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SUBSETS OF ωω AND GENERALIZED
METRIC SPACES

D. K. BURKE AND S. W. DAVIS

In this note we use subsets of ωω and certain set-theoretic state-
ments about such sets to solve, up to consistency, several questions
concerning generalized metric spaces. These results are improvements of
some of Michael's work using the continuum hypothesis (hereafter CH)
and some earlier work by the authors using CH and P(c).

1. Introduction. As usual, ωω denotes the set of all functions from

the natural numbers (ω) into the natural numbers. An ordinal is equal to

the set of all smaller ordinals, a cardinal is an initial ordinal, and c — 2ω.

DEFINITION 1.1. If /, g e ω ω, we write

/ < # g iff there is k G ω such that f(n) < g(n) for all n>k, and

/ = * g iff there isfcGω such that f(n) — g(n) for all n>k.

DEFINITION 1.2. Suppose K is a cardinal. A set S Cωω is called a

K-scale iff S — {ga: a < K) where ga<*gβ whenever a< β < K and if

/ Gωω, then there is a < K such that / < * ga.

BF(/c) is the statement: "If F Cωω and \F\< /c, then there is g Gωco

such that / < * g for all / E F."

We shall be mainly interested in using as additional axioms with ZFC

the statements "There exists an ω rscale" and BF(c). We state without

proof the following theorems regarding the consistency, independence,

and strengths of these axioms.

THEOREM 1.3.

(a) [Ha] CH implies that there exists an ωrscale.

(b) BF(c) implies there exists a c-scale.

(c) [He] // is consistent that there exists an ωrscale and CH is false

(due to R. M. Solovay).

(d) [Bo], [Ro2] CH => MA => P(c) =» BF(c).

(e) [So] BF(c) and not P(c) is consistent.

(f) [He] There exists a κscale implies BF(cffc).
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REMARK. In the notation used by Vaughan and van Douwen [Va], the

statement BF(κ) is equivalent to " 6 > κ " . In this notation b is the

smallest cardinal /c such that there exists a family F Cωco with | F\= K and

there is no g Gωω with / < * g for all / E F.

2. Scaling old problems. In this section we use the existence of

co,-scales as an alternative to CH in the improvement of existing results on

several old problems. The construction techniques which we shall be using

are based upon the following lemmas. Analogous results using CH are

Lemmas 3.1 and 3.5 of [M 2 ]. It is pointed out in [M 2 ] that the statements

given there are actually equivalent to CH, and it is asked if CH is essential

to the existence of examples of the type we shall describe (Question 7.1 of

[M2]) Thus our results may be considered as an answer to this question.

LEMMA 2.1. (Assume there exists an ωx-scale.) Let {τa: a < co,} be a

family of first countable topologies on a set X and let D be a countable subset

of X such that D is not the intersection of any countable subcollection from

U α < ω τα. There exists an uncountable set Z such that D C Z C X and

whenever D C W C X and W E U α < ω ) τα, then \ Z\W\< co. (Hence Z is

Lindelόf with respect to every τa.)

Proof. Let S = {fa: a < co,} denote an co,-scale. If D = {zn: n E co}

and β < co,, let {U(zn, k, β): k E ω} be a decreasing open base at zn with

respect to τβ. Now for any a < ωx and h E ω ω, let W(h, β) =

U w 6 ω U(zn9 h(n\ β) and Gaβ = Π{W(h, β): h = * Q . Note that D C

Gaβ, Gaβ is a G^-set with respect to τβ9 and Gaβ D Gyβ if a < γ < ω,. For

each γ, the set ^β^yGyβ is uncountable; so it is possible to choose a set

{xy: γ < co,} such that xy E Πβ^γGγβ\D and xΊΦxθ if y ^ θ. Let

Z = {jcγ: γ < ωλ) U D. To see that Z satisfies the desired property,

suppose there is θ < co, and W E τθ with D C W. Choose h Eωco such that

W(h, θ) C Wand find/α E S such that h < * fa and θ < α. It is clear that

for any γ >: α,

ΠGγβQ Π Gaβ C Gα,

so that (jcγ: a < γ < co,} c W. Hence | Z\W^|< ω.

REMARK. The hypothesis of the above lemma is somewhat stronger

than necessary. Examination of the proof indicates that the topologies τβ

need not be first countable, but only that the points of D have countable

character with respect to τβ for each β < co,.
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For the uses made in the sequel, we find it convenient to have the
following weaker form of Lemma 2.1 when there is only one topology
given on the set X.

LEMMA 2.2. (Assume there exists an ωλ-scale.) If X is a first countable
T^space and D is a countable, non-G'δ-subset of X, then there exists an
uncountable set Z such that D C Z C X and whenever W is an open subset
of X containing Z>, then \ Z\W\< ω.

EXAMPLE 2.3. (Assume there exists an coj-scale.) There is a regular
Lindelόf space Y whose product with the irrationals is not normal.

Proof Let Y be the set Z whose existence is given by 2.2 when D — Q
and X = R, and give Y the subspace topology from the Michael line [MJ.
Michael constructed this space using CH (and the analogue of 2.2) in
[M2] and [MJ, and the verification of the properties claimed is given in
[M2]

To the authors' knowledge, it is unknown whether an example of this
type can be constructed using no axioms beyond ZFC; see Problem 5.6
[Pr].

The remaining examples in this section are built upon //, Heath's
"bow-tie space" [Hh]. The points of H are the points of the plane. For a
point x = (Λ;,, JC2), we let B(x, n) be the set given by

B(x, n) = \y E R X R: ||x ~ J>| |<^ and
~ X2

< tan J

Geometrically, B(x,n) is a horizontal bow-tie centered at x. As n in-
creases, both the radius and the vertex angle decrease.

It is known that the topology generated by using {B(x, n)\ n E N,
x E H) is a semimetrizable topology on H. We note that it is known that
H is a Baire space, and that Lindelόf semimetric spaces are hereditarily
Lindelόf. We define a "bow-tie" B to have orientation a if B can be
obtained from B(x9 «), for some x E H, n E N9 by a counter-clockwise
rotation through the angle a. In this case, we write B = B(x, n, a). In
particular, B(x, n) — B(x, w,0) for each x E H, n E N.

EXAMPLE 2.4. (Assume there exists an co^scale.) There exists a Lindelόf
semimetrizable space having no countable network.
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Proof. Let τx be the topology on H generated by {B(x, H , 0 ) : x E H,

n E N) and τ2 be the topology on H generated by {B(x, n, π/2): x E //,

n E N). Let Z be the set whose existence is given by 2.1 with X—H and

D = β X β. Now let Zj = (Z, η ) and Z 2 = (Z, τ2). Then both Z, and Z 2

are Lindelof semimetric spaces. However {(x, x): x E Z} is a closed

discrete subset of ZλX Z2. Hence ZλX Z2, and consequently at least one

of Z 1 and Z 2 , cannot have a countable network.

For our next example we would like to have a set Z C H which is

Lindelof with respect to all possible orientations. Since 2.1 allows only ωλ

topologies, and we are admitting the possibility that ωλ < c, we use the

following lemma.

LEMMA 2.5. For a E [0, TΓ), let τa be the topology generated on H by

{B(x, «, a): x E i/, n E N}. If Z Q H is Lindelof with respect to τa for

each rational α, then Z is Lindelof with respect to ra for every a.

Proof. Only the center point poses a problem, but if B is a bow-tie in

Z with any orientation, then there is some rational a so that B is open

with respect to τa. Now since Z is hereditarily Lindelof with respect to τa

for each rational α, the result follows.

EXAMPLE 2.6. (Assume there exists an ωx-scale.) There is a nonmetriz-

able semimetrizable space which has a locally connected, perfectly normal

compactification.

Proof. The desired example is given in Examples 3.2 and 3.3 of [BDJ
using CH. The need for CH is to obtain the set which is called X'm [BDJ.
This set can be obtained by using an ωλ -scale from Lemma 2.1 by letting

τa be the topology generated by {B(x, n, a): x E H, n E N} for each

rational α, X = H (in the notation of 2.1) and D — Q X Q. Then the set Z

(in the notation of 2.1) is the desired set. The remainder of the construc-

tion now follows from Lemma 2.5 and the work in [BDX] by first building

a first countable compactification of H and then taking a quotient to get

the compactification we are seeking.

It is not known if there exist ZFC examples which have the properties

of those given above. However, it can be shown that the type of construc-

tion used here, as well as in [M 2] and [Ve], cannot be done if BF(ω2) is

assumed. Rothberger [RoJ has shown that under BF(co2) any subset A of
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the real numbers of cardinality ωλ has the property that every countable

subset of A is a relative Gδ. In fact, the setting of the real numbers is not

needed for this theorem. The following result is well known (to at least

van Douwen and some others).

THEOREM 2.7. (Assume BF(ω2).) If A is a subset of a first countable Tλ

space and \A\< ω,, then every countable subset of A is a relative Gδ.

In particular, one easily sees that the type of set given by 2.1, as is

used in 2.3, 2.4 and 2.6, will not exist if BF(ω2) is assumed.

3. Applications of BF(K). It is often useful to specify a sequence

converging to a given limit point of a set. We now turn our discussion to

the problem of producing such sequences in spaces which may not be

Frechet, and show that in some cases one may actually obtain the Frechet

condition from sequential.

The following may be thought of as a topological characterization of

BF(zc).

THEOREM 3.1. BF(κ) // and only if whenever D is a conditionally

compact subset of a regular space X, xn is a limit of a sequence in D for each

n G ω, and xn -> x where ψ(jc, X) < fc, then x is a limit of a sequence in D.

Proof. Assume BF(JC). Recall that ψ(x, X) < K implies there is a

cardinal η < K and an open collection {Ua: a < η} such that {x} —

Π α < 7 ? t/ α . Since X is regular, we may also assume {x} — Π α < η ί / α . For

each n G ω, choose a sequence {xnyk' k G ω) in D such that xnk -> xn.

For each Ua, choose a function fa Gωω such that whenever xn G Ua and

k >fa(n), then xnk G t/α. Apply BF(/c) to obtain g Gωω such that/α < * g

for each a < η. Now it is easy to see that the sequence s = (xnyg{ny

n G ω) is eventually in every Ua. Hence every cluster point of s is in every

Ua. Thus, since D is conditionally compact, x is the unique cluster point of

every subsequence of s9 and s must converge to x.

Conversely, suppose BF(κ) fails; then b < /c. Choose {fa: a < b) Cωω

such that for each α, fa is nondecreasing, fa<*fβ whenever a < β, and

there is no g Gωω such that fa<*g for every a < b. Initially, we follow

the construction of the space X given in Example 3 of [BvD]. Let

X = b U (ω X ω), and topologize X as follows: Points of ω X ω are
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isolated. If a E fc\{0}, η < α, m E ω, the set [/(α, η, m) = (η, α] U
{(A:, «): k > rn9fη(k) < n </α(A:)} is a basic neighborhood of α. If α = 0,
m E: ω9 the set

l/(0,m) = {0} U

is a basic neighborhood of 0. Now for each n E ω, let Λ4Λ = {«} X ω, and
choose distinct points xn (£ X We let 7 = X U { JCΛ : n E ω} with X open
in Y and basic neighborhoods of xn will be cofinite subsets of An along
with JCΛ . Note that Y is a locally compact T2 space, and ω X ω is a dense
conditionally compact subset of Y (see Lemma 4 of [BvD]). Let Z be the
one-point compactification of Y9 i.e., Z = 7 U {/>}. Now, since \Z\—b,
ψ(/?, Z) < ic. It is easy to see that xn -* p9 and, since ω X ω is condition-
ally compact in 7, no sequence in ω X ω can converge to p. This
completes the proof.

A similar argument verifies the following result in which the condi-
tionally compact assumption is removed by replacing the pseudocharacter
restriction with a character restriction.

THEOREM 3.2. Assume BF(κ). If X is sequential and χ(X) < K, then X
is Frechet.

Proof. Suppose A C X. We will show that if, for each n E ω, (xny.
k E ω) is a sequence in A converging to a point xn9 and the sequence (xn:
n E ω) converges to a point x, then there is a sequence in >4 which
converges to x. Since closure is obtained recursively from sequential
closures, this suffices for the result.

Choose a local base [Ua: a < θ) at x where θ < /c. For each Ua9 we
may choose a function fa Eωω such that, when xn E Ua9 k>fa(n) implies
xnk E Ua. Apply BF(/c) to obtain g Eωω such that fa<*g for every
α < 0. Now the sequence (xn,g(n): n E ω) is eventually in every C/α and,
hence, converges to x.

We now apply 3.1 and 3.2 to obtain improvements of certain results
given in [BD2]. For definitions of symmetrizable and weakly first counta-
ble spaces, see [ArJ or [BD2].

THEOREM 3.3 Assume BF(c). Every regular symmetrizable space with a
dense conditionally compact subset is first countable (hence, separable [St2].)
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Proof. Suppose X is regular and symmetrizable, and D is a dense

conditionally compact subspace of X. By Lemma 3.4 of [BD2] and the fact

that, in a space with a dense conditionally compact subset, points which

are Gδ's have countable character, it suffices to show that any point which

is the limit of a sequence of sequential limit points of D must itself be a

sequential limit point of D. This follows from 3.1.

T H E O R E M 3.4. Assume BF(c). If X is an uncountable T2 compact weakly

first countable space, and \ X\< c, then \X\— c.

Proof. Suppose ω < | X | < c. By 3.1, Xmust be Frechet, and it is well

known that a T2 Frechet weakly first countable space is first countable.

Now from an old result in [AU], every uncountable, first countable,

compact T2 space has cardinality at least c, we have a contradiction.

Malyhin has announced in [Ma] that using forcing there are T2

compact weakly first countable spaces with cardinality strictly between ω

and c.

It is an open question whether every regular feebly compact sym-

metrizable space must be separable. Stephenson [St 2] has shown that this

question has an affirmative answer for spaces which have a dense set of

isolated points. We use BF(c) to give an affirmative answer for spaces

with a dense set of points of countable character. The crux of the

argument is contained in the following lemma.

LEMMA 3.5. Assume BF(c). If X is regular, feebly compact, sequential,

ψ(x, X) < c for each x E X, and there is a subset M C X with each point of

M having a countable local base, then every limit point of M is a sequential

limit point of M.

Proof. We show that any point which is a limit of a sequence of

sequential limit points of M must be a sequential limit point of M. Since

X is sequential, this gives the result. Let i G l and (xn\ n E ω) be a

sequence in X such that xn -> x and for each n E ω there is a sequence

(xnk: k E ω) in M with xnk -» xn. Choose a collection {Ua: a < β} of

open subsets of X such that β < c and {x} — Π α < ) 3 Ua = Πa<β Ua. For

each z E M, let [V(z, n): n E ω] be a decreasing local base at z.

For each a< β, choose fa E ω ω such that, when xn E Ua, k>fa(n)

implies xnk E Ua. Apply BF(c) to {/α: a < β] to obtain / E ω ω with

fa < * / f°Γ e a ς h a- F ° Γ e a c h « < β, choose ga E ω ω such that, when
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*„,/(!,) E Ua9 k>ga(n) implies V(xnJin)9 k) C ί/tt. Apply BF(c) to {ga:
a < β} to obtain g Gωω such that ga<*g for each a. Consider the
sequence (V(xnf{n), g(n)): n G ω) of open sets. By the feeble compact-
ness, the tails of this sequence must form a countable open filterbase with
unique cluster point x. Hence the filterbase converges to JC, and so must
the sequence (xnf(ny n E ω).

THEOREM 3.6. Assume BF(c). Every regular feebly compact symmetriz-
able space with a dense set of points of countable character is first countable
{and hence separable [St2]).

Proof. Suppose X is regular and symmetrizable, and M is a dense
subset of X with each point of M having countable character. By Lemma
3.4 of [BD2] and the fact that, in a feebly compact space, points which are
Gδ's have countable character, it suffices to show that every limit point of
M is a sequential limit of M. This follows from 3.5.
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