)\right|_{L_{s}^{0}}$ where $m(w)=\left(n_{1}(w), n_{1}(w)\right) \times w \in^{L} G$. Also, $m(w)$ centralizes (x, x). Thus ρ_{s} is "realized in $\operatorname{Cent}\left(N(s),{ }^{L} G\right)$ " and the lemma is proved.

Lemma 4.5. The correspondence in Lemma 4.4 induces a map

$$
\mathfrak{N}: \subseteq(\tilde{G}, \alpha) \rightarrow \mathbb{S}(G)
$$

Proof. We have to show that if ($s,{ }^{L} H_{s}$) and ($s^{\prime},{ }^{L} H_{s^{\prime}}$) are as in Lemma 4.4, representing the same element of $\subseteq(\tilde{G}, \alpha)$, then the 5-tuples defining ${ }^{L} H_{s}$ and ${ }^{L} H_{s^{\prime}}$ are conjugate under ${ }^{L} G^{0}$. They are conjugate under ${ }^{L} \tilde{G}^{0}$, by definition. It is easily checked that this conjugation may be replaced by one from ${ }^{L} G^{0}$.

The map \Re need not be injective, as the example that G is a compact torus shows. However $\mathscr{\pi}$ does have finite fibers (which implies that $\subseteq(\tilde{G}, \alpha)$ is finite, as asserted in the last section). Reversing the construction in the proof of Lemma 4.4 shows that \mathscr{N} is surjective.
5. Allowed embeddings of ${ }^{L} H_{s}$ in ${ }^{L} \tilde{G}$. Fix an element of $\mathbb{S}(\tilde{G}, \alpha)$, with representative $\left(s,{ }^{L} H_{s}\right)$ chosen as in the proof of Lemma 4.4. In particular, $s=(x, 1) \tilde{Z}^{W}, \quad x \in{ }^{L} T^{0}$, and ${ }^{L} H_{s}^{0}=\left(\operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}^{0}\right)\right)^{0}=$ (Cent $\left.\left(N(s),{ }^{L} G^{0}\right)\right)^{0}$. We may further assume that ${ }^{L} H_{s}^{0}$ is in standard position (cf. [Sh3, §2.2, Ex. 4.3.1]).

Suppose that $\xi:{ }^{L} H_{s} \hookrightarrow{ }^{L} G$ is an admissible embedding, as in L-indistinguishability [L1], [Sh3]. Here we regard ${ }^{L} H_{s}^{0}$ as a subgroup of ${ }^{L} G^{0}$ yet to be embedded diagonally in ${ }^{L} \tilde{G}^{0}$, and assume that $\left.\xi\right|_{L_{H_{s}^{0}}}$ is the inclusion map. The "diagonal" embedding of ${ }^{L} G$ in ${ }^{L} \tilde{G}$ then yields an embedding of ${ }^{L} H_{s}$ in ${ }^{L} \tilde{G}$, again denoted ξ. Explicitly, ξ is of the form:

$$
\begin{aligned}
& \xi(h \times 1 \times 1)=(h, h) \times 1 \times 1, \quad h \in{ }^{L} H_{s}^{0} \\
& \xi(1 \times z \times 1)=\left(\xi_{0}(z), \xi_{0}(z)\right) \times z \times 1, \quad z \in \mathbf{C}^{x}
\end{aligned}
$$

where $\quad \xi_{0}: \quad \mathbf{C}^{x} \rightarrow \operatorname{Cent}\left({ }^{L} H_{s}^{0}\right)$ is a homomorphism satisfying $\xi_{0}(\bar{z})=$ $\sigma_{s}\left(\xi_{0}(z)\right), z \in \mathbf{C}^{x}$, and

$$
\xi(1 \times 1 \times \sigma)=\left(n_{0}, n_{0}\right) \times 1 \times \sigma
$$

where $n_{0} \in{ }^{L} G^{0}$ normalizes ${ }^{L} T^{0}, n_{0} \sigma_{G}\left(n_{0}\right)=\xi_{0}(-1)$ and $n_{0} \times 1 \times \sigma \in{ }^{L} G$ acts on ${ }^{L} H_{s}^{0}$ as $\sigma_{s}=\rho_{s}(1 \times \sigma)$. It follows immediately that $\xi\left({ }^{L} H_{s}\right) \subset$ $\operatorname{Cent}\left(N(s),{ }^{L} G\right)$. However, our present problem dictates (cf. §8) that we consider embeddings for which the image of ${ }^{L} H_{s}$ is contained in Cent ${ }_{\alpha}\left(s,{ }^{L} \tilde{G}\right)$. That this is a quite different condition is indicated even by the example that G is a compact torus.

Definition 5.1. Let $\left(s,{ }^{L} H_{s}\right)$ be a representative for an element of $\subseteq(\tilde{G}, \alpha)$. Then $\tilde{\xi}:{ }^{L} H_{s} \hookrightarrow{ }^{L} \tilde{G}$ is an allowed embedding if:
(i) $\tilde{\xi}$ is an admissible homomorphism, i.e. $\tilde{\xi}$ is a homomorphism such that $\tilde{\xi}\left({ }^{L} H_{s}^{0} \times w\right) \subset{ }^{L} \tilde{G}^{0} \times w, w \in W$,
(ii) on ${ }^{L} H_{s}^{0}, \tilde{\xi}$ is the inclusion mapping, and
(iii) $\tilde{\xi}\left({ }^{L} H_{s}\right) \subset \operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}\right)$.

We return to our choice $s=(x, 1) \tilde{Z}^{W}$, etc. Once again it is more convenient to regard ${ }^{L} H_{s}^{0}$ as a subgroup of ${ }^{L} G^{0}$ yet to be embedded
diagonally in ${ }^{L} \tilde{G}^{0}$. Then an allowed embedding $\tilde{\xi}:{ }^{L} H_{s} \hookrightarrow{ }^{L} \tilde{G}$ is of the form:

$$
\begin{aligned}
& \tilde{\xi}(h \times 1 \times 1)=(h, h) \times 1 \times 1, \quad h \in{ }^{L} H_{s}^{0}, \\
& \tilde{\xi}(1 \times z \times 1)=\left(\tilde{\xi}_{0}(z), \tilde{\xi}_{0}(z)\right) \times z \times 1, \quad z \in \mathbf{C}^{x}
\end{aligned}
$$

where $\tilde{\xi}_{0}$ satisfies the same conditions as ξ_{0} earlier, and

$$
\tilde{\xi}(1 \times 1 \times \sigma)=\left(x m_{0}, m_{0}\right) \times 1 \times \sigma
$$

where $m_{0} \in{ }^{L} G^{0}$ normalizes ${ }^{L} T^{0}, x m_{0} \sigma_{G}\left(m_{0}\right)=\tilde{\xi}_{0}(-1)$, and $m_{0} \times 1 \times \sigma$ $\in{ }^{L} G$ acts on ${ }^{L} H_{s}^{0}$ as $\sigma_{s}\left(\ldots\right.$ then also $x m_{0} \times 1 \times \sigma$ acts on ${ }^{L} H_{s}^{0}$ as σ_{s}, as we have already used in the proof of Lemma 4.2).

Let ${ }^{L} \tilde{H}_{s}^{0}={ }^{L} H_{s}^{0} \times{ }^{L} H_{s}^{0}$. We of course regard ${ }^{L} \tilde{H}_{s}^{0}$ as a subgroup of ${ }^{L} \tilde{G}^{0}$. Define an action of W on ${ }^{L} \tilde{H}_{s}^{0}$ by requiring $\mathbf{C}^{x} \times 1$ to act trivially and $1 \times \sigma$ to act by the automorphism $\left(h_{1}, h_{2}\right) \rightarrow\left(\sigma_{s}\left(h_{2}\right), \sigma_{s}\left(h_{1}\right)\right)$. If ${ }^{L} H_{s}$ is the L-group of H then ${ }^{L} \tilde{H}_{s}$ is the L-group of $\tilde{H}=\operatorname{Res} \mathbf{R}_{\mathbf{R}}^{\mathbf{C}} H$.

Lemma 5.2. Let $\tilde{\xi}$ be an allowed embedding of ${ }^{L} H_{s}$ in ${ }^{L} \tilde{G}$ and ξ be an admissible embedding of ${ }^{L} H_{s}$ in ${ }^{L} G \subset{ }^{L} \tilde{G}$. Then

$$
\tilde{\xi}(h \times w)=a(w) \xi(h \times w), \quad h \in{ }^{L} H_{s}^{0}, w \in W
$$

where $a(w)$ is a 1 -cocycle of W in $\operatorname{Cent}\left({ }^{L} \tilde{H}_{s}^{0}\right)$.
Proof. This follows easily from our explicit description of $\tilde{\xi}$ and ξ. The details are omitted.

Suppose that $\tilde{\xi}, \tilde{\xi}^{\prime}$ are both allowed embeddings of ${ }^{L} H_{s}$ in ${ }^{L} \tilde{G}$. Then $\tilde{\xi}^{\prime}(w)=b(w) \tilde{\xi}(w), w \in W$, where $w \rightarrow b(w)$ is a 1-cocycle of W in the center of ${ }^{L} H_{s}^{0}$ embedded diagonally in ${ }^{L} \tilde{G}^{0}$. We conclude then that the image of ${ }^{L} H_{s}$ under an allowed embedding is independent of the choice of embedding; we write thus simply "Image ${ }^{L} H_{s}$." Suppose next that $\left(s,{ }^{L} H_{s}\right)$ and $\left(s^{\prime},{ }^{L} H_{s^{\prime}}\right)$ are equivalent in the sense of §3. Fix $g \in{ }^{L} \tilde{G}^{0}$ as in the definition. Suppose that $\tilde{\xi}$ is an allowed embedding of ${ }^{L} H_{s}$ in ${ }^{L} \tilde{G}$. Then ad g and $\tilde{\xi}$ determine an allowed embedding of ${ }^{L} H_{s^{\prime}}$ in ${ }^{L} \tilde{G}$. We conclude then that there is an allowed embedding of ${ }^{L} H_{s}$ in ${ }^{L} \tilde{G}$ if and only if there is such an embedding of ${ }^{L} H_{s^{\prime}}$. Moreover, when embeddings exist we have $g^{-1}\left(\right.$ Image $\left.{ }^{L} H_{s}\right) g=$ Image ${ }^{L} H_{s^{\prime}}$.

We defer a study of the existence of allowed embeddings. Recall, however, that if the center of ${ }^{L} G^{0}$ is connected then ${ }^{L} H_{s}$ embeds admissibly in ${ }^{L} G[\mathbf{L} 1]$. The proof of this result can be used to show also that there is an allowed embedding of ${ }^{L} H_{s}$ in ${ }^{L} \tilde{G}$.
6. Ingredients for the matching theorem. Fix an element of $\subseteq(\tilde{G}, \alpha)$ with representative $\left(s,{ }^{L} H_{s}\right)$ satisfying $s=(x, 1) \tilde{Z}^{W}$, etc., as in the last section. We assume that $\tilde{\xi}$: ${ }^{L} H_{s} \leftrightharpoons{ }^{L} \tilde{G}$ is an allowed embedding. The main
purpose of this section is to attach to $\tilde{\xi}$ normalizing factors to appear in the matching theorem of the next section. We will assume also that there is an admissible embedding of ${ }^{L} H_{s}$ in ${ }^{L} G$, say ξ. The choice of ξ will not affect the normalization factors (cf. Lemma 6.2), but we write individual terms in the factors in a way that involves ξ, in order to make clear the relation with the factors from L-indistinguishability.

Let H be an endoscopic group for (\tilde{G}, α) with L-group ${ }^{L} H_{s}$. We fix a Borel subgroup B_{H} over \mathbf{R} containing the maximal torus T_{H} over \mathbf{R}, and assume that $X^{*}\left(T_{H}\right)=X_{*}\left({ }^{L} T^{0}\right)=X^{*}\left(T^{*}\right)$ and that $\Sigma\left(B_{H}, T_{H}\right)$ is the dual of $\Sigma\left({ }^{L} B_{s}^{0},{ }^{L} T^{0}\right)$. The group $\tilde{H}=\operatorname{Res}_{\mathbf{R}}^{\mathbf{C}} H$ will also play a role. We set $\tilde{B}_{H}=B_{H} \times B_{H}$ and $\tilde{T}_{H}=T_{H} \times T_{H} ;{ }^{L} \tilde{H}_{s}$, which appeared in the last section, is an L-group for \tilde{H}.

Since H is also an endoscopic group for G we may invoke many of the definitions from L-indistinguishability (cf. [L1], [Sh4]). Let T be a maximal torus over \mathbf{R} in G. A pseudodiagonalization (p.d.) η of T is a map from T to T^{*} of the form $T \xrightarrow{\text { ad } x} T_{0} \xrightarrow{\text { ad } m} T^{*}$, where $x \in \mathfrak{H}(T)$ [L1], $T_{0}=$ $x T x^{-1}$ is standard (i.e. the maximal R-split torus in T_{0} lies in T^{*}) and m belongs to the Levi group attached to T_{0}. Then $\sigma_{(T, \eta)}$ denotes the transfer, by η, of the Galois action on T to T^{*}, and to $X^{*}\left(T^{*}\right)=X_{*}\left({ }^{L} T^{0}\right)$, $X_{*}\left(T^{*}\right)=X^{*}\left({ }^{L} T^{0}\right)$ and ${ }^{L} T^{0}=X_{*}\left({ }^{L} T^{0}\right) \otimes \mathbf{C}^{x}$.

The set $\mathscr{G}_{H}(G)=\left\{(T, \eta): \sigma_{(T, \eta)} \in \Omega\left({ }^{L} H_{s}^{0},{ }^{L} T^{0}\right) \sigma_{s}\right\}$, where $\Omega\left({ }^{L} H_{s}^{0},{ }^{L} T^{0}\right)$ denotes the Weyl group of $\left({ }^{L} H_{s}^{0},{ }^{L} T^{0}\right)$, is the starting point for the definitions of [Sh4, §2.4]. We will use it again. First, because G is quasi-split over \mathbf{R}, for each maximal torus T^{\prime} over \mathbf{R} in H there exists $h \in H(\mathbf{C})$ and $(T, \eta) \in \mathscr{T}_{H}(G)$ such that $h T^{\prime} h^{-1}=T_{H}$ and

$$
X^{*}\left(T^{\prime}\right) \xrightarrow{\operatorname{ad} h} X^{*}\left(T_{H}\right)=X^{*}\left(T^{*}\right)^{\eta^{-1}} X^{*}(T)
$$

lifts to an isomorphism $i(h, \eta): T^{\prime} \rightarrow T$ over \mathbf{R}. We say that $\gamma^{\prime} \in H(\mathbf{R})$ originates from $\gamma \in G(\mathbf{R})$ via (T, η) if γ^{\prime} is the preimage of γ under some such map $i(h, \eta)$.

Recall that $s=(x, 1) \tilde{Z}^{W}$. Any element of this coset is of the form $a=\left(x z, \sigma_{G}(z)\right)$, where z is in the center of ${ }^{L} G^{0}$. But $a \alpha(a)=$ $\left(x z \sigma_{G}(z), x z \sigma_{G}(z)\right)$, an element of ${ }^{L} T^{0}=\operatorname{Hom}\left(X^{*}\left({ }^{L} T^{0}\right), \mathbf{C}^{x}\right)$. Also $\sigma_{s}(x)$ $=x$. Thus $\{a \alpha(a): a \in s\}$ defines a family of quasicharacters on $X^{*}\left({ }^{L} T^{0}\right)$, each invariant under $\sigma_{(T, \eta)}$, for any $(T, \eta) \in \mathscr{T}_{H}(G)$. Fix $(T, \eta) \in \mathscr{T}_{H}(G)$. Then, on transfer to T via η, we get a family of quasicharacters on $X_{*}(T)$, each invariant under σ_{T}. On $X_{*}\left(T_{\mathrm{sc}}\right)$, the span of the coroots of T in G, these quasicharacters all coincide and so we have defined a single quasicharacter of the type used in L-indistinguishability (cf. [L1], also [Sh4, §2.4]). Moreover on $\left\{\lambda^{\vee} \in X_{*}(T): \sigma_{T} \lambda^{\vee}=-\lambda^{\vee}\right\}$, the quasicharacters
coincide again. We therefore obtain a single character on

$$
\left\{\lambda^{\vee} \in X_{*}(T): \sigma_{T} \lambda^{\vee}=-\lambda^{\vee}\right\} /\left\{\mu^{\vee}-\sigma_{T} \mu^{\vee}: \mu^{\vee} \in X_{*}(T)\right\}
$$

and thence by Tate-Nakayama duality, a character on $H^{1}(T)=$ $H^{1}(\operatorname{Gal}(\mathbf{C} / \mathbf{R}), T(\mathbf{C}))$. Unless otherwise indicated, κ will denote both the quasicharacter on $X_{*}\left(T_{\mathrm{sc}}\right)$ and the character on $H^{1}(T)$ attached to s and the $\operatorname{pair}(T, \eta) \in \mathscr{T}_{H}(G)$.

With G embedded diagonally in \tilde{G}, we have $\tilde{T}=\operatorname{Res}_{\mathbf{R}}^{\mathbf{C}} T$ naturally embedded in \tilde{G} as $\operatorname{Cent}(T, \tilde{G})=T \times T$, for any maximal torus T over \mathbf{R} in G. The norm from \tilde{T} to T is obtained from the map $\tilde{T}(\mathbf{R}) \rightarrow T(\mathbf{R})$ defined by $\delta=\left(t, \sigma_{G}(t)\right) \rightarrow \delta \alpha(\delta)=\left(t \sigma_{G}(t), t \sigma_{G}(t)\right)$. As in [Sh6] we regard the norm from \tilde{G} to G (...or from \tilde{T} to T) as an (injective) map from the set of stable regular α-semisimple twisted conjugacy classes in $\tilde{G}(\mathbf{R})$ (... or in $\tilde{T}(\mathbf{R})$) to the set of stable regular semisimple conjugacy classes in $G(\mathbf{R})$ (... or to $T(\mathbf{R})$). by Lemma 2.4.3(ii) of [Sh6] this norm from \tilde{G} to G can be recovered from the norms from \tilde{T} to T, as T ranges over the maximal tori over \mathbf{R} in G.

Note that if $\eta: T \rightarrow T^{*}$ is a p.d., then so is $\eta \times \eta: \tilde{T} \rightarrow \tilde{T}^{*}$. Thus we can use η to transfer data from \tilde{T} to \tilde{T}^{*} or from \tilde{T}^{*} to \tilde{T}.

We come then to the normalizing factors. The admissible embedding ξ : ${ }^{L} H_{s} \hookrightarrow{ }^{L} G$ has been fixed, and ${ }^{L} H_{s}$ chosen to satisfy the conditions of [Sh3, Sh4]. We may therefore write $\xi=\xi\left(\mu^{*}, \lambda^{*}\right)$, for suitable $\mu^{*}, \lambda^{*} \in$ $X_{*}\left({ }^{L} T^{0}\right) \otimes \mathbf{C}$, and define the attached correction (quasi) characters $\Lambda_{(T, \eta)}$ on $T(\mathbf{R})$, for $(T, \eta) \in \mathscr{T}_{H}(G)$. Although the notation does not reflect it, $\Lambda_{(T, \eta)}$ depends on the choice of ξ.

Since $\tilde{\xi}:{ }^{L} H_{s} \hookrightarrow{ }^{L} \tilde{G}$ has also been fixed, we have the 1-cocycle $a(w)$ of W in Center $\left({ }^{L} \tilde{H}_{s}^{0}\right)$ from Lemma 5.2. A procedure in [L2] attaches to $a(w)$ a quasicharacter on $\tilde{H}(\mathbf{R})$. This quasicharacter determines a pair $\left(\tilde{\mu}_{0}, \tilde{\lambda}_{0}\right)$ of elements from $X^{*}\left(\tilde{T}_{H}\right) \otimes \mathbf{C}=X_{*}\left({ }^{L} \tilde{T}^{0}\right) \otimes \mathbf{C}$. We may also recover ($\tilde{\mu}_{0}, \tilde{\lambda}_{0}$) directly from the 1-cocycle $a(w)$. Thus define $\tilde{\mu}_{0}, \tilde{\lambda}_{0}$ by

$$
\begin{aligned}
& \lambda^{\vee}(a(z \times 1))=z^{\left\langle\tilde{\mu}_{0}, \lambda^{\vee}\right\rangle} \bar{z}^{\left\langle\sigma_{s} \tilde{\mu}_{0}, \lambda^{\vee}\right\rangle}, \quad z \in \mathbf{C}^{x}, \\
& \lambda^{\vee}(a(1 \times \sigma))=e^{2 \pi i\left\langle\tilde{\lambda}_{0}, \lambda^{\vee}\right\rangle}
\end{aligned}
$$

for $\lambda^{\vee} \in X^{*}\left({ }^{L} \tilde{T}^{0}\right)$. Then $\tilde{\mu}_{0}$ is uniquely determined and $\tilde{\lambda}_{0}$ is uniquely determined modulo

$$
X_{*}\left({ }^{L} \tilde{T}^{0}\right)+\left\{\tilde{\lambda}-\tilde{\sigma}_{s} \tilde{\lambda}: \tilde{\lambda} \in X_{*}\left({ }^{L} \tilde{T}^{0}\right) \otimes \mathbf{C}\right\}
$$

Also
$\tilde{\mu}_{0}-\tilde{\sigma}_{s} \tilde{\mu}_{0} \in X_{*}\left({ }^{L} \tilde{T}^{0}\right), \quad 1 / 2\left(\tilde{\mu}_{0}-\tilde{\sigma}_{s} \tilde{\mu}_{0}\right) \equiv \tilde{\lambda}_{0}+\tilde{\sigma}_{s} \tilde{\lambda}_{0} \quad \bmod X_{*}\left({ }^{L} \tilde{T}^{0}\right)$,
and

$$
\left\langle\tilde{\mu}_{0}, \lambda^{\vee}\right\rangle=0, \quad\left\langle\tilde{\lambda}_{0}, \lambda^{\vee}\right\rangle \in \mathbf{Z}
$$

whenever λ^{\vee} lies in the span of the roots of ${ }^{L} \tilde{T}^{0}$ in ${ }^{L} \tilde{H}_{s}^{0}$ (cf. §9.1 of [Sh3]). Here we have used $\tilde{\sigma}_{s}$ to denote the action of $1 \times 1 \times \sigma \in{ }^{L} \tilde{H}_{s}$.

Let $(T, \eta) \in \mathscr{J}_{H}(G)$. Then on transferring $\left(\tilde{\mu}_{0}, \tilde{\lambda}_{0}\right)$ to \tilde{T} using η we obtain the data also denoted ($\tilde{\mu}_{0}, \tilde{\lambda}_{0}$) for a quasicharacter on $\tilde{T}(\mathbf{R})$ (cf. [Sh3, §4.1]). This quasicharacter will be denoted $a_{(T, \eta)}$.

Lemma 6.1.

$$
a_{(T, \eta)} \text { is } \alpha \text {-invariant }
$$

Proof. We describe $a_{(T, \eta)}$ explicitly. Let $\delta=\left(t, \sigma_{T}(t)\right) \in \tilde{T}(\mathbf{R})$. Write t as $\exp X, X \in \operatorname{Lie}(T(\mathbf{C}))=X_{*}(T) \otimes \mathbf{C}$. Then $\sigma_{T}(t)=\exp \sigma_{T}(\bar{X})$, where if $X=\sum_{i=1}^{n} \lambda_{i}^{\vee} \otimes z_{i}$ then $\sigma_{T}(\bar{X})=\sum_{i=1}^{n} \sigma_{T}\left(\lambda_{i}^{\vee}\right) \otimes \bar{z}_{i}$. Because $a\left(\mathbf{C}^{x} \times 1\right)$ lies in the diagonal subgroup of $\operatorname{Center}\left({ }^{L} \tilde{H}_{s}^{0}\right)$, as is evident from the form of the embeddings ξ and $\tilde{\xi}$ (cf. last section), we must have $\tilde{\mu}_{0}$ lying in the diagonal subspace of $X_{*}\left({ }^{L} \tilde{T}^{0}\right) \otimes \mathbf{C}=\left(X_{*}\left({ }^{L} T^{0}\right) \otimes \mathbf{C}\right) \times\left(X_{*}\left({ }^{L} T^{0}\right) \otimes \mathbf{C}\right)$. Thus we write $\tilde{\mu}_{0}$ as $\left(\mu_{0}, \mu_{0}\right), \mu_{0} \in X_{*}\left({ }^{L} T^{0}\right) \otimes \mathbf{C}$. As usual, we transfer μ_{0} to $X^{*}(T) \otimes \mathbf{C}$ via η without change in notation. Then

$$
a_{(T, \eta)}(\delta)=e^{\mu_{0}\left(X+\sigma_{r}(\bar{X})\right)}
$$

Since $\alpha(\delta)=\left(\exp \sigma_{T}(\bar{X}), \exp X\right)$ it is now clear that $a_{(T, \eta)}(\alpha(\delta))=$ $a_{(T, \eta)}(\delta)$, and the lemma is proved.

Note that $a_{(T, \eta)}$ is uniquely determined by the class of $a(w)$ in $H^{1}\left(W, \operatorname{Center}\left({ }^{L} \tilde{H}_{s}^{0}\right)\right)$, but is affected by a change in ξ or $\tilde{\xi}$. The dependence on $\tilde{\xi}$ of our normalization factors is to be expected; the dependence on ξ is not.

Lemma 6.2. Fix $(T, \eta) \in \mathscr{T}_{H}(G)$ and $\delta \in \tilde{T}(\mathbf{R})$. Then $\alpha_{(T, \eta)}(\delta) \Lambda_{(T, \eta)}(\delta \alpha(\delta))$ depends on $\tilde{\xi}$ alone.

Proof. The embedding ξ may be replaced only by $h \times w \rightarrow$ $a_{0}(w) \xi(h \times w)$, where $a_{0}(w)$ is a 1 -cocycle of W in the center of ${ }^{L} H_{s}^{0}$ embedded diagonally in the center of ${ }^{L} \tilde{H}_{s}^{0}$. Then $a(w)$ is replaced by $a_{0}(w)^{-1} a(w)$. The cocycle $a_{0}(w)$ defines first a quasicharacter χ on $H(\mathbf{R})$ and second a quasicharacter $\tilde{\chi}$ on $\tilde{H}(\mathbf{R})$. As before, we use η to transfer data and define quasicharacters $\chi_{(T, \eta)}$ on $T(\mathbf{R})$ and $\tilde{\chi}_{(T, \eta)}$ on $\tilde{T}(\mathbf{R})$. Since $\Lambda_{(T, \eta)}$ is replaced by $\chi_{(T, \eta)} \Lambda_{(T, \eta)}$ and $a_{(T, \eta)}$ by $\tilde{\chi}_{(T, \eta)}^{-1} a_{(T, \eta)}$, we have only to show that $\tilde{\chi}_{(T, \eta)}(\delta)=\chi_{(T, \eta)}(\delta \alpha(\delta))$. Define parameters $\mu_{1}, \lambda_{1} \in X_{*}\left({ }^{L} T^{0}\right)$ $\otimes \mathbf{C}$ for χ as usual; use the same symbols for their transfer to $X^{*}(T) \otimes \mathbf{C}$
via η. For $\tilde{\chi}$ we can use parameters $\tilde{\mu}_{1}=\left(\mu_{1}, \mu_{1}\right), \tilde{\lambda}_{1}=\left(\lambda_{1}, \lambda_{1}\right)$ in $X_{*}\left({ }^{L} \tilde{T}^{0}\right) \otimes \mathbf{C}\left(\ldots\right.$ or $X^{*}(\tilde{T}) \otimes \mathbf{C}$, after transfer). Since $\tilde{\chi}$ is clearly α-invariant (see the last proof), we may take $\delta=(\exp X, \exp X), X \in$ $\operatorname{Lie}(T(\mathbf{R}))$. Then $\tilde{\chi}(\delta)=e^{\left\langle 2 \mu_{1}, X\right\rangle}$ and $\chi(\delta \alpha(\delta))=\chi\left(\delta^{2}\right)=e^{\left\langle\mu_{1}, 2 X\right\rangle}$, so that the lemma is proved.

The next lemma is simple but very useful (cf. proof of Lemma 6.4). Each element of $H^{1}(T)$ can be represented by a cocycle $\sigma \rightarrow \exp i \pi \lambda^{\vee}$, where $\lambda^{\vee} \in X_{*}(T)$ and $\sigma_{T} \lambda^{\vee}=-\lambda^{\vee}$. We will use $\exp i \pi \lambda^{\vee}$ to denote this cocycle and its class in $H^{1}(T)$; of course, $\exp i \pi \lambda^{\vee}$ also denotes an element of $T(\mathbf{R}) \subset \tilde{T}(\mathbf{R})$. Recall that to $(T, \eta) \in \mathscr{T}_{H}(G)$ and our fundamental datum $s=(x, 1) \tilde{Z}^{W}$ we have attached a character κ on $H^{1}(T)$.

Lemma 6.3.

$$
a_{(T, \eta)}\left(\exp i \pi \lambda^{\vee}\right)=\kappa\left(\exp i \pi \lambda^{\vee}\right)
$$

for all $\lambda^{\vee} \in X_{*}(T)$ such that $\sigma_{T} \lambda^{\vee}=-\lambda^{\vee}$.

Note that the left side alone appears to depend on the choice of ξ and $\tilde{\xi}$. However a quasicharacter $\tilde{\chi}$ as in the last proof annihilates $\exp i \pi \lambda^{\vee}$, if $\lambda^{\vee} \in X_{*}(T)$ and $\sigma_{T} \lambda^{\vee}=-\lambda^{\vee}$. Indeed we then have $i \pi \lambda^{\vee} \in \operatorname{Lie}(T(\mathbf{R}))$, so that $\tilde{\chi}\left(\exp i \pi \lambda^{\vee}\right)=e^{2 \pi \iota\left\langle\mu_{1}, \lambda^{\vee}\right\rangle}=1$, since $\frac{1}{2}\left(\mu_{1}-\sigma_{T} \mu_{1}\right) \equiv\left(\lambda_{1}+\sigma_{T} \lambda_{1}\right)$ $\bmod X^{*}(T)$ implies that $\left\langle\frac{1}{2}\left(\mu_{1}-\sigma_{T} \mu_{1}\right), \lambda^{\vee}\right\rangle=\left\langle\mu_{1}, \lambda^{\vee}\right\rangle$ lies in Z. It then follows that neither side of the formula depends on ξ or $\tilde{\xi}$.

Proof of Lemma 6.3. First we evaluate the right side. The cocycle $\sigma \rightarrow \exp i \pi \lambda^{\vee}$ corresponds under the Tate-Nakayama isomorphism to the coset of λ^{\vee} in

$$
\begin{aligned}
& H^{-1}\left(X_{*}(T)\right) \\
& \quad=\left\{\mu^{\vee} \in X_{*}(T): \sigma_{T} \mu^{\vee}=-\mu^{\vee}\right\} /\left\{\nu^{\vee}-\sigma_{T} \nu^{\vee}: \nu^{\vee} \in X_{*}(T)\right\}
\end{aligned}
$$

Thus $\kappa\left(\exp i \pi \lambda^{\vee}\right)=\lambda^{\vee}(x)$, where $s=(x, 1) \tilde{Z}^{W}$ was used to define κ. Note that we have transferred λ^{\vee} to ${ }^{L} T^{0}$ via η.

For the left side, we write $a(z \times 1)=\left(a_{0}(z), a_{0}(z)\right), z \in \mathbf{C}^{x}$, and $a(1 \times \sigma)=\left(x b_{0}, b_{0}\right)$, where $a_{0}(z), b_{0}$ lie in the center of ${ }^{L} H_{s}^{0}$. Since $i \pi \lambda^{\vee} \in \operatorname{Lie}(T(\mathbf{R}))$, we have $a_{(T, \eta)}\left(\exp i \pi \lambda^{\vee}\right)=e^{2 \pi i\left\langle\mu_{0}, \lambda^{\vee}\right\rangle}=\lambda^{\vee}\left(a_{0}(-1)\right)$, where again we have transferred $\lambda \vee$ to ${ }^{L} T^{0}$ without change in notation (cf. proof of Lemma 6.1). On the other hand, $a(1 \times \sigma) \tilde{\sigma}_{s}(a(1 \times \sigma))=a(-1)$ implies that $a_{0}(-1)=x b_{0} \sigma_{s}\left(b_{0}\right)=x b_{0} \sigma_{(T, \eta)}\left(b_{0}\right)$. Since $\sigma_{(T, \eta)} \lambda^{\vee}=-\lambda^{\vee}$, we have that $\lambda^{\vee}\left(a_{0}(-1)\right)=\lambda^{\vee}(x)$, and the lemma is proved.

We continue with $(T, \eta) \in \mathscr{T}_{H}(G)$ and associated character κ on $H^{1}(T)$. Fix a set $\left\{u=\exp i \pi \lambda^{\vee}: \lambda^{\vee} \in X_{*}(T), \sigma_{T} \lambda^{\vee}=-\lambda^{\vee}\right\}$ such that the cocycles $\sigma \rightarrow \exp i \pi \lambda^{\vee}$ form a complete set of (noncohomologous) representatives for the elements of $H^{1}(T)$.

For $f \in C_{c}^{\infty}(\tilde{G}(\mathbf{R}))$, and Haar measures $d t$ on $T(\mathbf{R}), d \tilde{g}$ on $\tilde{G}(\mathbf{R})$ form (cf. [Sh6]):

$$
\Phi_{f}^{(T, \alpha, \kappa)}(\delta, d t, d \tilde{g})=\sum_{u} \kappa(u) \int_{\tilde{G}(\mathbf{R}) / T(\mathbf{R})} f\left(\alpha(\tilde{g}) u \delta \tilde{g}^{-1}\right) \frac{d \tilde{g}}{d t},
$$

for $\delta \in \tilde{T}(\mathbf{R})$ such that $\delta \alpha(\delta)$ is regular. Note that for all $\delta \in \tilde{T}(\mathbf{R}), \delta \alpha(\delta)$ lies in $T(\mathbf{R})^{0}$, the identity component of $T(\mathbf{R})$.

Lemma 6.4.

$$
\gamma \rightarrow a_{(T, \eta)}(\delta) \Phi_{f}^{(T, \alpha, \kappa)}(\delta, d t, d \tilde{g}),
$$

if $\delta \alpha(\delta)=\gamma, \gamma \in T(\mathbf{R})_{\text {reg }}^{0}=T(\mathbf{R})^{0} \cap G_{\text {reg }}$, is a well-defined function on $T(\mathbf{R})_{\mathrm{reg}}^{0}$.

Proof. By Lemma 6.3,

$$
a_{(T, \eta)}(\delta) \Phi_{f}^{(T, \alpha, \kappa)}(\delta, d t, d \tilde{g})=\sum_{u} a_{(T, \eta)}(u \delta) \int_{\tilde{G}(\mathbf{R}) / T(\mathbf{R})} f\left(\alpha(\tilde{g}) u \delta \tilde{g}^{-1}\right) \frac{d \tilde{g}}{d t}
$$

which we will write as $\Phi(\delta)$. If $\delta \alpha(\delta)=\delta^{\prime} \alpha\left(\delta^{\prime}\right)$ then $\delta^{\prime}=v \delta$, where $v \alpha(v)=1, v \in \tilde{T}(\mathbf{R})$. Then it is easily seen that $v=t^{-1} \alpha(t) u$ for some $t \in \tilde{T}(\mathbf{R})$ and u as in the summation. Since $a_{(T, \eta)}$ is α-invariant we then have $\Phi\left(\delta^{\prime}\right)=\Phi(v \delta)=\Phi(u \delta)$ which clearly coincides with $\Phi(\delta)$. Thus the lemma is proved.

Finally, suppose that $(T, \eta) \in \mathscr{T}_{H}(G)$ and that $i(h, \eta): T^{\prime} \rightarrow T$ is defined over \mathbf{R}. Then the Haar measure $d t$ on $T(\mathbf{R})$ is transported via $i(h, \eta)$ to a Haar measure $d t^{\prime}$ on $T^{\prime}(\mathbf{R}) ; d t^{\prime}$ is independent of the choice of h. Also, we say that $\gamma^{\prime} \in T^{\prime}(\mathbf{R})_{\text {reg }}$ is not a norm if it is not in the image of the norm map from $\tilde{T}^{\prime}=\operatorname{Res}_{\mathbf{R}}^{\mathbf{C}} T^{\prime \prime}$ to T^{\prime}, i.e. γ^{\prime} does not lie in the identity component of $T^{\prime}(\mathbf{R})$. Then if γ^{\prime} originates from $\gamma \in T(\mathbf{R})_{\text {reg }}$ via $(T, \eta), \gamma$ is not in the image of the norm from \tilde{T} to T (and conversely...).

We have not assumed that ξ or $\tilde{\xi}$ is of "unitary type" [Sh3]. It is easily checked that there is a quasicharacter χ on $H(\mathbf{R})$ such that $\left|\chi\left(\gamma^{\prime}\right) \Lambda_{(T, \eta)}(\gamma) a_{(T, \eta)}(\delta)\right|=1$ if γ^{\prime} originates from $\gamma=\delta \alpha(\delta)$ via (T, η). We then define $\mathcal{C}_{\tilde{\xi}}(H(\mathbf{R}))$ to be the set of functions f on $H(\mathbf{R})$ such that $f \chi$ belongs to $\mathcal{C}(H(\mathbf{R}))$, the Schwartz space of $H(\mathbf{R})$. As the notation indicates, this space does not depend on the choice of χ. For $f \in \mathcal{E}_{\tilde{\xi}}(H(\mathbf{R}))$ the
stable orbital integrals $\Phi_{f}^{\left(T^{\prime}, 1\right)}\left(\gamma^{\prime}, d t^{\prime}, d h\right), \gamma^{\prime} \in T^{\prime}(\mathbf{R}) \cap H_{\text {reg }}$ (cf. [Sh4] etc.) are well-defined.

It remains now to recall the factor $\Delta_{(T, \eta)}$ from L-indistinguishability. Thus

$$
\Delta_{(T, \eta)}=(-1)^{q(G, H)} \varepsilon(T, \eta) \Lambda_{(T, \eta)} \Delta_{(T, \eta)},
$$

where $q(G, H)$ is an integer, $(-1)^{q(G, H)}$ being inserted only for convenience, $\varepsilon(T, \eta)= \pm 1$ is defined implicitly, $\Lambda_{(T, \eta)}$ is as earlier in this section and ${ }^{\prime} \Delta_{(T, \eta)}$ is a discriminant function (see [Sh4, §3] for further details).

7. The matching theorem.

Theorem 7.1. Let H be an endoscopic group for (\tilde{G}, α), with L-group ${ }^{L} H_{s}$ chosen as earlier. Suppose that $\tilde{\xi}:{ }^{L} H_{s} \leadsto{ }^{L} \tilde{G}$ is an allowed embedding and that $\xi:{ }^{L} H_{s} \leadsto{ }^{L} G$ is admissible (for L-indistinguishability). Then for each $f \in C_{c}^{\infty}(\tilde{G}(\mathbf{R}))$ there exists $f_{H} \in \mathcal{C}_{\tilde{\xi}}(H(\mathbf{R}))$ such that:

$$
\Phi_{f_{H}}^{\left(T^{\prime}, 1\right)}\left(\gamma^{\prime}, d t^{\prime}, d h\right)=\left\{\begin{array}{l}
\Delta_{(T, \eta)}(\gamma) a_{(T, \eta)}(\delta) \Phi_{f}^{(T, \alpha, \kappa)}(\delta, d t, d \tilde{g}) \\
\text { if } \gamma^{\prime} \text { originates from } \quad \gamma=\delta \alpha(\delta) \\
\text { via }(T, \eta) \in \mathscr{T}_{H}(G), \\
0 \quad \text { if } \gamma \text { is not a norm }
\end{array}\right.
$$

Here it is assumed that γ^{\prime} originates from regular elements in $G(\mathbf{R})$. Then γ^{\prime} is regular in $H(\mathbf{R})$ [Sh2]; T^{\prime} is the maximal torus containing γ^{\prime}. Recall that $\Delta_{(T, \eta)}$ depends on ξ alone, that $a_{(T, \eta)}$ depends on both ξ and $\tilde{\xi}$, and that $\Delta_{(T, \eta)}(\gamma) a_{(T, \eta)}(\delta)$ depends on $\tilde{\xi}$ alone... as long as (T, η) and δ are fixed.

Remark. We have used $C_{c}^{\infty}(\tilde{G}(\mathbf{R}))$ instead of the more natural $\mathcal{C}(\tilde{G}(\mathbf{R}))$ since the necessary analysis of "twisted F_{f} " (cf. [Sh6]), for f a Schwartz function, has not been carried out. Work of L. Clozel now in progress should settle this matter and allow us to replace $C_{c}^{\infty}(\tilde{G}(\mathbf{R}))$ by $\mathcal{C}(\tilde{G}(\mathbf{R}))$.

Proof of the theorem. Let $\gamma^{\prime} \in H(\mathbf{R})$. Suppose that γ^{\prime} originates from $\gamma \in G_{\text {reg }}$ via (T, η) and from $\bar{\gamma}$ via $(\bar{T}, \bar{\eta})$. Choose δ so that $\delta \alpha(\delta)=\gamma$. Write $\bar{\gamma}$ as $y \gamma y^{-1}$ and $\bar{\eta}$ as $\omega_{H} \circ \eta \circ$ ad y^{-1}, where $\omega_{H} \in \Omega\left(H, T_{H}\right) \subset$ $\Omega\left(G, T^{*}\right)$ and $y \in \mathfrak{A l}(T)$ (cf. [Sh4, §3]). Then for $\bar{\delta}$ such that $\bar{\delta} \alpha(\bar{\delta})=\bar{\gamma}$ we may take $y \delta y^{-1}$, where $y \in G$ has been identified with its image in \tilde{G} under the diagonal embedding. With this choice of $\bar{\delta}$ we have $a_{(\bar{\tau}, \bar{\eta})}(\bar{\delta})=$ $a_{(T, \eta)}(\delta)$. The relation between $\Delta_{(\bar{T}, \bar{\eta})}(\bar{\gamma})$ and $\Delta_{(T, \eta)}(\gamma)$ is described in [Sh4, §3].

For fixed $(T, \eta) \in \mathscr{T}_{H}(G)$ the function

$$
\gamma^{\prime} \rightarrow a_{(T, \eta)}(\delta) \Delta_{(T, \eta)}(\gamma) \Phi_{f}^{(T, \alpha, \kappa)}(\delta, d t, d \tilde{g})
$$

if γ^{\prime} originates from $\gamma=\delta \alpha(\delta)$ via (T, η), is well-defined and invariant under $\mathfrak{H}\left(T^{\prime}\right)$. To prove this we invoke [Sh4, Propositions 2.4.5 and 3.1.2] and [Sh6, Lemma 4.3.2]. These results show that we have only to check that $a_{(T, \eta)}\left(\delta^{\omega}\right)=a_{(T, \eta)}(\delta)$ for ω an element of the Weyl group $\Omega(G, T)$ of (G, T) which commutes with the Galois action on T and "comes from H " (i.e. $\omega \in \Omega_{0}(G, T) \cap \Omega^{(\kappa)}(G, T)$ as in [Sh4, Proposition 2.4.5]). But this invariance of $a_{(T, \eta)}$ follows easily from the fact that $\left\langle\tilde{\mu}_{0}, \lambda^{\vee}\right\rangle=0$ for λ^{\vee} in the span of the roots of ${ }^{L} \tilde{T}^{0}$ in ${ }^{L} \tilde{H}_{s}^{0}$ (see the proof of Lemma 6.1).

Suppose now that we fix a "framework of Cartan subgroups [Sh3], [Sh4, §3.2]. Thus we have specified certain pairs $\left(T_{n}, \eta_{n}\right) \in \mathscr{T}_{H}(G)$ and embeddings $i_{n}=i\left(h_{n}, \eta_{n}\right): T_{n}^{\prime} \rightarrow T_{n}$ over \mathbf{R}; the set $\left\{T_{n}^{\prime}(\mathbf{R})\right\}$ provides a complete family of representatives, without redundancy, for the conjugacy classes of Cartan subgroups of $H(\mathbf{R})$. Given $\gamma^{\prime} \in T_{n}^{\prime}(\mathbf{R})$, set $\gamma=i_{n}\left(\gamma^{\prime}\right)$, and choose any δ such that $\delta \alpha(\delta)=\gamma$. Call $\gamma^{\prime} G$-regular if γ is regular. Then for each n we may consider the function on the G-regular elements of $T_{n}^{\prime}(\mathbf{R})$ given by

$$
\Phi_{n}\left(\gamma^{\prime}, d t^{\prime}, d h\right)=\left\{\begin{array}{l}
\varepsilon_{n} \hat{\Delta}_{\left(T_{n}, \eta_{n}\right)}(\gamma) a_{\left(T_{n}, \eta_{n}\right)}(\delta) \Phi_{f}^{\left(T_{n}, \alpha, \kappa_{n}\right)}(\gamma, d t, d \tilde{g}) \\
\text { if } \gamma^{\prime} \in T_{n}^{\prime}(\mathbf{R})^{0} \\
0 \quad \text { if } \gamma^{\prime} \notin T_{n}^{\prime}(\mathbf{R})^{0}
\end{array}\right.
$$

where $\varepsilon_{n}= \pm 1$ (to be chosen), $\hat{\Delta}_{(T, \eta)}=\varepsilon\left(T_{n}, \eta_{n}\right) \Delta_{\left(T_{n}, \eta_{n}\right)}$ (i.e. $\hat{\Delta}_{(T, \eta)}$ is $\Delta_{(T, \eta)}$ with the $\varepsilon(T, \eta)$ removed), and κ_{n} is the " κ " associated to (T_{n}, η_{n}). Note that $\left\{\left.\kappa_{n}\right|_{X_{*}\left(\left(\mathrm{~T}_{n}\right)_{\mathrm{sc}}\right)}\right\}$ is exactly the set $\left\{\kappa_{n}\right\}$ from [Sh2, §7] and [Sh3, §2].

Suppose that we are able to show that there exists $f_{H} \in \mathcal{C}_{\tilde{\xi}}(H(\mathbf{R}))$ such that

$$
\Phi_{f_{H}}^{\left(T_{n}^{\prime}, 1\right)}\left(\gamma^{\prime}, d t^{\prime}, d h\right)=\left\{\begin{array}{l}
\Phi_{n}\left(\gamma^{\prime}, d t^{\prime}, d h\right) \quad \text { if } \gamma^{\prime} \in T_{n}^{\prime}(\mathbf{R})^{0} \tag{*}\\
0 \quad \text { if } \gamma^{\prime} \notin T_{n}^{\prime}(\mathbf{R})^{0}
\end{array}\right.
$$

for all G-regular γ^{\prime} in $T_{n}^{\prime}(\mathbf{R})$ and for all n provided $\varepsilon_{m} \varepsilon_{n}=\varepsilon(m, n)$ whenever $T_{m}^{\prime}(\mathbf{R})$ and $T_{n}^{\prime}(\mathbf{R})$ are adjacent Cartan subgroups. Here $\varepsilon(m, n)$ is as defined in [Sh4, §3.5] (cf. [Sh2]). Then we shall take $\varepsilon_{n}=\varepsilon\left(T_{n}, \eta_{n}\right)$, so that by the results of L-indistinguishability (exp. [Sh4, §3.5]) there does exist f_{H} satisfying (*). It is then routine to verify that f_{H} satisfies the statement of our theorem (see the first paragraph of this proof; similar arguments for L-indistinguishability are given in [Sh4, §3]).

Returning to the condition on the existence of f_{H}, we have only to show that our family $\left\{\Phi_{n}(,),\right\}$ behaves like the family $\left\{\Phi_{n}\right\}$ of $[\mathbf{S h} 2, \S 9]$ (cf. [Sh4, §3.2]). The invariance and growth requirements being satisfied (clearly), only the "jump conditions" remain. Thus we need the jump formulas for the functions $\Psi_{(T, \eta)}$:

$$
\gamma \rightarrow\left\{\begin{array}{l}
a_{(T, \eta)}(\delta) \hat{\Delta}_{(T, \eta)}(\gamma) \Phi^{(T, \alpha, \kappa)}(\delta, d t, d \tilde{g}) \quad \text { if } \gamma \in T(\mathbf{R})_{\mathrm{reg}}^{0}, \\
0 \quad \text { if } \gamma \in T(\mathbf{R})_{\mathrm{reg}}-T(\mathbf{R})^{0} .
\end{array}\right.
$$

These are contained essentially in the analysis of $\S \S 4$ and 5 of [Sh6]. To be more precise, we seek analogues of Lemmas 5.2.2 and 5.2.5 of [Sh6], when " ' $\Delta_{T} \Phi^{\tau}$ " is replaced by the function above (with the necessary adjustment in the choice of positive system for the imaginary roots of T used to define the factor $\left.\hat{\Delta}_{(T, \eta)}\right)$. The proof of the analogue of Lemma 5.2.2 is straightforward; because of notational complications we omit further details. Note that the " κ-signature" $[\mathbf{S h} 2]$ which appears depends only on $\left.\kappa\right|_{X_{*}\left(T_{s}\right)}$, i.e. the jump is indeed like that from L-indistinguishability. The analogue of Lemma 5.2.5 will be stronger than the original statement, because we no longer need the assumption " $\kappa\left(\alpha^{\vee}\right)=1$ if (5.2.3) holds." We now have the exact analogue of [$\mathbf{S h 2}$, Proposition 9.1] from L-indistinguishability. Indeed, let γ_{0} be a semiregular element in $T(\mathbf{R})$ such that $\lambda\left(\gamma_{0}\right)=1$, where λ is an imaginary root such that $\kappa\left(\lambda^{\vee}\right)=-1$. We wish to show that $\Psi_{(T, \eta)}$ is smooth on some neighborhood of γ_{0}. We may assume that $\gamma_{0} \in T(\mathbf{R})^{0}$. Fix $\delta_{0} \in T(\mathbf{R})^{0}$ such that $\delta_{0}^{2}=\gamma$. For γ close to γ_{0} choose δ close to δ_{0} such that $\delta^{2}=\gamma$. It will be sufficient to show that $\delta \rightarrow \Psi_{(T, \eta)}\left(\delta^{2}\right)$ is smooth near δ_{0}. This follows immediately from Lemma 4.3.3 of [Sh6]. Note that this type of argument could not be used in the proof of Lemma 5.2.5 of [Sh6] because the "cross-section for the norm" was not smooth near γ_{0}.

We now complete the proof of Theorem 7.1 by the arguments already indicated.
8. The dual lifting. Again we fix an element of $\mathbb{S}(\tilde{G}, \alpha)$ and choose a convenient representative ($s,{ }^{L} H_{s}$) for this element, as in $\S 5$. Let H_{s} be the corresponding endoscopic group. Since H_{s} is, by definition, quasi-split over \mathbf{R}, the set $\Phi\left(H_{s}\right)[\mathbf{L} 2]$ consists of all equivalence classes of admissible homomorphisms $\phi: W \rightarrow{ }^{L} H_{s}$. Suppose that $\tilde{\xi}:{ }^{L} H_{s}^{-\leftrightharpoons}{ }^{L} \tilde{G}$ is an allowed embedding. Then $\tilde{\xi}$ induces a map, also to be denoted $\tilde{\xi}$, from $\Phi\left(H_{s}\right)$ to $\Phi(\tilde{G})$; the image of the class of $\phi: W \rightarrow{ }^{L} H_{s}$ is the class of $\tilde{\phi}=\tilde{\xi} \circ \phi$: $W \rightarrow{ }^{L} \tilde{G}$. It is easily checked that the image of $\Phi\left(H_{s}\right)$ in $\Phi(\tilde{G})$ is independent of the choice for $\tilde{\xi}$. By the remarks at the end of $\S 5$ it is also independent of the choice for $\left(s,{ }^{L} H_{s}\right)$.

On the other hand, the automorphism α of \tilde{G} has a standard dual [Sh7], again denoted α :

$$
\alpha((g, h) \times w)=(h, g) \times w, \quad h, g \in^{L} G^{0}, w \in W
$$

If $\phi: W \rightarrow{ }^{L} \tilde{G}$ is admissible then so is $\alpha \circ \phi: W \rightarrow{ }^{L} \tilde{G}$. We write $\{\phi\}$ for the class of ϕ and $\{\phi\}^{\alpha}$ for the class of $\alpha \circ \phi$. Then $\Phi(\tilde{G})^{\alpha}=\{\{\phi\} \in \Phi(\tilde{G})$: $\left.\{\phi\}^{\alpha}=\{\phi\}\right\}$.

For each element of $\mathbb{S}(\tilde{G}, \alpha)$ we fix a representative $\left(s,{ }^{L} H_{s}\right)$ as before, and assume that each ${ }^{L} H_{s}$ has an allowed embedding $\tilde{\xi}$ in ${ }^{L} \tilde{G}$. Also, we will use $\cup_{H_{s}}$ to denote a union over the corresponding endoscopic groups.

Theorem 8.1.

$$
\Phi(\tilde{G})^{\alpha}=\bigcup_{H_{s}} \tilde{\xi}\left(\Phi\left(H_{s}\right)\right)
$$

Proof. Let $\phi: W \rightarrow{ }^{L} H_{s}$ be admissible. Set $\tilde{\phi}=\tilde{\xi} \circ \phi$. We may assume that $\phi\left(\mathbf{C}^{x} \times 1\right) \subset{ }^{L} T^{0} \times \mathbf{C}^{x} \times 1$. Then clearly $\tilde{\phi}$ and $\alpha \circ \tilde{\phi}$ coincide on $\mathbf{C}^{x} \times 1$. We write $\phi(1 \times \sigma)$ as $n_{H} \times 1 \times \sigma \in{ }^{L} H_{s}$, and $\tilde{\xi}(1 \times 1 \times \sigma)$ as $\left(x m_{0}, m_{0}\right) \times 1 \times \sigma\left(\right.$ cf. §5). Then $\tilde{\phi}(1 \times \sigma)=\left(x n_{H} m_{0}, n_{H} m_{0}\right) \times 1 \times \sigma$ and

$$
\begin{aligned}
(\alpha \circ \tilde{\phi})(1 \times \sigma) & =\left(n_{H} m_{0}, x n_{H} m_{0}\right) \times 1 \times \sigma \\
& =\left(x^{-1}, x\right) \tilde{\phi}(1 \times \sigma)=g^{-1} \tilde{\phi}(1 \times \sigma) g
\end{aligned}
$$

where $g=(x, 1)$. Then clearly $\alpha \circ \tilde{\phi}=\operatorname{ad} g^{-1} \circ \tilde{\phi}$, and so $\tilde{\xi}(\Phi(H)) \subset$ $\Phi(\tilde{G})^{\alpha}$.

Suppose now that $\tilde{\phi}: W \rightarrow{ }^{L} \tilde{G}$ is admissible and that $\{\tilde{\phi}\}^{\alpha}=\{\tilde{\phi}\}$. Then it is sufficient to show that $\tilde{\phi}$ factors through some ${ }^{L} H_{s}$ (not necessarily among our fixed representatives) embedded (via an allowed embedding) in ${ }^{L} \tilde{G}$.

Let $S_{\tilde{\phi}}^{\alpha}=\left\{a \in^{L} \tilde{G}^{0}: a \tilde{\phi}(w) a^{-1}=(\alpha \circ \tilde{\phi})(w), w \in W\right\}$. Then $S_{\tilde{\phi}}^{\alpha}$ is nonempty. If a_{0} lies in $S_{\tilde{\phi}}^{\alpha}$ then so does $a_{0} z$, for $z \in \tilde{Z}^{W}$. In fact, then $S_{\tilde{\phi}}^{\alpha}=a_{0} S_{\tilde{\phi}}$, where $S_{\tilde{\phi}}$ is the centralizer of $\tilde{\phi}(W)$ in ${ }^{L} \tilde{G}^{0} \ldots$ recall that the results of [Sh4], with a little extra argument for the case $\tilde{\phi}$ unbounded, show that $S_{\tilde{\phi}}=S_{\tilde{\phi}}^{0} \tilde{Z}^{W}, S_{\tilde{\phi}}^{0}$ denoting the identity component in $S_{\tilde{\phi}}$. Choose $s=a_{0} \tilde{Z}^{W}$ contained in $S_{\tilde{\phi}}^{\alpha}$. Assume that s consists of α-semisimple elements (... we will prove below that such an s exists). Then set ${ }^{L} H_{s}^{0}=$ $\left(\text { Cent }_{\alpha}\left(s,{ }^{L} \tilde{G}^{0}\right)\right)^{0}$, and select ${ }^{L} B_{s}^{0},{ }^{L} T_{s}^{0}$ and $\{Y\}$ as in $\S 3$. To define a suitable action of W on ${ }^{L} H_{s}^{0}$ we have just to give a homomorphism of
$\operatorname{Gal}(\mathbf{C} / \mathbf{R})$ into $\operatorname{Aut}\left({ }^{L} H_{s}^{0},{ }^{L} B_{s}^{0}{ }^{L} T_{s}^{0},\{Y\}\right)$ such that σ_{s}, the image of σ, is "realized in $\operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{\boldsymbol{G}}\right)=\operatorname{Cent}_{\alpha}\left(a_{0},{ }^{L} \tilde{G}\right)$ ". But

$$
\tilde{\phi}(1 \times \sigma)^{-1} a_{0} \alpha(\tilde{\phi}(1 \times \sigma))=a_{0} .
$$

Thus $\tilde{\phi}(1 \times \sigma)$ normalizes ${ }^{L} H_{s}^{0}$. We may write ad $\left.\tilde{\phi}(1 \times \sigma)\right|_{L_{s}^{0}}$ as $\omega \sigma_{s}$, where ω is an inner automorphism of ${ }^{L} H_{s}^{0}$ and $\sigma_{s} \in$ $\operatorname{Aut}\left({ }^{L} H_{s}^{0},{ }^{L} B_{s}^{0},{ }^{L} T_{s}^{0},\{Y\}\right)$. Note that $\sigma_{s}^{2}=1$ and is "realized in $\operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}\right){ }^{\prime}$. Using the associated W-action we form ${ }^{L} H_{s}$ and so obtain a representative $\left(s,{ }^{L} H_{s}\right)$ for an element of $\mathbb{\Im}(\tilde{G}, \alpha)$. We claim that $\tilde{\phi}$ factors through ${ }^{L} H_{s}$. Thus, suppose that $\tilde{\xi}:{ }^{L} H_{s} \hookrightarrow{ }^{L} \tilde{G}$ is an allowed embedding. Then for each $w \in W, \tilde{\phi}(w)$ lies in $\operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}\right)$ and acts on ${ }^{L} H_{s}^{0}=\left(\operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}^{0}\right)\right)^{0}$ as an element $n(w) \times w$ of the image of ${ }^{L} H_{s}$ in ${ }^{L} \tilde{G}$. By definition, $n(w) \times w \in \operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}\right)$. Thus $\tilde{\phi}(w)=a(w)(n(w) \times$ $w)$, where $a(w) \in \operatorname{Cent}_{\alpha}\left(s,{ }^{L} \tilde{G}^{0}\right)$ centralizes ${ }^{L} H_{s}^{0}$. But then $a(w)$ lies in the center of ${ }^{L} H_{s}^{0}$. Hence $\tilde{\phi}$ factors through ${ }^{L} H_{s}$.

It remains now to show that S_{ϕ}^{α} contains an α-semisimple element. If we replace $\tilde{\phi}$ by ad $g \circ \tilde{\phi}, g \in^{L} \tilde{G}^{0}$, then we must replace S_{ϕ}^{α} by $\alpha(g) S_{\phi}^{\alpha} g^{-1}$. Therefore we may assume that S_{ϕ}^{α} contains an element ($x^{-1}, 1$), $x \in^{L} G^{0}$ (cf. Lemma 4.1). Then we write $\tilde{\phi}(w)$ as $\left(\phi_{1}(w), \phi_{2}(w)\right) \times w$ and obtain from $\left(x^{-1}, 1\right) \tilde{\phi}(w)(x, 1)=\alpha(\tilde{\phi}(w)), w \in W$, that $\phi_{1}(z \times 1)=\phi_{2}(z \times 1)$, $z \in \mathbf{C}^{x}$, and $\phi_{1}(1 \times \sigma)=x \phi_{2}(1 \times \sigma)$; also, x lies in the centralizer S_{0} of the image of the homomorphism $\hat{\phi}_{1}: w \rightarrow \phi_{1}(w) \times w$ of W into ${ }^{L} G$. Write $x=x_{u} x_{s}$, where $x_{u} \in S_{0}$ is unipotent and $x_{s} \in S_{0}$ is semisimple. Then with the same ϕ_{1} and with x_{s} in place of x we can use the formulas above for $\tilde{\phi}$ to define $\tilde{\phi}_{0}: W \rightarrow{ }^{L} \tilde{G}$ such that $S_{\hat{\phi}_{0}}^{\alpha}$ contains $\left(x_{s}^{-1}, 1\right)$. But $\tilde{\phi}_{0}$ is easily seen to be equivalent to $\tilde{\phi}$ because x_{u}^{-1}, being unipotent and fixed by $\hat{\phi}_{1}(W)$, can be written as $v\left(\hat{\phi}_{1}(1 \times \sigma) v\right)^{-1}, v \in \operatorname{Cent}\left(\phi_{1}\left(\mathbf{C}^{x} \times 1\right),{ }^{L} G^{0}\right)$. Since ($x_{s}^{-1}, 1$) is α-semisimple our proof of Theorem 8.1 is complete.

According to Langlands' functoriality principle this factoring of the α-fixed parameters $\{\tilde{\phi}\}$ should be reflected in character theory. Let $\tilde{\phi} \in \Phi(\tilde{G})$ be α-fixed (we now drop the $\}$ from the notation for parameters). Then the L-packet $\Pi_{\tilde{\phi}}$ consists of a single infinitesimal equivalence class of irreducible admissible representations fixed by the automorphism $\alpha: \tilde{G}(\mathbf{R}) \rightarrow \tilde{G}(\mathbf{R})(\ldots$ this is easily checked, see also [C1]). Thus the twisted character $\chi_{\tilde{\phi}}^{\alpha}$ of $\Pi_{\tilde{\phi}}$ is well-defined up to sign (see $[\mathbf{C 1}]$ for a detailed discussion, especially concerning the question of signs). Assume that $\tilde{\phi}$ is bounded, i.e. if $\tilde{\phi}(w)=\tilde{\phi}_{0}(w) \times w, w \in W$, then $\tilde{\phi}_{0}(W)$ is bounded. Then χ_{ϕ}^{α} is tempered [C1, Theorem 5.12]. On the other hand, suppose that $\tilde{\phi}$ is the lift of $\phi \in \Phi(H)$, in the sense afforded by Theorem
8.1. Then ϕ is essentially bounded, so that the L-packet Π_{ϕ} consists of essentially tempered (equivalence classes of) representations. Thus $\chi_{\phi}=$ $\Sigma_{\pi \in \Pi_{\phi}} \chi_{\pi}, \chi_{\pi}$ denoting the ordinary character of π, is a stable essentially tempered distribution on $H(\mathbf{R})$ [Sh1, Lemma 5.2].

Theorem 7.1 provides a correspondence $\left(f, f_{H}\right)$ between $C_{c}^{\infty}(G(\mathbf{R}))$ and $\bigodot_{\tilde{\xi}}(H(\mathbf{R}))$. As mentioned already, an adequate analysis of the "twisted F_{f} transform" would provide a correspondence between $\mathcal{C}(\tilde{G}(\mathbf{R}))$ and $\bigodot_{\tilde{\xi}}(H(\mathbf{R}))$; it would also give a dual lifting of stable tempered distributions on $H(\mathbf{R})$ to twisted-invariant tempered distributions on $\tilde{G}(\mathbf{R})$, with eigendistributions mapping to eigendistributions (see [Sh4, §4] for the analogous arguments in the case of L-indistinguishability). Nevertheless, with the correspondence of Theorem 7.1 we can define (Lift $\left.\chi_{\phi}\right)(f)=\chi_{\phi}\left(f_{H}\right)$, $f \in C_{c}^{\infty}(\tilde{G}(\mathbf{R}))$. Writing $\chi_{\phi}\left(f_{H}\right)$ as $\int_{H(\mathbf{R})} f_{H}(h) \chi_{\phi}(h) d h$, and applying the Weyl Integration Formula, the matching theorem and the twisted analogue of the Weyl Integration Formula, we find that Lift χ_{ϕ} is a twistedinvariant distribution on $\tilde{G}(\mathbf{R})$ represented by a function explicitly computed in terms of χ_{ϕ}. Moreover, this function transforms under the center of the universal enveloping algebra of $\tilde{G}(\mathbf{C})$ according to the infinitesimal character of $\chi_{\tilde{\phi}}^{\alpha}$. We may therefore ask if Lift χ_{ϕ} coincides with $\chi_{\tilde{\phi}}^{\alpha}$ up to a constant (depending only on G and H, once the sign for $\chi_{\tilde{\phi}}^{\alpha}$ has been suitably fixed). According to [C1] with some minor additional arguments, this is true if $H=G$; recall that we are assuming that $\tilde{\phi}$ is bounded, so that ϕ is an essentially bounded parameter. Work of L. Clozel now in progress should provide the answer to our question for the case $H \neq G$.

References

[C1] L. Clozel, Changement de base pour les representations tempérées des groupes reductifs réels, Ann. Sci. Ec. Norm. Sup., 4^{e} serie, t. 15 (1982), 45-115.
[L1] R. Langlands, Stable conjucacy: definitions and lemmas Canad. J. Math., XXXI, No. 4 (1979), 700-725.
[L2] , On the classification of irreducible representations of real algebraic groups, preprint (1973).
[L3] \qquad , Les débuts d'une formule des traces stables, Publ. Math. Univ. Paris VII, vol. 13 (1983).
[Sh1] D. Shelstad, Characters and inner forms of a quasi-split group over R, Compositio Math., 39 (1979), 11-45.
[Sh2] '___, Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. Ec. Norm. Sup., 4^{e} serie, t. 12 (1979), 1-31.
[Sh3] __ Embeddings of L-groups, Canad. J. Math., 33 (1981), 513-558.
[Sh4] _, L-indistinguishability for real groups, Math. Ann., 259 (1982), 385-430.
[Sh5] _O_, Orbital integrals, endoscopic groups and L-indistinguishability for real groups, to appear in Publ. Math. Univ. Paris VII.
[Sh6] , Base Change and a Matching Theorem for Real Groups, in Springer Lecture Notes, Vol. 880 (1982), pp. 425-482.
[Sh7] , A generalization of endoscopic groups, (in preparation).
Received April 20, 1982. Supported by NSF Grants MCS 79-01712, MCS 81-02392 and MCS 81-08814(A01).

Rutgers University

Newark, NJ 07102

