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INVERSE SPECTRAL PROBLEMS FOR
CERTAIN DIFFERENTIAL OPERATORS

RODERIC MURUFAS

Let L, be a given differential operator with spectral matrix (p?j),
There is a concept of ‘‘closeness to (p?l )” such that for every positive
matrix measure (p;;) which is “close to (p?,)” there exists some dif-
ferential operator L for which (p, ;) is a spectral matrix and there exists a
potentially computational technique by which L may be constructed from
(p;,) and (p},). The formulation of the ‘“closeness to (p;)” concept and
the presentation of the techniques by which L may be constructed from
(p;,) and (p))) are referred to as the local inverse spectral problem,
which is the subject of this paper.

Introduction. SahnoviC€ [6] has presented a formulation of the local
inverse spectral problem but he defines “closeness to (p?j)” in a manner
that is too restrictive and excludes many solvable cases. For example
many problems in the second order case, which had previously been
solved by Gelfand and Levitan [2], do not meet the “closeness” criterion
of Sahnovi¢. On the other hand his presentation omits some necessary
technical conditions that, despite their awkward appearance, must be
assumed in case 2n > 2.

The present article gives the least restrictive conditions possible,
which in the second order case coincide with the conditions given by
Gelfand and Levitan.

The above changes require modifications of the technique by which
the differential operator L is constructed from (p,;) and (p?j).

CHAPTER 1
TECHNICAL PRELIMINARIES

1. Orientation. Let / be the differential expression defined by
b= (=) + (=) ()0 4 4 pu,

where the coefficients p,(x) are real valued functions on [0, co) that are
locally integrable. Any formally selfadjoint differential expression defined
on the positive real axis that is regular at zero and has sufficiently
differentiable real coefficients can be put into this form if p, = 1. On the
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other hand, assuming the given form initially allows weakening the
differentiability requirements on the coefficients. This is done by defining
quasi-derivatives with respect to /:

u[k]:u(k), k:O,l,...,n,
k .
= S () (), k=10,
i=0

where p, = 1. Now /u = u!*"] can be defined for all functions u such that
u'¥1 is absolutely continuous for k = 0,1,...,2n — 1. These quasi-deriva-
tives enable certain formal simplifications and are therefore convenient
even when the usual smoothness is present or required.

An n X 2n constant matrix A = (a, ) is said to represent selfadjoint
boundary conditions if 4 is real, has rank » and satisfies

n n
DL IS Y R SR S VA NN G
k=1 k=1

Now n boundary conditions are specified by the equation 4 - #(0) = (0),
where %(0) denotes the column vector

(u(0), u(0),...,u12"~1(0))".

It is easily seen that for any real, invertible n X n matrix N, the matrix
N - A still represents selfadjoint boundary conditions. Furthermore, they
are equivalent to A4 in terms of the effect on the domain of functions
satisfying these boundary conditions.

Given a formally selfadjoint differential expression

b= (=1)"uCP 4+ (=) (py()u )"0+ o ()

with real, locally integrable coefficients p, for i = 1,2,...,n defined on the
interval [0, o0o) and a set of selfadjoint boundary conditions A, we will
define a symmetric differential operator L = L(/, A) using quasi-deriva-
tives as follows.
Let
D' = {f(x) € £7[0,00)|f* € 4, C,[0, 00)

fork=0,1,...,2n — 1; f2" € £2[0, 0)}.

This is the largest set of functions on which / may be defined and still
determine an operator on £2[0, o). Corresponding to / define a bilinear
form (-, -) for functions &, n € 9’ by

n

<§, 71>: E (g[k——l],r—’[Zn—k] _ g[Zn—k]T—'[k—l])‘

k=1
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When £, n and the coefficients are sufficiently differentiable,

(m)=3 (—U”’[mi (= 1)'7(pp_ &™) "
m=1 i=0

i=0
Now for &, 7 € %)’ we can write
[ 18 = [ i) = (660 n(x)) — (£(0). n(0)).

This is the integral form of Lagrange’s identity. It may be noted that
A - £(0) = 4 - $(0) = (0) implies (£(0), n(0)) = 0 whenever A4 represents
selfadjosint boundary conditions.

Now let

D= {/(x) €914/(0) = (0) and lim (f(x), g(x))=0Vg € D)
and define Lu = Iu for u € ). The adjoint operator to L has domain

D* = {f(x) € D’'|4f(0) = (0)}

so L is symmetric and in some cases selfadjoint.

Let the components of the row vector u(x,A) = (u(x,A),...,
u,(x,A)) be a set of n linearly independent solutions to the boundary
value problem Iw = Aw, 4 - w(0, A) = (0) which satisfy the condition that
the 2n X n matrix (0, A\) be independent of A. Such a vector is said to
represent generalized eigenfunctions for L since the components need not
be in . The condition that 2(0, A) be independent of A is a normalization
which simplifies matters because it implies that any two generalized
eigenfunctions v and # for L are related by the equation u(x, A) = i(x, A)
- 8, where 8 is some n X n invertible constant matrix.

For example, in the second order case if w = -w” and 4 = (01),
then for any function f(A) we can see that u(x, A) = f(A\) - cos(YA x) is a
solution to the boundary value problem lw = Aw, 4 - w(0, A) = (0) since

10 )eos(0)
© ”( —Mx)m(m) i

However, requiring

a(0, ) = (f(g\))
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to be independent of A allows only constant multiples of cos(VA x).
Similarly in the case

0O 1 0 0

0 0 0 1

we restrict ourselves to independent linear combinations of

cosh(A74x) + cos(A'/*x)
2

w=w"", A= (

u(x,\) =
and

cosh(A'/4x) — cos( )\‘/4x)
uz(X,A) - 2}\2/4

Now given the symmetric differential operator L and a vector u(x, A)
of generalized eigenfunctions, let L be any fixed selfadjoint extension of
L. Tt is well known [4] that there exists a unique positive matrix measure
(p;;), herein referred to as the spectral matrix for L corresponding to
u(x, A), for which the map U defined by

ULf(x)] = F(\) = [ u(x, M) f(x) dx

is an isometry of £2[0, c0) onto £*(R, (p,,)) such that
U(Dz) =D, = {F(A) € (R, (p;,)) INF(X) € £2(R, (p;,))},

UTFO)] = £(x) = [FN) d(p,,)u*(x, M),

and for f € 0 we have Lf = U 'AU[ f]. Furthermoreif f, g € £2[0, c0),
F(A) = U[f]and G(A) = Ul g], then

[ 1080 dx = [ PO (o, (M)A,

This last equation is the generalized Parseval equality.

The relations between L and (p;,) induce similar ones between L and
(p;,), some of which allow (p;,) to be used to determine L in a manner
which is the subject of this article. Since the surjectivity of the map U is
not essential we give the following definition.

2. DEFINITION. Let L(/, A) be a symmetric differential operator of
order 2n on the interval [0, 00) and let u(x, A) be a 1 X n vector of
generalized eigenfunctions of L. A positive matrix measure (p;;) will be
called a determining matrix for L corresponding to u(x, A) if the map U
defined by

ULA()] = [ 7(x)u(x. A) d
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gives an isometry of £2[0, 00) into R*(R, (p,,)) such that
U(D,) € D, = {F(A) € L3R, (n,,)) INF(N) € EX(R, (p;)))}-

For f(x) € ®, wehave Uo L[ f] = A o U[f], and for f, g € £*[0, c0) we
have

[ Fx)E () dx = [ FA) d(p,(M))G*(M)
0 R
where F(A) = U[f] and G(A\) = UJg].

3. REMARK. The spectral matrix for any selfadjoint extension of L
corresponding to u(x, A) is a determining matrix for L corresponding to
u(x, A). In particular, when L is selfadjoint then the unique spectral
matrix for L corresponding to u(x, A) is a determining matrix for L
corresponding to u(x, A).

An example of a determining matrix that is not a spectral matrix is
given in the appendix for a nonselfadjoint Sturm-Liouville operator. This
example, by the way, illustrates the need for some clarification in the
articles of Gelfand and Levitan [2] and of Sahnovic [6].

4. Notation. Throughout the remaining chapters the following nota-
tions will be used.
Let

Pu= (=14l + (= 1) (p(x)u )" 4 - dp,(x)u

= (=1)"u® + py o (x)u®""P + -+ +pgu

define a formally selfadjoint differential expression with real coefficients
P € Clowy for i=1,...,n and let 4 represent a set of n selfadjoint
boundary conditions at zero. Let {u,(x, A)}/=, be some set of linearly
independent generalized eigenfunctions for L' = L(!', 4). Let (p};) be a
determining matrix for L' corresponding to (u(x, A),...,u,(x, X)) and let
®(x, A) = [gu(y, A) dy.

Let

o= (=1)"0% + gy, ,(x)o@"™P + -+ +§o(x)v
define another differential expression with continuous coefficients on

[0, o) and let B be some set of n linearly independent boundary condi-
tions at zero. In case /> and B are formally selfadjoint they define a
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symmetric differential operator L?> = L(/?, B), where /> may now be put
into the form

o= (=1)"0® + (= 1)" (g(x)o" )" + .. +g,(x)0.

In this case let {v,(x, A)}/=, be a set of linearly independent generalized
eigenfunctions for L?, let (p7;) be a determining matrix for L? correspond-
ing to v(x, A) = (v(x, A),...,v,(x, A)), and let (,,) = (o, — p!;). The
hermitian matrix measure (o;;) is in general not positive semi-definite.
Nevertheless, certain integrals are formally definable. In particular for the
vector valued functions

fA) = (fiA),...£,(A)) and g(A) = (g(A),....8.(})),
the notation [f(A) d(e;;(A))g*(A) will be used to denote the integral

[25Ng(N) do,(A) = [£(A)(n,(M)g*(R) da(A),

where o is a one-dimensional measure with respect to which each entry of
(o,;) is absolutely continuous and where (7, ;(A)) = (do;;/do).

Now having defined L' = L(I!, A) and 2= L(I%, B) as outlined, let
Po=¢qo=1andlet (-,-), and (-, -), be the bilinear forms correspond-
ing to /' and /? respectively. Also let §,, = p,, =(—1)" and §,,_, =
P~ 2n—1 =0.

When /', /2 and a function K(x, y) € C*" (0 <y < x) are given, then
for later expository clarity let a,(x) represent the expression defined by

min(r,n—1)

ar(x) = 2 (_. 1)"( )[q(Zx rn _ Pr(zzl, r)
i=[(r+1)/2]

min(m,n—1)

2n
D I GO S P
m=r+1 k=[(m+1)/2}

m—r—1

X 2 (l-i:r)K(t)r i— lO(x x)
i=0
n + am—l r
+ 2 (_l)m rTl_r_[p(t) K(x t)] —
m=r+1 ot
min(r,n) 2m—1—r ] 1=
-3 =y 2 =y (m )
m=1 i=0

XPELTTT0(x) Ko i(x, x)

forr=20,1,...,2n — 2.
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An expression like K{%)(x, x) symbolizes taking a partial derivatives
of K(x, y) with respect to the first variable, b partial derivatives with
respect to the second variable, evaluating the result on the diagonal y = x,
and then taking ¢ more derivatives of the resulting function of x.

5. REMARKS. Two explanatory remarks are in order here concerning
the usage of the expression a,(x).

First, given two symmetric differential operators L' and L* and a
function K(x, y), then the consistency of the 2n — 1 conditions a,(x) = 0,
r=20,1,...,2n — 2, is dependent on K. These conditions impose 2n — 1
relations on K and several of its derivatives on the diagonal y = x.

On the other hand suppose a symmetric differential operator L' and a
function K(x, y) are given. If r is even, a,(x) involves only those
functions g; where i < n — r/2, so starting with the condition «,, ,(x) =
0 and using conditions with successively smaller even indices, one may
successively define the real functions q,, ¢,,. .. ,q,. Here the consistency of
the remaining » — 1 conditions a,(x) =0, r = 1,3,5,...,2n — 3, is de-
pendent on K.

6. DEFINITION. Given a symmetric differential operator L' and a
1 X n row vector u(x, A) representing a choice of generalized eigenfunc-
tions for L', an n X n positive matrix measure (p, ;) will be called adequate
with respect to u(x, \) if whenever g € £%[0, o0) has compact support and
we put G(A) = [5° g(x)u(x, A) dx, then [x G(A) d(p;,)G*(A) = 0 implies
g=0.

7. REMARK. Parseval’s equality insures that any determining matrix
(p;,;) for L' corresponding to {u,(x, A)}/—, is adequate with respect to
u(x, A) since

L0 d(o,)6*(N) = [“g*(x) ax.

8. DEFINITION. Given some kernel K(x, y) let K denote the operator

KA = f(x) + /()"K<x, Y)f(y) dy.

9. DEFINITION. Given the symmetric differential operators L' and L2,
the expression L' = L*¥ will mean there exists a real kernel K(x, y) €
C?" for 0 <y < x such that v(x, A) = H[u(x, A)] is a generalized eigen-
function for L? whenever u(x, A) is a generalized eigenfunction for L'.
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10. REMARK. If K L' = L?K and {u,(x, A)}_, is a linearly indepen-
dent set of generalized eigenfunctions for L', then {¥[u;(x, M)}, is a
linearly independent set of generalized eigenfunctions for L?. This is
because the equation u(x) = —/; K(x, y)u(y)dy has only the trivial
solution, as can be seen by successive estimates. Therefore X is injective.

11. LEMMA. Given two symmetric differential operators L' and L* such
that KL' = L*X, let the vector u(x, \) represent n linearly independent
generalized eigenfunctions for L' and let v(x, \) = H[u(x, N)]. Let (p! ;) be
a determining matrix for L' corresponding to u(x, \) and let (p?j) be a
determining matrix for L? corresponding to v(x, \). Let (o, )= (pfj - p! )
JC the operator inverse to X, H(x, y) its kernel and o(x, N\) = [§ u(t, N) dt.
Then

f(xa y) :'/l;(p(x’ A) d(olj(x))q)*(y’ A)

exists and has a mixed derivative F(x, y) = 0%f/3x0y which is uniquely
determined by K(x, y) such that

F(x, y) = H(x, y) +f0yH(x, $)H(y, s) ds

for 0 <y < x. Moreover, F(x, y) € C*" for 0 < x, y < o0,
F(x,y)+ K(x, y) +/OXK(x, s)F(s, y)ds=0

for 0 =y =< x, and (p,zj) is adequate with respect to u(x, ).

Proof. Suppose f(x) € C[0, o) and
0= f(x) + [ K(x, »)I(y) .
that is,
1) = = ["K(x, 1) .

This homogeneous Volterra equation has only the zero solution, as succes-
sive estimates will show. Hence ¥ has a unique inverse J( defined on the
image of K. To find an explicit representation we arbitrarily fix i/ and
consider the Volterra integral equation

u,(x, A) = 0,(x, ) — fo"K(x, Y)u(y,A) dy,

taking u; to be the unknown function. The technique of successive
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substitutions will produce a unique solution of the form
X
u,(x,A) = v,(x,A) + [ H(x, p)o(r,\) dy,
0

where H,(x, y) = 272, K;(x, y) and K (x, y) is the so-called jth iterated
kernel. For example here

K\(x,y) = -K(x, y),

Kz(x, )’) ‘_‘f K(x,x,)K(xl,y) dx,,
y

K3(x,y)=—ff K(x,xl)K(xl,xz)K(xz,y) dx, dx,,
vy

K6 ) = (=0 [ [ 7RG x)K (3, %)

vy y
- K(x,, y)dx,dx,_, - dx,.

Dropping the subscript on H,(x, y) because of this independence of i, we
summarize:

u,(x, A) = 0,(x,\) + fo"H(x, P)o,(3. ) dy = K(v,)

for i = 1,2,...,n. Note also that the continuity of H is easily established
by estimates using the iterated kernels and the differentiability of K.
Now integrating

1 (x,A) = 0,(x, ) + [(H(x, y)o,(7. M) dy
0
from 0 to x we get
w0, N) = [ (1+ [(H(E 1) dt )01, ) dt.
0 t
Define

h (1) = {1 +[ H(¢, 1) dE, t=<x,
0, 1>x.

The generalized Parseval equality implies

Lo ) d(e)or(r.2) = [“h (), (1) dr
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and if y < x, the right-hand side becomes
y

foydt +f0y/ty11(n,t)dndz +f0 ftxH(g,z)dgd,
+ ([t 0 ae) ([ 0 am) .

On the other hand, since

2. 0) = [ X0 8 A) b,
by Parseval’s equality,

[a=[o(x. X d(ol,)g*(x. 1),

and subtracting this from the above equation gives
A
flx,y)= fR<P(x,)\)d(0,,-)<P*(y, \)
Y Y Y X
:ffH(n,t)dndz+ffH(s,t)dgdz
0 vt 0 Yt

[ [ 0 ae)( [0 an)

Now, since the right-hand side exists and has a mixed derivative, the
left-hand side does too, and in fact

0%f _
0x0y

A .
F(x, y)= H(x, y) +/OyH(x, t)H(y,t)dt fory <x.

This representation shows the continuity of F and its independence from
the choices of (p! ;) and ( pfj). In fact H and F are uniquely determined by

K(x, y).
The next step is to develop the integral equation in volving K and F.
Suppose 0 < b <y < a < x. We have

(1) fby“J(” \) dt Zj:[vj(t, A) +/OIH(t,s)uj(s,}\)ds] dt
:fbyvj(s, A)ds +f0bvj(s, A)([:H(t,s) dt) ds
+/byvj(s, }\)(fs)}H(t, s) dt) ds

= [)wvj(s, N)gy,(s) ds,
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where we let
g, (5) = x[,,,_y](s)[l + [ s)dt] +xianls) - [ H(t.5) o
Now using (1), Parseval’s equality and the fact that a = y, the integral
§2 [~ z(/xoi(z,x)dt)(/byuj(t,x)dz)dpsj(x)
;i \a
may be written

9= [ 2ot x0 @)

< ([ ot Mgy (0 de ) s, (V)
:f X[a,x](t)gby(t)dt :f gby(l) dt=0
0 a
Now in writing § we use the identity
fxv,(t,}\)dt:fx(ui(t,)\) +ftK(t,rk)ui(r,}\)dr) di
a a 0
= [u (e, N de+ [u(r,N) [ K, r) diar
[uten)de+ [ 2) [ K2, r)
+ [(u(r N [K(r, r) di dr
and subtract
f (fu(s A ds)(fu(s )\)ds)dpu(}\)
= [ Xtaua(8) * Xpp () ds = 0.

Rewriting and using Parseval’s equality it can be shown that
f(x,y) = f(x,b) = f(a, y) + f(a, b)

+f:f0tK(t, ) f(s, y) = fi(s, b)) ds at
+fbyfo(t,s)dtds:0.

Finally, differentiating with respect to x and y we get

F(x, y) +f0 K(x,s)F(s,y)ds + K(x,y) =0 for0<y<x.

189
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Since F is continuous and K € C?” for 0 < y < x, then from this integral
equation it is easily seen that as a function of x, Fis as smooth as K.
Further, the symmetry of F, F(x, y) = F(y, x), implies F(x, y) € C*"
for0 =x, y < oo.

Finally we must show ( pfj) is adequate with respect to u(x, A).

Let g(x) be an element of £%[0, co) with compact support.

G,(\) 2 fooog(x)u,(x, A) dx
:/O”g(x)(vi(x, A) +/:H(x, )o,(t,\) dt | dx

:/Ooo[g(x) +fx°°H(z,x)g(t)dz]o,.(x,x)dx.

The assumption that [ G(A) d(pfj)G*()\) = 0 implies, using Parseval’s
equality,

fow[g(x) +fwa(t, x)g(t) dt 2a,’x =0.

Now suppose the support of g is contained in the interval [0, m]. For
almost every x,

g(x) + [ H(z,x)g(r) dr = g(x) + [ H(z, x)g(t) di = 0
is a Volterra integral equation with only the trivial solution g(x) =0. [

12. DEFINITION. Suppose we are given the two 2nth order symmetric
differential operators L'(/', A) and L*(/?, B) such that for some kernel
K(x, y) we have X L' = L?>¥. In Lemma 11 there corresponds to K(x, y)
a unique function F(x, y) € C?" for x, y > 0 with various stated proper-
ties. We shall say L' is related to L* if (i) KL' = L*¥, (i) [}K = I}K,
(iii) 4 - F = (0) and (iv) [}F = I.F.

13. REMARK. No attempt will, or need be, made to establish symmetry
or transitivity for this relation. It is designed specifically and solely to
establish necessary and sufficient conditions for the solvability of the local
inverse spectral problem.

14. REMARK. If 27 = 2 condition (i) in Definition 12 implies the
others [3].
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The next lemma and its proof may be found in the paper of Levitan
and Gasymov [3].

15. LEMMA. Suppose we are given the integral equation
1
8(x, y) = h(x, ) + [[k(x, y, 5)h(x, 5) ds

in which the kernel k(x, y,s) and the inhomogeneous term g(x, y) are
continuous functions of the parameter x and the independent variable y. If,
for x = x,,, the homogeneous equation has only the trivial solution, then in
some neighborhood of x = x the solution h(x, y) is a continuous function of
y and x. If k and g have m continuous derivatives with respect to x then
h(x, y) has too.

16. LEMMA. Given the symmetric differential operator L', a vector of
generalized eigenfunctions u(x, \), a determining matrix (p} ;)> and some
positive matrix measure (p,;) which is adequate with respect to u(x, M) and
such that the function

flx, y) = Lot N d(p, = #)))o*(r. 0)

exists and has a mixed derivative

0%f
dxdy

A
F(x, )’) = € C[z(;l,oo)X[O,oo)’

then the integral equation

(1) F(x,»)+K(x,y) + [ K(x,5)F(s,y)ds =0, 0=<y=x,
0
has a unique solution K(x, y) € C*" for 0 <y < x.

Proof. Arbitrarily fix x. Suppose

dﬁ+£ﬂa0ﬂﬂﬁ=0fmg€@.

Multiply and integrate to get

X X X 2 [ES——
O:mefm+££gg££gnaw
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Using f(s, t) =f(¢, s), f(s5,0) = f(0, t) = 0 and integrating by parts we
get

@)0ZKMMFw+MUHWLxFJR4ﬂﬂEﬂLﬁﬂ3ﬂ

+ /:foxg’(s)f(s, 1)g'(t)dt ds.

Using Parseval’s equality we can establish that

foxlg(t)lz dt :Lz(/{)"g(s)u,(s, )\)ds) dp, (N)

X (/:g(t)uj(t, A) dt)
—|g(x) Pf(x, x) + 2Re[g(x)j:f(x, s)g’—(_s_)ds]

~£Lguvm»gM¢m.
Combining this with (2) we find

0 :jl;zfoxg(s)u,(s, A) ds dpu(?\)/oxg(t)uj(t, A)dt,

and, by hypothesis, this implies x o ,(?) - g(¢) =0 so g(z) =0. Now
applying the Fredholm alternative to the non-homogeneous equation

F(x,y)+ K(x, y) +/OXK(x, s)F(s, y)ds =10

for fixed x, we get the existence and uniqueness of K(x, y) for each x.
Finally we rewrite the (1) in order to apply Lemma 15 as follows:
replace y by xy and s by sx to get

1
F(x, xy) + K(x, xy) +/ K(x, sx)xF(xy, sx) ds = 0.
0

Now the kernel xF(xy, sx) and the inhomogeneous term F(x, xy) are, by
hypothesis, in C?" and we’ve shown the homogeneous equation to have
only the trivial solution for any x. Lemma 15 implies that, as a function of
x, K has 2n continuous derivatives. It is clear that as a function of y, K
has as many derivatives as F(x, y). O

17. LEMMA. Given the two symmetric differential operators L' and L*
such that XL' = L*K, let M, = M|(p,,-..,p,) and M, = Myq,,...,q,)
be the 2n X 2n matrices that transform by left multiplication column
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vectors (w(0), w(0),...,w?* D0)T into the column wvectors
(w(0), wt'(0),. .., w2~ 1(0)T involving quasi-derivatives for I' and I* re-
spectively. Let T~ = (1, ;) be the lower triangular matrix

i—j—1 .

2 (1527 k0.0 giss,
_) iz \ I ’
L i=J,

0, 1<jJ.
Then the matrix AM,TM; " represents the boundary conditions for L*.
Consequently we may take B = AM,TM; .

Proof. Recall that if we define p, = 1 then ! = 4,0 <j < n, and
i 4 k i (k)
ulttl =3 (—1) (pj_lu(n—/+1)) , 1<j<n,
k=0

gives the relationship between regular derivatives and quasi-derivatives for
L'. So M, is a lower triangular matrix with +1 as diagonal entries:

u(0) u(0)
u[l](o) oy u(l)(O)
u)[czn—'l](O) u(2n—'])(0)

Now
o(x,A) =u(x, ) +LXK(x, y)o(y, ) dy

and we check that

070, A)
_ i-1 i—j—1 i—9 1 o
=g+ Sarvon| 3 (1527 e 00,
Jj=1 1=0
From this it is easily demonstrated that
U(O) u(O)

o™®(0) u™(0)

U(Zn—.])(o) u(2n—‘l)(0)
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where A is suppressed. Furthermore M,, M, and T are clearly invertible so
we write

u(0) v(0)

ut'(0 o'} (0
( : = M\TM; ( :

u2=1(0) o2 -1(0)
or
4(0,\) = M,TM; '5(0, \).
Now since 4#4(0, A) = (0) this implies
A - M,TM;'5(0, A) = (0).

Therefore AM,TM; ' must represent the boundary conditions appropriate
to L. O

18. REMARK. Since M,TM; ' is a lower triangular matrix, then using
Lemma 17 non-relatedness (see Definition 12) of certain differential
operators because of their boundary conditions becomes apparent. For
example, the last column of the boundary matrices must be matchable.
That is, there must exist an invertible n X n matrix N such that the last
columns of N - A and B exactly coincide, since all boundary matrices
equivalent to 4 have the form N - 4. In particular in the second order case
(1 0) will only “match” with another (1 0). Thus the boundary conditions
force the special handling which is given this exceptional case in the
literature.

Furthermore, depending on A, certain relations may be forced upon K
at (0, 0) in order that the matrix 7 produce boundary conditions AM,TM; !
which are selfadjoint.

Of course there are many other more profound obstacles to related-
ness.

19. LEMMA. Suppose p,_,(x) € C¥[0,0) for k=0,...,n — 1. The
equality

(— 1)"u(2n) +.ﬁ2n—2(x)“(2"~2) + e +pou

n—1

=(—1)"u®" + D) p,_ u®)? forue c
n—k [0,00)

k=0
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holds if and only if
min(r,n—1)
P = 2 (=1 ( )p,(,z',’), r=20,1,...,2n — 2.
i=[(r+1)/2] r—i
Proof.
2n—2 n—1 . )
2 ™= 2 (=) (p,su)
m=0 k=0
2n—2 min(m,n—1) . k
Zum ¥ (=1 ( k)p,ﬁz"k w0
m=0 k=[(m+1)/2] m =

20. LEMMA. Given two symmetric differential operators L' and L* such
that L' is related to L*, then a(x) =0 for 0 <r <2n — 2.

Proof. Since A - F(x,0) = (0) and since from Lemma 11 we have

F(x,)’)+K(X,J’)+_/(;K(x,s)F(s,y) ds=0 for0<y=<ux,

this implies 4 - K(x, 0) = (0). Here let u(x, A) be any one of the n linearly
independent generalized eigenfunctions for L'. We have KL!' = 12X,
I?K = I K, and we recall from §1 that, since K as a function of y and u as
a function of x both satisfy the boundary conditions for L', we must have
(K(x,0), u(0,\)), =0.

Using Lemma 19 we can establish that

0= (L2 — x)[u(x, \) + j(;xK(x, Du(e, \) dt] = (L2 — L) [u(x, M)]

+L2[/0"K(x,t)u(t, }\)dt] —/:K(x, OL[u](, \) dt

- 2 (ax) = B(x))u(x, A)
£33 a3
+(K(x, x),u(x,A)), — (K(x 0), u(0,A)),

= 2 a,(x)u"(x, X).

r=0
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Now the resulting homogeneous differential equation

2n—2
Y o (x)u?(x,A)=0
r=0
has » linearly independent solutions u,, u,,...,u, all satisfying the n
linearly independent boundary conditions represented by the matrix A.
But this ordinary differential equation has order at most 2n — 2. Conse-

quently all the coefficients must vanish and we have a(x) =0, 0 <r <
2n — 2. O

CHAPTER 2
THE LocAL INVERSE SPECTRAL PROBLEM

21. Given a 2nth order symmetric differential operator L!(/', 4)
with u(x, A) a corresponding row vector of n linearly independent gener-
alized eigenfunctions, a determining matrix (p} ;) for L' corresponding to
u(x, A), and some n X n positive matrix measure (p,;) which is adequate
with respect to u(x, A), suppose

f(x’ y) :f(p(x’ }\) d(plj - P}j)(P*(y, }‘)
R
and
F(x, y) = 3°f/3xdy

exist with F € C?"[0, o0) X [0, o). By Lemma 16 there exists a unique
solution K(x, y) € C*", for0 <y < x, to

(*) F(x,y)+ K(x,y) +[)XK(X,S)F(s,y) ds=0, 0<ys=sx.

Then as stated in Remark 5, by knowing K(x, y) the even-indexed
conditions a,(x) =0, r =2k, k=0,1,...,n — 1, can serve to define
qs---»4,- At this point K may or may not allow the odd-indexed condi-
tions a(x) =0,r=2k+ 1, k=0,1,...,n — 2, to hold. Furthermore K
may or may not allow the selfadjointness of the boundary matrix
AM,TM; .

22. DEFINITION. Given L'(I', A), u(x, A) and (p,,(A)) as above, let
(o' ,) be a determining matrix for L' corresponding to u(x, A). We will say
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(p},) is close to (p,)) if:
(1) (p, ;) is adequate with respect to u(x, A);
(i1)
A
flx,y)= fktp(x,?\)d(pi, — 0, )e*(». A)
A
and F(x, y) = 0°f/0xdy exist;

(iii) F € C?"[0, 00) X [0, 00);
(iv) 4 - F = (0);

WIF= l},F;
(vi) a(x) =0forr=0,1,...,2n — 2; and
(vii)

n

M =

bib 2y —k = 2 b iicbj i1k
1 k=1

where (b,,) = AM,TM; .
23. ReMARK. Definition 22 seems to depend on the choice of de-

termining matrix for L' corresponding to u(x, A). It will be shown in
Corollary 26 that this is not the case.

24. LEMMA. Given two symmetric differential operators L' and L* such
that L' = L*X, let K(x, y) be the kernel of the operator K, H(x, y) the
kernel of the inverse operator and F(x, y) the function in Lemma 11. Then

H(x,y)=F(x,y)+ nyK(y, s)F(x, s) ds.

Proof. Let u(x, A) be a 1 X n vector of generalized eigenfunctions of
L' and let (p},) be a spectral matrix of some selfadjoint extension of L
corresponding to v(x, A) = H[u(x, A)].

Fix x arbitrarily and let A(s) = H(x, s). We know A(s) may be
expanded as

h(s) = [HO\) d(e?,(A))o*(s. A),

where

H(\) = j:oh(s)v(s, \) ds,
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A
since h(s) has compact support: A(s) =0 if s > x. For any kernel J(¢, s)

€ C?" such that

t
/v*(s, A)J(t,5)ds < oo forallz>0,
0
we can write

D [ s= [([a0)d %umﬁxmp@ga
= fRH(}\)d(pfj()\))(fOtv*(s,}\)J(t,s)ds).

Now the kernels H(x, s) and K(x, s) determine mappings between
u(x, A) and v(x, A) such that

v*(x, A) = u*(x,\) + /OXK(x, s)u*(s,\) ds
=ov*(x,A\) + j:H(x, s)o*(s, ) ds

-+-fOxK(x,s)[v*(s, A) + fOSH(S, t)o*(t, \) dt| ds

so
0= fOxH(x, s)o*(s,\) ds + fOXK(x, s)v*(s, A) ds
+/0 v*(s, }\)/S K(x,t)H(t,s) dtds
= ftv*(s, }\)[H(t, s)+ K(¢t,s)+ ftK(t, r)H(r, s) dr| ds
0 s
Letting

J(t,5) = H(t,s) + K(t,5) + [’K(x, P)H(r, s) dr
in (1), we find [; v*(s, A)J(¢, s) ds = 0 implies
0= ftH(x, s)[H(t, s)+ K(t,s) + /ZK(t, r)H(r, s) dr| ds
0 s
:f’H(x,s)H(t,s)ds+f‘K(t,r)H(x,r)dr
0 0

+/:[K(r, r)H(x, s)H(r,s) drds.
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Now adding H(x,t) to both sides and interchanging the orders of
integration we get

H(x, 1) Z[H(x, 0+ fO’H(x, $)H(t, 5) ds]

+/(;’K(t, r)[H(x, r) + fOrH(x, S)H(r, s) ds] dr.

Finally we use Lemma 11 to rewrite the expressions within the brackets to
get

H(x,1) = F(x, 1) + f’K(z, r)E(x, r) dr. 0
0

Now we are ready to state and prove the main theorem, which asserts
the equivalence of the notions of closeness and relatedness as defined
herein.

25. THEOREM. Given two 2nth order symmetric differential operators L'
and L? such that L' is related to L?, let the vector u(x, \) represent any n
linearly independent generalized eigenfunctions for L' and let (p! ;) be a
determining matrix for L' corresponding to u(x, \). Let ( p,?j) be a determin-
ing matrix for L?* corresponding to v(x, N) = K[u(x, \)]. Then (p' ;) s
close to ().

Conversely, given a symmetric differential operator L', a vector of
generalized eigenfunctions u(x, \) for L', a determining matrix (p! ;) for L
corresponding to u(x, \) and some positive matrix measure (p,;) such that
(pi;) is close to (p,,) then there exists a symmetric differential operator L?
for which (p,,) is a determining matrix such that L' is related to L*.

Proof. (related = close) Given L'(I', A) and L*(/?, B) suppose L' is
related to L. Let u(x, A), (p};) and (p};) be as hypothesized and let
(0;;) = (02, — p};)- By Lemma 11 (p},) is adequate with respect to u(x, A),

() fxr) =[] [ulxn) as] ala, ()] [ute ) at]
exists and has a mixed partial derivative

F(x, y) = alf/axay € C[Z(;l,oo)X[O,oo)’

From Definition 12 4 - ¥ = (0) and /.F = [JF. By Lemma 20 a(x) = 0
forr=0,1,...,2n — 2. By Lemma 17 the matrix AM,TM; ! is equivalent
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to the selfadjoint boundary matrix B for L? and is therefore also selfadjoint.
(close = related) Given L'(I', A), u(x, ), (p;;) and some positive
matrix measure (p,;) such that (pﬁj) is close to (p;;), let (0;;) = (p,; — p}j).
From Definition 6 (p,;) is adequate with respect to u(x, A), () and
F(x, y) = 3f/3xdy exist, and F € C}{ . x(0,.y By Lemma 16 () has a
unique solution K(x, y) € C?"for0 <y < x.
Let

I(x,y) =F(x,y) + K(x, y) + foxK(x, s)F(s, y) ds.
The identity I = 0 clearly implies
A-K(x,0)=A4-F(x,00=0=4 - F(0, y).
Hence ( K(x,0), F(0, y)), = 0. Now

(1)
(K(x, 1), F(t, )1 1=

:§§ﬂw"§«ﬂﬁann§77ﬂm40m4xm

- 2 (_I)Kmx x)am 1—i

[Pa-m(t)F, o2, y)],zx)

—1-=

S S )R ) (Ko, D] s

m=1 i=0 a'nIl

n m—1m—1—i
-2 23 0K )
=1 i=0 r=0
XpST T T (X) Fgro( x5 ¥)
am 1—r

= 2 O(x y) 2 ( )m+r orm= 1—r [pn m(r)KO m(x t)]t x
m=r+1
2n 1 min(r,n) 2m—1—r )

= 2 Eolxy) X S ()" K (x0T

m=[(r+2)/2] i=0

Xp(Zm 1—i— r)(x)’

where the middle index m in this last expression may start at 1 since the
innermost summation forces 2m — 1 — r =0, which implies m =
(r + 1)/2, and since m is an inter,

[r+2 >r+1 >[r-12-2]_1

m=

1S automatic.
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Now using the hypothesis I}(F(x, y)) = I}( F(x, y)) and using the
expanded form for the differential expression /' involving the coefficients
g,,i=0,1,...,2n, we consider the identity

0=(12—1)1

= (12— 1)K (x, y) + /0"(13 — IN[K(x, 5)] F(s, y) ds

2n—2

+ E Fk,O(x7 )’)ak(x)-
k=0

By hypothesis a,(x) =0 for Kk =0,1,...,2n — 2, so letting g(x, y) =
(12 =1 y‘)K (x, y), we have the homogeneous equation

g(x, y) = foxg(x, s)F(s, y)ds =0,

which, for each fixed x, has been shown to have only the trivial solution in
the proof of Lemma 16. Hence /2(K(x, y)) = l)‘,(K(x, y)). This will now
be shown to imply v(x, A) = K[u(x, A)] satisfies /°0 = Av whenever
"u=Auand 4 - u(0, A) = (0).
Recalling that ¢, ,(x) = (—1)", §,,_,(x) =0, we have

@ Plote )] = Plux ]+ [RIKG p)]u(0) &

m—1

+ 2 Gn(x) 2 [u(x, MK, o(x, x)] 77

r=0
On the other hand, since 4 - K(x,0) = (0) implies

<K(x, .y)’ u(}” }\)>1|y:0 =90
we have

(3)  Ao(x,A) =Au(x, \) + j:K(x, P)Auly, A) dy

X

= I"(u(x, N)) + /0 K(x, y)I'"[u(y,N)] dy

I'u(x, N)] +fol [K(x, y)]u(y,\)dy

—(K(x, y),u(p, N))1]y=-

Combining (2) and (3) we can establish
2n—2

(P=No(x,N)= 3 u(x,N)a,(x) =0.

r=0
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Now as in Lemma 17 we let M, and M, be the matrices which, by left
multiplication, transform column vectors

(w(0), wV(0),...,we" D(0))"
into column vectors
(W(O)’ W[I](O)” b 7W[2n.—l](0))’r

involving quasi-derivatives for /' and /? respectively. Define the lower
triangular matrix T~ ' = (z,,), where

i—j—1 ;.
—2— k) prm s .
2 (l .]- 1 )K/E,OJ « 1)(0’0)’ 1>],

1] 1, l-——_],
0, 1 <j.

Now v(x, A) = u(x, A) + [ K(x, y)u(y, N) dy implies
o7 P(0,A) = u""P(0,A)

i1 S P SR
+Swvon| S (527K ro0),
j= k=0

j=1

or, in other words,

v(0, A) u(0, \)
oP(0,A) | 40, A)
U(Zn—l)(O, }\) u(2n'—l)(0, }\)

which implies @(0, \) = M,TM; '6(0, A). So if we define the matrix
B = AM,TM; ' which represents selfadjoint boundary conditions by hy-
pothesis, and use /? and B to define a symmetric differential operator L?,
then o(x, A) = H[u(x, A)] clearly satisfies B6(0, A) = 0 whenever 4 -
4(0, A) = 0. Also (0, \) = M,T'M;'a(0, ) is independent of A and
therefore v(x, A) represents the generalized eigenfunction for L?> whenever
u(x, A) represents those for L', that is, X L' = L*¥.

It remains to verify that the given positive matrix measure (p,,) is
indeed a determining matrix for L? corresponding to v(x, A) = H[u(x, A)]
by demonstrating the validity of Parseval’s equality.
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For g(x) € £2[0, co) with compact support let
G(A) = [ g(t)o(t,\) dr
0

zf()”g(t)[u(z, N+ [ s)u(s, )\)ds] dt
:/(;oog(s)u(s, A)ds +_[:°u(s, ?\)[/:OK(t, s)g(t) dt] ds

=/:oh(s)u(s, A) ds,
where
(4) h(s) = g(s) +£wK(t,s)g(t)dt.

Since & € £%[0,0) and has compact support then, by a symmetric
argument, we also have

/(;ooh(s)u(s,)\)ds:fowf(t)u(t,}\)dt,
where
£(1) 2 h(2) +/;°°H(s, £)h(s) ds.

This means
(5) (1) = h(z) +ft°°H(s, 1)h(s) ds

since the v-transform defines an isometric, hence, injective mapping of
P[0, 00) into £*(R, (p7;)) where (p7,) is a spectral matrix for L*(/%, B).
It may be shown that

[6(N) d(p,)G*N) = [ () di+ [ [ h(s)(1)E(s, ) ds dt.
R 0 0 0
Recalling from Lemma 24 the identity

H(s, 1) = F(s, 1) + f’K(x, P)F(s,r)ds (0<t<s),

and recalling the integral equation

_K(t,s) = F(s, 1) + jO’K(t, P)E(s,r)dr (0=<s=<1),
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we can establish that

foooh(t)F(s, ) dt I'[:g(t)H(s, t)di— [ g(1)K(t,5) .

S
Therefore

L6 d(p,)6*(N) = [“2(e) e+ [“h(s) [ (1) Hs, 1) e ds
= [hGs) [ 8K (1 5) dr s
= ["H ) a +f0°0g(t)[j;°°H(s, t)h(s)ds] dr
—j()wh(s)[fwg(t)x(z, 5) dt] ds.

s

Now from the definition (4) of &,

[ 80K, 5) dt = h(s) = g(s),

s

and from observation (5) we have

fwh(s)H(s, t)ds = g(t) — h(z).

t

Substitution now gives
LM d(ezn)e ) = [ “(1) di + [ “g(0)[g(t) — h(1)] e
- “h(s)[h(s) — g(s)] ds

=/ “g(t) dt,

which proves Parseval’s equation. The generalized Parseval equality fol-
lows by the polarization identity. Thus the v-transform

f(x) H/(;wf(x)v(x, A) dx

defines an isometry V: £°[0, c0) - £*(R, (p,;)). For any function f with
compact support in the comain )2 of L2(/?, B) we have

[ PLATo(x, N) dx = lim (f(x), 0(x, M) = (£(0), o0, M)
+j(;wf(x)lz[v(x, A)] dx
= ?\fowf(x)v(x, A)dx.
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Since functions such as f are dense in %? and since V is isometric, it
follows that ¥(%D?) C €,, and for f € D> we have Vo L2[f] = A o V[ f].
Thus (p;;) is a determining matrix for L? corresponding to v(x, A) =

Klu(x,N)]. O

26. COROLLARY. Let (p;;) and (p;;) be determining matrices for L
corresponding to u(x, \) and let (pfj) be a positive matrix measure. If (p;;)
is close to (p},) then (p,;) is close to (p})).

Proof. 1f (p,;) is close to (pfj) then there exists a symmetric differen-
tial operator L? for which (p},) is a determining matrix such that L' is
related to L2. From this it follows that (,,) is close to (p7;). O

27. COROLLARY. A determining matrix uniquely determines a symmetric
differential operator on £7[0, c0).

Proof. Suppose (p;;) is a determining matrix for L' corresponding to
u(x, A) and, at the same time, for L2, We will use the local inverse scheme
to construct L from (p; ;).

Parseval’s equality implies (p;;) is adequate with respect to u(x, A).
Certainly (p,;) is close to (p,;) because

106, 7) = [o(x, A) d(p,,(A) = o, (V) @*(3, A) =0,

F(x, y) = 0%*f/0xdy =0 and K(x, y) =0. This defines, by the condi-
tions a,(x) =0 and B = A4 - M\TM; !, a symmetric differential operator
L*’=L. O

28. Summary remarks. We now have the techniques to solve the
local inverse spectral problem.

Suppose we are given a symmetric differential operator L' of order 2n
on the interval [0, c0), a vector of n linearly independent generalized
eigenfunctions u(x, A) for L', and some n X n positive matrix measure
(p;;) such that a determining matrix (! ;) for L' corresponding to u(x, A)
is close to (p, ;). Using u(x, A) and (o;;) = (p;; — p};) We construct

f(x,y) Z/I;(P(xa A) d(oij(}‘))(P*()’a A),

take the mixed partial derivative F(x, y) = 32f/0xdy and set up the
integral equation

() F(x,y)+ K(x,y) +[)xK(x, s)F(s, y)ds =0, 0<y=<x.
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Then we find the unique solution K(x, y) and use the conditions a,(x) = 0
for r=0,1,...,2n — 2 to define the coefficients g,(x),...,q,(x) of a
formally selfadjoint differential expression /2. Finally we define M, and
the boundary conditions B = AM,TM, ' which, together with /%, define a
symmetric differential operator L? for which the given positive matrix
measure is a determining matrix.

APPENDIX

1. ExampLE. This example illustrates that the conditions given by
Sahnovi¢ are in fact not necessary for the solution of the local inverse
spectral problem.

Let L( p, @) be the operator with boundary condition sin(a) - u(0) +
cos(a) - u'(0) = 0, where L( p, a)[u] = —u” + pu. It is known that L(0, 0)
is related to L(0, a), where a Z 7 /2 (7). In this case the function f(x, y)
of Lemma 11 is differentiable under the integral sign and F(x, y) =
0%f/0x9y has the integral representation

F(x,y) 2‘4 cosy/A x cosyA y ) ! ) ar

X

T

_f cosfxcosfy(f(h2+x

Here the conditions of Sahnovi¢ would require the two-fold differen-
tiability of F under the integral sign.

Attemping to differentiate twice under the integral with respect to
either variable would give an integral expression asymptotic to
& cosyA x cosyA y dX/ YA, which does not exist. In this case, however, it
is known that K(x, y) = h and by solving () for F we find

F(x,y) = —(h/2)[e ") + "7 fory < x.

2. ExampLE. The class of spectral matrices for a symmetric differential
operator is, in general, smaller than the class of its determining matrices.

Let / be a second order Sturm-Liouville differential expression in the
limit circle case. Let p and p be non-equivalent spectral measures for two
distinct selfadjoint extensions of L(/, A) corresponding to the generalized
eigenfunction u(x, A). The rule

f(x)- fowf(x)u(x, A) dx
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defines an isometry of £2[0, o) onto £*(R, p) and an isometry of £2[ 0, c0)
onto L*(R, p). If we let p = L(p + p) it is easily seen that the above rule
also defines an isometry U of £7[0, o) into R*(R, p).

For the non-equivalent atomic measures p and p find a point A, € R

such that p({A,}) >0 and p({A,}) = 0. Suppose for some f € £*[0, o)
with

F(A) = /(;wf(x)u(x, A)dx

we have

Ixo,,(A) — FQAII2 = 0.

Then we have

0= Hxag™ = FO + Hrog™) = FO,

which implies F = 0 p-a.e. This leads to the contradiction

0 =[1Fl =IA" =1F5 =|x (A

L= B((Ro)) >0,

Thus x(,,,(A) is an element of £2(R, p) which is not the image under the
mapping U of any f € £%[0, o0). Consequently U is not onto and p cannot
be a spectral measure for L(/, A).

(1]
(2]
(3]
(4]
(5]
(6]
7
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