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HELICOIDS OF CONSTANT MEAN CURVATURE
AND THEIR GAUSS MAPS

WALTER SEAMAN

A helicoidal surface in R3 is a natural generalization of a surface of
revolution. We give a simple description via the theory of harmonic maps
of the Gauss maps and Gaussian images of complete helicoidal surfaces
of constant mean curvature in R3. Do Carmo had conjectured that the
Gaussian image of such a surface contained an equator. This is true for
the complete surfaces of revolution of constant mean curvatures in R3

and we affirm this for helicoids of constant mean curvature.

In fact, there is such a surface of revolution (an "unduloid", see §1)
whose Gaussian image lies in an arbitrarily thin symmetric band about an
equator. We show that this is also the case for the complete helicoids of
constant mean curvature, which affirms the do Carmo conjecture. And,
whereas the Gauss map for a surface of revolution of constant mean
curvature is controlled by the pendulum equation, we show that the Gauss
map for a helicoidal surface is governed by a pendulum equation "with
infinite restoring force". We also compute a one-parameter family of such
Gauss maps corresponding to the associate family ([5]) of the helicoid.
This gives a one-parameter family of harmonic (non ± holomorphic)
maps into S2 (see §3), which includes the pendulum-type as a particular
member. Previously, only the pendulum-type seems to have been well
known.

Our original interest in this topic came from the recent work of
Hoffman, Osserman, and Schoen ([3]). They proved that the Gaussian
image of a complete surface of constant mean curvature in R3 cannot lie
in a closed hemisphere unless it is a plane or a right circular cylinder. This
result leads to the question: what can the Gaussian image of a complete
surface of constant mean curvature look like? It is this question to which
we address ourselves in this paper, at least for the special case of
helicoidal surfaces.

1. We recall some well-known facts from surface theory. Suppose a
surface of revolution in R3 is given locally by

/(r, /) = (c(r)cos /, c(r)sin /, r), c(r) φ 0,

(r, t) in some domain/).
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The mean curvature function for/is given by

(1.1) H= l + έ 2 ~ c i ί .
2c{\+cψ2

For H constant, a first integral of (1.1) is given by

0 = -He2 + c/i/l + c2
 HP k2,

where

±k2 = c,(O)/Vl + c(OΓ - Hc2(0)

or, equivalently,

(1.2) 0 = c2 + 2ac/{Γ+~έ2 + b2.

Delaunay [1] first realized that the solutions to this equation are roulettes:
the solution is the roulette of an ellipse if we take +b2, the roulette of a
hyperbola if we take -b2.

Note that in case b — 0, we get either that c(r) is constant, in which
case/is a right circular cylinder, or (r, c(r)) is a circle, in which case/is a
sphere.

If we let r(s) be the solution to

c(r(s)) ds

then the coordinates (s, t) are isothermal for/.
The Gauss map for/in (s,t) coordinates is given by

(1.3) (s,t) ^(e"sina(s),cos a(s)),

where

-1
sinα(.s) =

1 + hr

cosα(ί) = Tr

1 +(*«.»)'
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By direct calculation, using (1.2), one verifies that

(1.4) ά2 = sin2a±b2/a2

where -b2/a2 corresponds to the roulette of the ellipse, or "undulary",

whose surface of revolution is called an 'unduloid", while +b2/a2 corre-

sponds to the roulette of the hyperbola, or "nodary", whose surface of

revolution is called a "nodoid". Actually, (1.4) is just the first integral to

the system

s i n 2 α b2 . 2 . 2 , v . /Γkv

a = ——, ± — = «δ"" sm 2 α 0 , α(0) = αo,α(O) = α 0,

which is the pendulum equation, shifted by π/2 (i.e., substitute α(-ττ/2)

for α).

The trivial solution to (1.5): a = nπ/2, corresponds to the right

circular cylinder if n is odd, and to the plane if n is even. The solutions

a — (odd)7r/2 are stable, and this yields the well-known result that the

Gaussian image of an unduloid can be made an arbitrarily thin symmetric

band about an equator. This is because if (α 0, ά 0) is near (CT/2,0) then

ά\ — sin2 α 0 is negative, hence we get -b2/a2 in (4), which corresponds to

the unduloid. The critical value ά\ = sin2 α 0, i.e., b — 0, corresponds to

the sphere (unless <x0 = 0, say), while the nodoids correspond to &l >

sin2 α 0. In each case, the Gaussian image can be read off of the phase

portrait for the pendulum equation.

2. Consider the one-parameter group gt of rigid motions on R3 given

by

gt: (x, y9 z) ->(xcos/ + j/sin ί,-xsin t + y c o s ί , z + ht), / G R .

gt is called a helicoidal motion with axis Oz and pitch h. A helicoidal

surface with axis Oz and pitch h is a surface that is invariant under gt for

all t. If h — 0, this is just a surface of revolution. Let M be such a surface.

Let U be an open set in M such that the intersection of U with some plane

Π containing Oz is a curve given by z — λ(vx2 + y2). Then we can

parameterize U by

(r, θ)->(rcosθ, rsinθ, λ(r) + A0)

where (r, 0) are polar coordinates in the xy-plane. A nicer parameteriza-

tion (s, t) for such a surface would be achieved by letting the ^-curves be

the trajectories of the helicoidal motion (i.e., helices), parameterized by

arclength, and letting the ̂ -curves be their orthogonal trajectories. This
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"natural" parameterization is exhibited in [2], and is given by

(s, t) ^{p(s)cosφ{s, 0 , ρ(s)sinφ(s, t), λ(s) + hφ(s, /)),

where φtt = 0.

The metric in these coordinates is given by

da2 = ds2 + U2{s)dt2,

where U2(s) — (p2(s) + h2)/m2, m a constant.

This parameterization is well defined for all s such that p(s) Φ0 (see

[2]).
We see that the Gauss map for a helicoid can be written

By collapsing terms, we see that this Gauss map can be written

(2.1) (5, t) ^(eiβ(s^ sina(s)9 cos a{s)), withβ, = 0.

If we define s(s) = ft U~\s) ds, then it's easy to check that the

parameters (s9t) are isothermal, and relabelling s by s, we see that the

Gauss map of any helicoidal surface can be written, in isothermal parame-

ters, by (2.1). Of course, it may well be that there are non-helicoidal

surfaces with Gauss maps of the form (2.1)

We are interested in studying the Gauss map and Gaussian image of a

helicoid of constant mean curvature. It is well known that a surface in R3

has constant mean curvature if and only if its Gauss map is a harmonic

map. This means that if we have isothermal parameters on the surface,

then the Gauss map, considered as a map from the surface into R3,

satisfies

(2.2) ΔX + \HX\2X={).

Furthermore, (2.2) shows that the harmonicity of X is independent of the

conformal structure of the surface, so that (2.2) can be computed with X

as a map from the plane with the standard flat metric into R3. Finally,

Kenmotsu [3] has shown that given any harmonic, nowhere ± holomor-

phic map /of a Riemann surface § into S2, there is a surface of constant

mean curvature H (φ 0) in R3, unique up to translation, which has Gauss

map, in stereographic coordinates,/. The metric on the surface is given by

P
where z is a conformal parameter on §.
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The harmonicity equation (2.2) for the map

X: (s, t) = (eiβ(st)sina(s),cosa(s))

yields the system of equations:

(2 3) " ' Λ ' 2 s i n 2 α

(2.4)

391

2άβ cos a + Δβ sin a = 0

where dot denotes differentiation with respect to s. Let us make the
"helicoidaΓ assumption that βtί = 0. Thus β(s, t) = b(s) + c(s)t, but
since (2.3) implies that | vβ |2 is independent of t, we must have

β(s91) = b(s) + ct.

Now assume that a E (0, TΓ). Then (2.3), (2.4) can be written as the
system:

(2.5)

a

(b2 + c2)
sin2α

-2άόcot a

This system has a unique local solution for each given (α 0, ά0,2>0) G
(0,7r) X R2. In particular, if b0 — 0, then the solution to (2.5) is given by
the solution to

(2.6) («") =
a

sin2α

(the pendulum equation) α(0) = α0, ά(0) = ά0, b = 0, i.e., if 60 = 0, then
b = 0. This case corresponds to the Gauss map of a surface of revolution,
which is well understood (see §1). Therefore, we will assume b0 φ 0 and
hence b is never 0.

In this case we can divide by b in (2.4) and after an elementary
integration, deduce that

(2.7) β(s, t) — 60sin2 α0 esc2 a(s) ds + ct.

sin2α

Using (2.7), (2.3) becomes

(2.8) ά = (^s in 4 α 0 csc 4 α + c2)

with initial conditions α(0) = α0, ά(0) = ά0.
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A first integral of (2.8) is given by

(2.9) a2 = άl + {ί>l - c2)sin2 a0 - ί>lesc2 a + c2 sin2 a.

A phase portrait analysis of (2.9) shows that the solutions to (2.8) are

globally defined and periodic, i.e, the trajectories given by (2.9) are closed

and symmetric about (π/2,0). The assumption that b0 φ 0 is crucial here.

Solutions to equation (2.8) are described "physically" by a pendulum with

infinite restoring force, since, no matter how big the initial force (ά 0) we

impart to the pendulum, it always swings back and varies periodically

about the equilibrium (α 0, ά0) — (π/2,0). Finally, it is elementary to

show that the trivial solution a = π/2 is stable.

We now see that X is defined as a map from all of R2 into S2, and its

image is a symmetric band about the equator in the "xy" plane. This

band can be made arbitrarily thin owing to the aforementioned stability

result.

Let us now normalize the class of all such maps X by assuming that

α 0 = 7r/2, which simply amounts to adjusting Z>0, since every solution to

(2.8) must pass through π/2 at some s. If we let / = σ ° X, where σ = the

stereographic projection from the north pole of S2 in R3, then we have

/ =
eιβsina

1 — cos a

by direct verification; if b0 Φ 0, then, for z = s + it, fz9 f^ΦO, and X

determines a unique (up to translation) surface Sx of constant mean

curvature H in R3, whose Gauss map in stereographic coordinates is/.

The metric of this surface (i.e., the metric induced on R2 via X) is

given by

H{\ + I/I2)

We can assume H = 1/2, and the metric then becomes

(2.10) (b2csc2 a+ (ά + c sin af) \dz\2 := F(s) \dz\2.

Note that since a is periodic, we have F(s) > ε > 0 Vs, and since F(s) is

defined for all s, the metric (2.10) is complete. This says that, in particular,

the Gaussian image of a complete helicoidal surface of constant mean

curvature is a symmetric band about an equator, and, if the surface is

either an unduloid, or else not a surface of revolution, then this band can

be made arbitrarily thin.
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3. The question still remains: what are the surfaces of SXΊ In
particular, are there any non-helicoidal ones? We show that, unfor-
tunately, each Sx is a helicoid by showing that each Sx is associate to a
surface of revolution. The idea behind this is the following: if in (2.8), we
simply allow b0 to approach 0, then the resulting Gauss map will approach
the Gauss map for a surface of revolution. However, this surface of
revolution will have no a priori metric relation to the starting surface Sx.
What we want to do is let b0 -* 0 and keep F(s) \ dz f constant, for this will
show that in fact Sx is isometric to a surface of revolution; hence Sx is in
the associate family to a surface of revolution (of constant mean curva-
ture) and, therefore ([4], §13), must be helicoidal.

Our starting data is:

a — (60csc a + c )—-z—
2

F(s) = (&0csc2 a +(ά + csinα) ).

Using (2.9), one checks that

F(s) = 2ccos ocF(s),

so that

(3.1) F(s) = F(0)e^2ccosa(s)ds

We want to vary the parameters Z?o, ά0, c so that b0 will attain the
value 0, and F(s) will remain constant. If we consider 60, ά0, c as being
functions of a variable, say 0, then of course α, and hence F, depends also
on θ, and what we are after are conditions on bo(θ), άo(θ), c(θ) which will
guarantee that F does not depend on θ. If we knew a priori that F was
differentiable as a function of 0, then the condition that F be independent
of θ would simply be 6F/90 = 0, which would in turn be equivalent to

(3.2) bo(θ) + (άftθ) + c(θ)f = constant,

9#
(3.3) -rf = 0 where g = 2c cos α.

Now, using (2.8), one verifies that g satisfies

(3.4) 0 = 2g(g2 - 2(άo(θ) +
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and

(3.5) g(O,θ) = O,

(3.6) ^

If we choose c(0), άo(θ) and bo(θ) so that both άo(0)c(0) and ά2

0(θ) +
t>l(θ) + c2(θ) are constants, say a and d2, respectively, then (3.2) is
satisfied. In this case, g satisfies

(3.4') ff
(3.5)

and

(3.6') | | ( 0 , ^ ) = -2β.

The point now is that (3.4') has a unique local solution satisfying (3.5')
(3.6') and 3g(0, 0)/90 = 0, since the curve (0, 0) is non-characteristic.
Furthermore, since all the data are analytic, we see that the solution to
(3.4')-(3.6')> and dg(s,θ)/dθ = 0 Vs, is obtained simply by solving (3.4')
as an ODE in s, with initial conditions g(0) = 0, g(0) = -2 a. This g then
solves the problem dF/dθ = 0.

Consider our original bQ9 ά0, c simply as constants, and define

(3.7)

(άg + b2 + c2)cos2 0 ± \l(ά2 + b2 + c2)2cos4 θ - 4c2ά2

(3.8) 2(0)

where we take the + root if ά0 < c2, the — root if ά0 > c2, either root
«o — c2, and finally

0.9) *<•>=$•

Note that c(0) Φ 0, and the discriminate in (3.8) is positive for 0 in
the interval (-0,, 0j) where

0, = cos
1

l 2 c ά ol
2 + b2 + c2 *
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Also, for

we have c(θ0) = c, άo(θo) = ά0, bo(θo) = b0.
Finally, a short calculation shows that

c + ά + b.

(Notice that c2(θ) is a solution to

c4(θ) - (ά2 + b2 + c2)cos2(θ)c2(θ) + c2ά2 = 0

c2ά£ + c*(θ) i , ., ,x 7 Λ

c\θ) = (ά2 + b'2 + c2)cos2θ.)

Our metrics F(s)\dz\2 are thus all independent of θ, where θ corre-
sponds to the one-parameter family of solutions:

(3.10)

a = i[άl + b'l + c2)sin2 0csc4 α

(ά2 + b2 + c2)cos2θ± ((ά2 + b'l + c2fcos4θ- 4c2ά2)V2

sin2α
2 '

α(0)=f,

{ά2 + 42 + c2)cos2 θ ± ({ά2 + b2 + c2)2 - 4c2ά2)
1/2

2

For θ = 0, we simply have

.. _ sin2α
a-K——,

i.e., the pendulum equation, which corresponds to a surface of revolution.
Finally, this shows that Sx is associate to a surface of revolution, and
hence is helicoidal.
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The one-parameter family of harmonic maps is given by (2.1), (2.7),

and (2.8), where α 0 = π/2, and ά 0 , b0, c are replaced by άo(0), bo(θ),

c(θ), respectively.
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