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SOME EXAMPLES OF
RIEMANNIAN ALMOST-PRODUCT MANIFOLDS

V. MlQUEL

Foliations with bundle-like metrics, conformal, minimal and totally
geodesic foliations and minimal and geodesic plane fields have been
subject to recent study. A. M. Naveira has fitted all these classes into a
general scheme and has gotten thirty six classes of riemannian almost-
product manifolds. In this paper we give strict examples of these classes,
showing that none of them is vacuous, and that the inclusion relations
among them are strict. The basic riemannian manifolds for the construc-
tion of these examples are submanifolds of C"+1 and Hn+] (C = complex
field, H = quaternion field), and we use the canonical complex structures
on these vector spaces. Perhaps the most interesting examples are those
of minimal foliations which are not totally geodesic foliations.

1. Introduction. Some classes of riemannian almost-product mani-
folds have been extensively studied in the literature. In the beginning,
most of the works on this subject dealt with foliations with bundle-like
metrics ([6], [17], [15]). Recently, the study of other types of riemannian
almost-product manifolds has been initiated: conformal foliations ([14],
[23], [11], [12]), minimal and geodesic plane fields ([18], [24]), minimal
foliations ([5], [16], [20], [21]), totally geodesic foliations ([2], [9]). Hsu [8],
by analogy with the almost-hermitian manifolds, defined some types of
riemannian almost-product manifolds in terms of the symmetries of the
tensor vP , where V is the Levi-Civita connection and P is the almost-
product tensor (P2 = identity). Naveira [13] has fitted all these classes
into a general scheme. This has been accomplished by means of a detailed
study of a representation of the pertinent group O(p) X O(q) on a
certain vector space. With this method he has gotten thirty six classes of
riemannian almost-product manifolds, and has also given a geometric
interpretation of some. Carreras [1], along the study of the natural
functions on riemannian almost-product manifolds, has shown that this
general scheme is, in a reasonable sense, complete. Gil-Medrano [3] and
Montesinos [11] have completed the geometric interpretation.

In this note we give concrete examples of some classes. By using them
and the behaviour of the classes under a conformal transformation of the
metric studied in [3], we obtain examples of the thirty six classes, which
shows that the inclusion relations among the classes are strict.
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164 V. MIQUEL

The plane of the paper is the following:
§2 is a resume of the general scheme of Naveira and an exposition of

the notation employed. In §3 we give a canonical almost-product structure
on a real hypersurface in C"+ 1, characterize the possible different classes
by properties of the second fundamental form Λ, and give concrete
examples of (TGF, AF), (TGF, Z),), (F2, Dλ), (TGF, F^-manif olds. In §4
we give an almost-product structure on a real hypersurface in H" + 1

(H = quaternion field), and, following the same scheme as in §3, we finish
the section with concrete examples of (TGF, AF), (TGF, Dλ), (D2,Dλ),
(Dλ, Dx), (Δ, Dλ), (TGF,Fj)-manifolds. In §5 we define an almost-prod-
uct structure on a complex hypersurface in H n + 1 and give concrete
examples of (F,, D^-manifolds. A surprising fact is that, whereas in §§3
and 5 Ύis always F2 or Fl9 in §4 Ύis F if and only if it is TGF, and in
many manifolds Ύ is not integrable. Occasionally, the proofs involve
messy computations. In these situations we have adopted the method of
writing them only in the cases occurring in §3 which use similar tech-
niques. In §6 examples of the thirty six classes are given.

The effective existence of the thirty six classes (showed by the
examples) lends plausibility to the study of their general geometrical and
topological properties. On the other hand, the examples given in §§3-5
can be considered as possible topics on classical differential geometry
since they are defined in Cn+ι and H n + 1 .

The examples given in 3.12, 4.9 and §5 have a special interest. In fact,
as far as I am aware, one encounters in the literature characterizations of
minimal foliations ([20], [21], [5]) and sufficient conditions for defining a
minimal foliation by a closed form ([16]), but nothing is said to dis-
tinguish a minimal foliation from a totally geodesic one.

It is also interesting to remark on the variety of examples of AF and
Dx distributions which are not integrable, whilst in [18] only examples on
R3 appear.

Finally, the examples given in §5 are also examples of complex
distributions on Kahler manifolds as defined in [22], and 3.12, 4.9 give
examples of closed vector fields on riemannian manifolds as studied in [7].

I wish to thank F. Carreras, A. Ferrandez, O. Gil-Medrano, D. L.
Johnson, A. M. Naveira and I. Vaisman for useful comments, and
especially A. Montesinos who revised the manuscript.

2. Generalities. Let M be a riemannian almost-product manifold
with metric tensor ( , ) and almost-product tensor P. Let Ύbe the vertical
distribution (generated by the vectors A such that PA —A), and % the
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horizontal distribution (generated by the vectors X such that PX = -X).

We also denote by Ύ and % the corresponding vector subbundles of the

tangent bundle TM. V and H will denote the projections onto Ύ and %

respectively. Then P = V - H.

As shown in [3], the thirty six classes of Naveira can be reobtained by

considering on each distribution ^ ( T o r %) one of the following

conditions:

(2.1) AF (anti-foliation): VA(P)B = -VB(P)A;

(2.2) D{ (minimality): Σ* = 1 VE(P)Ea = 0;

(2.3) D2 (umbilicity): VA{P)A = i<Λ, Λ>Σ£=1 V ^ ) ^ ;

(2.4) Δ: no condition;

(for A, 5 E 6 ) ) , {^}Γ=i a l° c al orthonormal frame of D̂ and/? = dimension

of 6D), and the conditions obtained by adding to them the integrability

condition F: VA(P)B = VB{P)A\
(2.5) TGF (totally geodesic foliation): vAP = 0;

(2.6) F1 (minimal foliation): minimality and F;

(2.7) F2 (umbilical foliation): VA{P)B = £(Λ, B)Σζ=] VEa(P)Ea;

(2.8) F (foliation).

There are the following implications

AF Δ {2>,andZ>2} <
D2

Combining conditions (2.1)-(2.8), eliminating the dual situations,

gives the thirty six classes. The inclusion relations among the classes

follow from the above implications.

Relations among these classes and the other studied in the literature

are given in [3], [11] and [13]. For example, the foliated manifolds with

bundle-like metric ([17]) are the (F, AF)-manifolds; the manifolds with

conformal foliations ([14]) are the (F, D2)-manifolds; the manifolds with

totally geodesic or minimal plane fields ([18]) are the (AF, Δ)-manifolds

and the (/),, Δ)-manifolds respectively.

We shall say that M is ( φ , <$') strict if Ύis 6ΰ9 % is fy' and M is not in

any other class included in (Φ, <?)').

From now on we denote by A, J5, C, vertical vector fields, by X,

Y,Z,... horizontal vector fields, and by 5, Γ, U9... arbitrary vector fields

on M. {Ea}P=λ will denote an orthonormal frame in Ύand {Eu}
q

u=x an

orthonormal frame in %.

For the real submanifolds in Rm we use the same notations as in [10],

except for A which here is denoted &.
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3. Canonical almost-product structures on real hypersurfaces in Cn+ \

Let M be an oriented real hypersurface in Cn + 1, N the unitary normal

vector field on M, and / the canonical almost-complex structure o n C " + 1 .

These elements define a canonical almost-product structure on M, namely

that for which Ύ= {/#} and %= {JN}± (orthogonal complement of

JN in TM). Observe that J% = DC.

In this section M will denote such an hypersurface in C" + 1 with the

metric ( , ) induced from that of C" + I and the almost-product tensor P

defined above.

First, we observe that the dimension of Ύis one, hence M is in the

class (F2, Δ). Moreover:

3.1. PROPOSITION.

(3.1) VT(P)X = 2ft(7\ JX)JN,

(3.2) vτ(P)JN = -2{MT + h(T, JN)N}.

Proof. VT(P)X = -VTX- PVTX = -2FvΓXand

WTX= (VTX,JN)JN= {v'τX, JN) JN = -(v'τ{JX), N) JN,

so (3.1) follows. Analogously, VT(P)JN = 2Hvτ(JN), and a similar

computation gives (3.2). D

3.2. LEMMA. Every such M is in the class (F2, Dx).

Proof. Since it is in (F2, Δ), the class (F2, Dx) is characterized by (2.2).

The condition J% = % shows that an orthonormal frame {Eu} m% can

be chosen in the form {Eu... ,En, JEU... JEn). Then, using (3.1),

u=\ u=\

= 2 2 h(Eu, JEU) - 2 2 h(JEu, EU)JN = 0. D
U=\ U~\

Notice that this lemma could be expected, since if % is integrable,

J% = % implies that the integral leaves of % are complex submanifolds of

C Λ + 1 , hence they are minimal in C Λ + ι . Lemma 3.2 further states they are

also minimal in M and the minimality remains when the integrability is

dropped.

3.3. COROLLARY. % is F iff it is Fx. D
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3.4. PROPOSITION. We have the following equivalences'.

(a) Mis (F2, TGF) iffh(X, Y) = 0.

(b) M is (TGF, AF) iffh( X, JX) = 0 έviέ/ h{ X, JN) = 0.

(c) M is (TGF, F,) iffh(X9 JY) = h(JX, Y) andh{X, JN) = 0.

(d) M is (F2, AF) ! # * ( * , JJf) = 0.

(e)M fa(F2,F1) ///Λ(*, JY) = * W 7).

(f) M w (TGF, £>,) /#/*(*, JN) = 0.

Notice that the condition A(Jf, /X) = 0 says X and Jϋf are con-

jugated directions, h(X, JN) = 0 says /JV is a principal direction and

h(X, JY) = Λ(/X, 7) is a condition verified by the complex submani-

folds of a Kahler manifold.

Proof, (d) and (e) follow immediately from the defining conditions

(§2) and (3.1). Now we prove (f). Here, the class (TGF, D{) is char-

acterized by VJNP — 0, which, by (3.1), is equivalent to

h(JN,JX) = 0 for every X<Ξ% and J&JN + h(JN, JN)N = 0,

but

2n

£ j £ w + h{JN, JN)JN,

and

h(JN,JX) = 0 for every Jf G % iff h(JN, Eu) = 0, u=l,...92n.

Then Λ(/JV, JX) = 0 impUes/a/A^ + Λ(/iV, /AΓ)Λ̂  = 0, and (f) is proved.

(a), (b), (c) are consequence of (d), (e), (f) and the inclusion relations

among the classes. D

3.5. COROLLARY. If M is compact and bλ{M) = 0 (bλ{M) = //rjί 5eίri

number of M), then M is not (TGF, Fj).

Proof. Let 0 be the one-form on M given by Θ(U) = (JN,U). If M

were (TGF,^), we would have dθ(X, Y) = 0 = d0(X?V, /iV) and, by

3.4(c),

dθ(X,JN)= VX{Θ)JN- VJN{Θ)X=-(VXJN,JN)+ (VJNX,JN)

= -h(JN9JX) = 0,

so β would be closed. As fe^Af) = 0 there would exist a real function/on

M such that θ — df. Since M is compact it would be some point x E M
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where θx — df{x) = 0, whence (JN)X~ 0. That would yield a contradic-

tion. D

The following corollaries give more concrete examples.

3.6. COROLLARY. Let M be an umbilical real hypersurface in C w + 1 .

Then M is (TGF, AF) strict iff M is an open set of a sphere, and it is

locally-product iff M is an open set of a real hyperplane in C n + 1 .

Proof, The second assertion is obvious. For the first, if M is umbilical,

there exists a real number λ such that &X = XX (which implies h( X, JX)

= 0) and &JN = λJN (which implies h(JN, X) = 0). Then M is

(TGF, AF), and it is not locally-product since h(X, X) = λ | | * | | 2 ^ 0 . D

Notice that the canonical almost-product structure on S2n+X C C " + 1

coincides with that given by the Hopf fibrations

CP"

From this viewpoint it is clear that S2nή~ι is (TGF, AF). In fact the fibers

Sι are geodesies of S 2 w + 1 , and S2n+ι ->CPW is a riemannian submersion;

then ([1]) vx(P)Y = 2ΘXY, where 0 is the horizontal configuration tensor,

which verifies βxX = 0 ([4] and [15]).

3.7. COROLLARY. M is (F 2,TGF) iff % is integrable and its leaves are

real In-planes in C Λ + 1 . Then M is an open set of vector bundle Mf over a

curve σ in Cn+ι such that the fibres are complex hyperplanes in Cn+ι.

Moreover Mf is contained in the normal vector bundle of σ in C Λ + 1 .

Proof. If % is TGF, then the second fundamental form a of an

integral leaf of % viewed as a submanifold in C n + * is

a(X,Y) = (V'XY,N)N+ {v'xY,JN)JN

= h(X9 Y)N - h(JX9 JY)JN = 0.

Then this leaf is a linear submanifold in C Λ + 1 . D

3.8. COROLLARY. A minimal real hypersurface in C 2 is (F2,Fj) iff

h(JN, JN) = 0 (i.e. JN is an asymptotic direction). D
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From now on we consider two identifications between C " + 1 and

R2 / 2 + 2: those given by the isomorphisms^,^: C " + 1 -+ R 2 " + 2 such that

j\(zv. . . ,zw + 1) = (xl9. . . ,xπ + 1, yl9. . . 9yn+λ) and 72(z l 9. . . ,z n + 1 ) =

), where z^ = xk + iyk.

3.9. PROPOSITION. If we consider the identification j λ between C" + 1 and

R2n+2,wehave:

(a) S r X R' (r + ί = In + 1, r ^ 0 ^ ί) w

(i) (TGF, # 0 strict for r<n\
(ii) ( F 2 , £>!> strict for n < r < 2w.

(b) // M w /fe hyperboloid of one sheet, {(^i,-..,^2*1+2) ^ C " + 1 |

Σ f ^ 1 Jcf? - J C | Π + 2 = 1), rΛe« M w ( F 2 , Dλ) strict.

For the identification j 2 we have

(c) S r X R ' ( r , / as above) is

(iii) (TGF, AF) strict for r - 2s - 1 Φ 1 ύwrf locally-product iff

r= 1;
(iv) (F2, D,) strict for r = 2s.

(d) //Άf w /Λe hyperboloid of one sheet, it is (F2, Dj) 5/πc/.

Proof, (a) At x = ( x 1 ? . . . , x r + 1 , w1?. . . ?w r) E S r X Rr, iVx =

(i) In the case r < «, /Λ^ = (0,...,0, * „ . . . , x r + 1 , 0 , . . . , 0 ) with x, in

the (n + 2)th spot, and βJW = -V}NN = 0. Then Ύis TGF. Moreover, if

X=(Xl9...9X2n+2)E%9 then « X = ( - ^ 1 ? . . . , - X r + 1 , 0 , . . . , 0 ) , and

Λ(X, JY) = Xχ\+2 + '' + ^ r + i ϊ ; + r + 2 A t ^ = 0,0,. . . ,0), we take X,

= (0,1,0,... ,0,1,0,... ,0) with the second 1 in the (n + 3)th spot, then

h( X,JX)=\ΦO and % is not AF. Similarly, if Xx = (0,1,0,... ,0) and

yχ = (0,...,0,1,0,..., 0), with 1 in the (Λ + 3)th spot, then h(X9 JY) = 1

and h(Y9 JX) = 0, whence 3Cis not Fλ.

(ii) In the case r>n9 JN = (-xΛ + 2,.. . ,-x r + 1 ,0, . . .,0, x l 5 . . -,x r t + 1)

and β/Λ^ = (-xπ + 2,.. . ,-x r + 1 ,0, . . .,0, x 1 ) t..,jc r_π,O,.. .,0), which shows

that &JN is not proportional to JN in many points x of Sr X R', since

/ ψ 0 implies r — n ¥= n -\~ 1. Then Ύis not TGF. Similar computations as

in (i) show that % is not AF nor F,.

(b)If

\ _ Vi 2 _ Y 2 _
l) ~ Lk x i x2n + 2

i=\

then

y _ grad/
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and the proof of (b) follows from similar, but longer, computations than

in (a).

(c)(iii) For r = 2s — 1, JN = (-x2, xl9...,-x2s, x2s_l90,.. . ,0), h is

the same for Sr X R' in R2n+2 as for Sr in R2s. Then, if r φ 1, S r X R' is

(TGF, AF) strict from 3.6, and, for r = 1, JN is the tangent vector to S\

whence the result.

(iv) For r = 2s, JN = (-x2, x l 9 . . . , -x 2 j , x 2 5 _!,0, * 2 5 + 1 , 0 , . . .,0) and

&JN = (JC2, - * 1 ? . . . ,x 2 j, -x 2 s_ i,0,... ,0), which is not in the direction of

JN in the points wiht xls+\ ^ 0. Then Ύis not TGF. Moreover, analo-

gously to (a)(i), % is not F, nor AF.

(d) Similar* computations. D

The following is an example where M is compact and the distribu-

tions verify the conditions as weakly as possible (cf. 3.2).

3.10. Let M be S2 X Sι immersed in R4 by the parametrization

x(θ,φ9v)

— ((cos θcos φ + a)cosυ, (cos θcos φ + α)sint>,cos0sinφ,sin0),

where a > 1. The entries of the matrix of Λ, (Λ/y), and ( , ), (g / y), obey the

following relations:

(i) hθθ = -g$θ, hφφ = -gφ φ, AOϋ = - ( g o o - α(cos ^cos φ + a)),

(ii) hθφ = hθυ = hφv = g^ψ = gθv = gφv = 0.

A long computation using (i) and (ii) shows that M is (F2, Dλ) strict with

the identification^. D

3.11. REMARK. All computations are valid if we have, instead of C " + \

a Kahler manifold M' of complex dimension n + 1 and M is a real

hypersurface in M' with a global unitary normal vector field N. In this

situation the Corollary 3.6 holds for umbilical real hypersurfaces which

are not necessarily spheres.

3.12. Examples of (TGF, F, )-manifolds can be obtained as follows.

Let Λf be a complex hypersurface of C w + 1 with trivial normal vector

bundle (for example, let Mf be the zeros of a holomorphic function /:

Cn+] -* C of complex rank one on every (z , , . . . ,z Λ + 1 ) Gf~\0)) and

compact closure. Then we can choose an orthonormal frame {TV, JN} in

the normal vector bundle over M'. Let M" be a tubular neighborhood of

Mf in C " + 1 and K a strictly positive real function on Mf such that

x ± κ(x)JNx G M" for every x E M'. We define M ^ ^ + λ / J V μ G M '

and I λ | < κ(x)}. Then M is a real hypersurface in C " + 1 such that, with the
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canonical almost-product structure, the distribution % is integrable and

the leaves of this foliation are the submanifolds obtained from M' by the

flow of JN, and the vertical leaves are segments x + λJN, -κ(x) < λ <

κ(x). Then T i s TGF and % is Fj. Moreover M is locally product iff M' is

a linear submanifold of C " + 1 (see proof of 3.7).

4. Almost product structures on real hypersurfaces in H" + 1 . Let M

be an oriented real hypersurface in H " + 1 , N the unitary normal vector

field on M, and Jλ9J2, J3 the canonical almost-complex structures o n H " + 1

such that JλJ2 = J3. These elements define an almost-product structure on

M, namely that for which the vertical distrubution Ύis generated by the

vector fields J,JV, J2N, J3N and % = Ύ1. Observe that Jt% =%,i= 1,2,3.

In this section we always consider this almost-product structure on all

real hypersurfaces M in H " + 1 endowed with the metric induced by the

canonical riemannian metric on H Λ + 1 .

PROPOSITION. We have the following formulas:

3

(4.1) vτ{P)Y=2y2ih{T,JiN)JiN\
i=\

(4.2) vτ{P)JiN = -2{jβT + h{T, JtN)N + h(T, JkN)J;N

where {/, j , k) is a cyclic permutation of {1,2, 3}.

Proof. The formulas are obtained by similar, but longer, computations

than in 3.1. •

4.2. LEMMA. Every such M is in the class (Δ, Dλ).

Proof. On M we can take a local orthonormal frame in the form

{Er, JxEr, J2Er9 J3Er, JλN, J2N, J3N}n

r=ι. If we denote E2r = JxEr, E3r =

J2Er, E4r = J3Er9 then {Eu}%] is a local frame in 3Cand, by (4.1),

Σ v ^ P K = 2 2 Σh(εu,jιεu)jιN = o,
u=\ u=\ 1=1

as can be verified by explicitly writing the summands. D

As in 3.2, this lemma could be expected, and % is F iff it is F,.
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4.3. PROPOSITION. On these riemannian almost-product manifolds the
conditions AF or F on Ύare equivalent to the condition TGF.

Proof. Ύis AF iff vJιN(P)J,N = 0. Then, from (4.2), ( Jfi^N, X) = 0,
whence h(JtN, X) = 0 for every X G % because JβC = %.

Ύis F iff VjιN(P)JjN = vJjN(P)JiN. Then, from (4.2),Λ( W jr.JT)
= Λ(̂ -ΛΓ, ̂ X). Therefore, if {i,'j, k) is a cyclic permutation of {1,2,3}
and X = JkY, we have h(J,N, JJ) = -h(JjN, JjY) for every /, j , whence
h(JjN, JjY) = -h(JkN, JkY) = h(UtN, JJ). Then Λ(7,iV, Z) = 0 for ev-
ery Z e OC.

Finally, Ύis TGF iff v ^ P = 0. Then, from (4.1), h(J,N, JtY) = 0,
and, as above, h(JjN, X) = Ofor every * G SC. Conversely, if h(JtN, JtY)
= 0, then Vj.N(P)Y = 0 and, by the symmetry properties of V.P,
VJιN(P)JjN = Ό, so Ύis TGF. D

4.4. COROLLARY. Among these riemannian almost-product manifolds we
have the following equalities of classes:

(a) (AF, A ) = (F, />,) = (TGF, />,).
(b) (AF, AF) = (F, AF) = (TGF, AF).
(c)(AF,F,) = (F,F1) = (TGF,F1).
(d) (AF,TGF) = (F,TGF) = locally-product.

Using the equations defining the classes, (4.2) and 4.4 we can get the
characterization of all the possible classes of these riemannian almost-
product manifolds in terms of h. This is the content of the following
proposition:

4.5. PROPOSITION. We have the following equivalence:
(a) M is (Δ, AF) iffh{X, JtX) = 0.
(b) M is (Δ, F.) iffh(X, JJ) = h{JtX, Y).
(c) M is (2>,, />,) iffΣlthUN, J,X) = 0.
(d)Mis (D2> Dx) iffhUN, JtX) = h(JjN, JjX).
(e) M is (Δ, TGF) iffh{ X, Y) = 0.
(f)Mii(D1 (AF) iffh(X, JtX) = Qand??i=λ h{JtN, JtX) = 0.
(g)M/ί(D2,AF) iffh(X, JtX) = 0andh(J,N, JtX) = h(JjN, JjX).
(h) M is (D,, F,) iffh(X, JJ) = h{J(X, Y) and Σ*=I h(J,N, JtX) = 0.
(i) M is (D2,¥}) iff h(JiN,JiX) = h(JJN,JjX) and h(X, JJ) =

h{JtX, Y).
0) M is (/>„ TGF) iffh(X, Y) = 0 and Σf=1 h(J,N, JtX) = 0.
(k) Mis(D2,ΊGF) iffh(X, Y) = 0 andh(JtN, JtX) = h(JjN, JjX).
(1) M is (TGF, D{) iffh(JtN, X) = 0.
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(m) M is (TGF9AF) iff h(JtN9 X) = 0 andh(X9 J,X) = 0.

in) Mis (TGF,F,) iffh(JtN9 X) = 0 andh(X, JJ) = h(JtX9 Y). D

Similarly to 3.6 and 3.7 we get

4.6. COROLLARY. Let M be an umbilical real hypersurface in HM + 1.

Then it is (TGF, AF) strict iff M is an open set of a sphere, and it is

locally-product iff it is an open set of a real hyperplane ofΐl"*1. D

As in 3.6 the almost-product structure given here on S4n+3 is also

given by the Hopf fibration

4n+3

H P "

and consideration of 5 4 " + 3 ^ H ? " as a riemannian submersion also

shows that S4n+3 is (TGF, AF).

4.7. COROLLARY. M is (Δ, TGF) iff the leaves of the horizontal foliation

are complex 2n-planes inUn+ι. •

We consider the identifications between H " + 1 and R 4 " + 4 given by the

isomorphisms kλ, k2: H " + 1 -> R4 r t + 4 such that

w h e r e ^ = ( x ; , j>/? M, , t;,-).
After a long computation following the technique of 3.9, we obtain

the following concrete examples:

4.8. PROPOSITION, (a) Under the identification kl9 Sr X R' (r + t =

4w + 3, r ¥= 0 ^ /) w

(i) ( T G F , Dλ) strict for r < n or r = 2n + 1,

(ii) (Δ, Dj) strict for r> n and rφln+\ and r φ 3n + 2,

(iii) ( D l 9 Dλ) strict for r = 3n 4- 2.

(b) Lfoder /Ae identification kl9 Sr X Rr ( r , r as above) is

(iv) locally-product for r — 1,2, 3,

(v)(Z) 2 , Dλ) strict for r = 4s (s = 1,2,...),

(vi) (Δ, District for r = 4s+l94s + 29

(vii) (TGF, AF) strict for r = 4^ + 3. •
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4.9. Examples of (TGF, Fλ) can be given by a similar construction to

that of 3.12, but with M' a complex submanifold in F P + 1 of complex

dimension In and with trivial normal vector bundle.

5. Canonical almost product structures on complex hypersurfaces in
H" + 1 . H" + 1 can be identified with C 2 w + 2 . Then it is meaningful to

consider a complex hypersurface in H " + 1 . Let M be a such hypersurface

with trivial normal vector bundle. We consider as almost-complex struc-

ture on C 2 " 4 " 2 = H " + 1 the one given by Jv Let {N, JXN) be a frame in

the normal vector bundle of M. Then we can consider on M the vertical

distribution Ύ generated by {J2N, J3N}, and %- T " . This defines an

almost-product structure P on M. In this section M will represent such a

riemannian almost-product manifold. For the components of the real

second fundamental form a of M, we use the notation:

a(S, T) = h°{S, T)N + hx{S, T)JXN.

As in §§3 and 4 we have the following

5.1. PROPOSITION.

(5.1) VT(P)X= 2{h°(T, J2X)J2N + h°(T, J3X)J3N).

(5.2) ( V r ( P ) / ^ , X) = 2A°(Γ, JSX)9 i = 2,3.

5.2. LEMMA. Every such M is in the class (F l 9 D{).

Proof. We choose a local frame {Er9 JxEr, J2Er, J3Er, J2N, J3N) on

TM. Then Σ4

U"=] VE{^P)EU — 0 as in 4.2. Moreover, since M is a complex

submanifold of C2""+ 2, α(S, Γ) = -α(7,5, /,Γ); then

* ) = 2h°(J2N, J3X) = -2h°(JxJ2N, JλJ3X)

= 2h°(J3N, J2X) - (v / 3 ^(P)/ 2 iV 9 * ) ,

and

( ) 2Λ°(/2̂ v, J2X)

= -2h°(J3N, J3X) - -(Vj3N(P)J3N9 X). D

As in 3.2 and 4.2, we could expect that M was (Dl9 Dλ). The agreeable

fact is that Ύis also F.
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As in 3.4 and 4.5, the different classes of almost-product structures

can be characterized by symmetries of A0, but here h° is not the whole

second fundamental form of M.

We identify H " + 1 with C2n+1 by the isomorphism k: Hnl -> C2n+1

such that k(ql9. . . 9qn+{) = (zl9 z29. . . 9z2n+ι, z2n+2) (where #, =

(z 2 ._!, z2l-)), and with R4 / 2 + 4 by j 2 © A:, where j 2 is the isomoφhism given

in §3. Then:

5.3. P R O P O S I T I O N . // r is a real number, M— {(zl9...9z2n+2) E

H Λ + V Σ ? = t 2 z ? = r) is (F l 9 District.

Proof. First, we observe that if f(zl9. -.9z2n+2) is a holomorphic

function and V / = (df/dzx,.. .,3//3z2 π + 2)> then (v/ , ̂ V/} is a frame

in the normal vector bundle of M. With this remark, the proof is a

computation similar to those in 3.9. D

6. Examples of the thirty six classes. In §§3-5 we gave examples of

nine classes of riemannian almost-product manifolds. Here, our point is to

give strict examples for the thirty six classes. This proves that the

inclusions among the classes are strict. In order to get all of them, it is

enough to build a few because the rest can be obtained by using the

following results:

6.1. P R O P O S I T I O N ( [3]) . L e t (Aί;( 9 ) ) be a riemannian manifold, φ a

distribution on M , g a real function on M and ( , ) ° = e2g( , ) . Then:

( a ) Iffy is AF for ( , >, then it is D2for < , )°, and it is AF for ( , )° iff

Xg = Ofor every I G 6 ! ) 1 .

(b) // <φ is Dx for ( , >, then it is Δ for ( , >°, it is Dλ for ( , >° ///

Xg = Ofor every I G 6 ! ) 1 and it is D2for ( , >° iff it is AF for ( , >.

(d) Iffy is D2for ( , >, then it is also D2for ( , >°.

6.2. PROPOSITION. Let M be a (F, Δ)-manifold. Then there is a real

function f on a open set of M such that Af—0 for every A E Ύand XfΦO

for some X E %.

6.3. PROPOSITION. Let M, M' be two riemannian manifolds, fy a

distribution on M and ®ύf another one on M'. On the riemannian product

MX M' we consider the distribution fyθfy'.Iftyandfy' are both AF, D{

or F, then fy θ fy' is AF, Dx or F, respectively.
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Proof. It is a consequence of the formula

where P, P'9 P + P' are the almost-product tensors corresponding to the

structures (% ^ X (3)', ty;±), (<% Θ <$', ( φ Θ ̂ r ) ± ) on the manifolds M,

M', M X M', respectively, and V, V', V" are their corresponding Levi-

Civita connections. Π

6.4. PROPOSITION. Let (M, P) be a product manifold and (AT, P') a

riemannian almost-product structure. Then, in the induced almost-product

structure ( M X M', P + P') there exists a real function g such that Xg = 0

for every X <Ξ%® %' and Ag φ 0 for some A e T ί θ T , and another f

such that Af — 0 for every A and XfΦO for some X.

Proof. Let M - % X 9H and g': © -> R not constant, take g(x, >>, z)

= g'(x) for O, j , z) G $ X 9IL X M'. With respect to / the proof is

similar. D

Now we give the examples. First, we note that, by 6.1 and 6.2 or 6.4,

it is enough to have examples for which the distributions are TGF, F l 9 AF

or Dλ. We give a list of these examples:

(TGF, TGF) product manifolds.

(TFG, Fλ) examples given in 3.12 and 4.9.

(TGF, AF) examples given in 3.6 and 4.6.

(TGF, Dx) examples given in 3.9(i) and 4.8(i).

(F l 9 Έλ) (MXM\P + P% where (M, P) is (F l 9 TGF) and

(M\P') is (TGF^).
(F l9 AF) (MX Λf', P + P% where (Λf, P) is (F,, TGF) and

(Af, P')is(TGF,AF).
(F l9 Dλ) (M XM'9P + P% where (λf, P) is (F1? TGF) and

(M\ P') is (TGF, Dλ); and examples given in 5.3.
(AF, AF) (MX M', P + P% where (M, P) is (AF, TGF) and

(M',P') is (TGF, AF).
(AF, £>,) (M X M', P + P0> where (M, P) is (AF,TGF) and

(2),, Dj) (M X M\P + P'\ where (M, P) is (Z>1?TGF) and

(M r, PO is (TGF, £>,); and examples given in 4.8(ϋi).
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The examples in the list given as products of almost-product mani-
folds are correct by 6.3.
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