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ON GINSBURG-ISBELL DERIVATIVES
AND RANKS OF METRIC SPACES

AARNO HOHTI

The paper deals with the following problem: given a metric space, is
there a countable ordinal α such that the αth successive Ginsburg-Isbell
derivative of the metric uniformity contains every open cover of the
space? In addition to other results we show that a separable metric space
has the above property if and only if it is complete and σ-compact.

1. Introduction. In their fundamental 1959 paper [1], Ginsburg and
Isbell defined, for a filter μ of coverings, the successive derivatives μ(α) as
follows. Let μ(0) = μ. If μ(α) is defined for all a < β and β is a limit
ordinal, let μ{β) = U {μ(α): a < β); if β = a + 1, let μ(β) consist of all
covers {Vt Π Wj\p where {V& G μ(α) and, for each i, {Wj} e μ(α). There
is the least derivative μ(α) for which μ(α+1) = μ(α); denote that derivative
by λμ. It was shown in [1] that for any complete metric space pX, λp is
the fine uniformity of X. On the other hand, we proved in [2] that if every
binary open cover of X belongs to λp, then pX is complete. Thus, in a
sense, in the class of metric spaces the complete spaces form the subclass
of objects in which every open cover can be approximated by "piecewise
uniform" covers. Here we shall consider the class of spaces for which the
approximation can be obtained by taking countably many successive
derivatives. To facilitate the discussion a new derivative μ(

o

α) (slower than
the original one) is introduced in §2.

J. Nagata [5] called a uniform space μX μ-normal if every two disjoint
closed subsets of X can be separated by μ-uniform neighbourhoods. It can
be shown that μX is μ-normal if and only if every finite cover of X is
μ-uniform. Nagata proved that a metric space pX is μ-normal if and only
if there is a compact subset H of X such that for any ε > 0, the
complement of Sp(H, ε) is uniformly discrete. In §3 we extend Nagata's
result to metric spaces pX for which there is a countable ordinal a such
that each finite open cover of A" belongs to ρ(

o

a\ Such spaces are C-scattered
in the sense of Telgarsky: a topological space X is called C-scattered if
every nonempty closed subspace of X contains a point with a compact
neighbourhood. (The converse of that statement will be proved for separa-
ble complete metric spaces in §4.) We conclude §3 by proving a theorem
on ranks of finite products of metric spaces.
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§4 deals with complete separable metric spaces. The main result is
that our extension of Nagata's theorem yields an analysis of σ-compact
complete metric spaces: if pX is σ-compact and complete, then there is a
countable ordinal a such that each open cover of X belongs to p(α). Our
results in §3 can then be applied to give an analysis of those spaces.

2. A new derivative. To prove our theorems it is helpful to intro-
duce a new derivative slow enough for inductive purposes. Let μ be a filter
of coverings ordered by the relation of refinement. Let μ{^ — μ. If μ(

o

α) is
defined for all a < β, and β is a limit ordinal, then μ\f} = U (μ(

o

α):
a < β}; on the other hand, if β = a + 1, then μ ^ consists of all covers
{V{ Π W}}Uj where {V^ E μ and, for each /, {Wj}j E μ(

o

α). (Thus, in the
notation of [6], μ ( α + 1 ) = μ(α)/μ(α), whereas μ(

o

α+1) = μφ/μ.) The restric-
tion of a cover Ύ to A is denoted by Ύ| A. In a similar vein, the family
{Ύ\A: T G μ } of the restrictions of members from μ will be denoted by
μ\A. The following lemma can be proved by transfinite induction.

LEMMA 2.1. Let μbe a filter of coverings of X and let A C X. If Ύis a
cover of A, then ΎE (μ|Λ)(

o

α) if and only if there is a% E μ(

o

α) such that
βlΰ\A<Ύ.

In the following lemma we will use the Hessenberg natural sum θ of
ordinal numbers. (See [4], p. 252.) It is enough to know that θ is
commutative and strictly increasing.

LEMMA 2.2. Let a and β be ordinals. If {J }̂z e μ(

o

α) and, for each /,
{V, Π Wj)j E (μ| VM\ then [Vt Π Wj)UJ E μ ^ + 1 > .

Proof. We will proceed by induction on α. If a = 0, then the conten-
tion is true by definition and Lemma 2.1. For the induction hypothesis,
suppose that it holds for 0 < a < γ. Let {V^ E μ(

o

γ). If γ is a limit ordinal,
then there is a v < γ with {V^ E μ(

0"
) and the induction hypothesis implies

that {Vt Π Wj}uj E μ^®β+λ) C μ (

o

γ θ / m ). On the other hand, suppose γ =
v + 1. Then there is a uniform cover {Us}s of X and for each s a cover
{a/}, G μ(

o

r> such that {Vi}i > {Us Π G,5}M. For all pairs (s, t) there exists
a [WjSt}j E μ((f> whose restriction to Us Π Gs

t refines the original covers
{Wj}j. The restriction of {Wf}j to Gs

t belongs to (μ\G?)(

Q

β); hence by the
induction hypothesis {<?/ Π Wf'}tJ E μ ^ + 1 ) . Now v θ 8̂ + 1 = {v + 1)
® β = y ® β. Since {Us} is a uniform cover of X, we have

Therefore {Ĵ  n Wj}^ belongs to
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LEMMA 2.3. (i) μ(

o

α) C μ(α) for all a; (ii) for each a there is a σ(α) such

that μ (α) C μ(

o

σ(α)). Moreover, if τ is an infinite regular ordinal, then we can

choose σ(α) so that σ(α) < T.

Proof. The first statement being obvious, we prove (ii) only. We will
use induction on a. Clearly μ(0) C μ^\ Suppose for each a < β there is a
σ(α) such that μ(α) C μ(

o

σ(α)). Moreover, let τ be an infinite regular ordinal
with β < τ and σ(α) < T for a < β. If β is a limit ordinal, then μ(/?) =
U (μ(α): a < β}. Since τ is regular, we have γ = sup{σ(α): a < β) < τ. It
is easy to see that μ{β) C μ(

o

γ). Therefore, we can assume β is a successor
ordinal, say β = v + 1. Each element of μ("+1) (= μ^v)/μ{v)) has the form
Ύ= {Vj Π Wj}i9P where {F;}z, {WK'}7 G μ(ϊ;). By the induction hypothesis

μ00 c μ^(r» a n ( j φ) < τ # N o t e t h a t i ^ n ^ / ^ e ( μ | γ.)^)) for all /. It

follows from Lemma 2.2 that [Vt Π ^.I"}J.J E M^(")®^(")+i)e since σ(^) Θ
σ(^) + 1 < T, we define σ(β) = σ(v) Φ σ(v) + 1.

Lemma 2.3 shows that if we want to prove a statement by induction
on the Ginsburg-Isbell derivatives μ(α) we need only work with the new
derivatives μ(

o

α). In many cases these new derivatives are easier to handle.

3. A characterization of metric spaces of countable rank. Let μX be

a uniform space. The space μX is called ranked if λμ is the fine uniformity
of X. We say that μ X is finitarily ranked if every finite cozero-set cover of
X belongs to λμ. The rank (resp. Ginsburg-Isbell rank) of μX is the least
ordinal a such that μ(

(f
) (resp. μ(α)) is the fine uniformity of X. The finitary

rank (resp. finitary Ginsburg-Isbell rank) of μJΓis the least ordinal a such
that every finite cozero-set cover of X belongs to μ(

o

α) (resp. μ(α)). Thus, a
metric space is finitarily ranked if and only if the space is complete. (See
[2], p. 19.)

In this section we will extend Nagata's theorem ([5], Theorem 3) of
μ-normal spaces and our theorem ([2], Theorem 4.2.7) on C-normal
spaces. (In fact, a metric space is C-normal if and only if the space is of
rank < 1. For example, a uniformly locally compact space is of rank ^ 1.)
The proofs of 3.2-3.6 are similar to those given for 4.2.4-4.2.8 in [2]
modulo certain complications. For this reason we prove only Lemma 3.2
and leave the rest to the reader. However, we first establish a useful
lemma.

LEMMA 3.1. Let μX be a uniform space and let a be an ordinal. The
following conditions are equivalent:

(i) // E and F are closed and disjoint subsets of X, then there is a
μ(

o

α) such that St(£, Ύ)CX~F;
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(ii) every binary open cover of X belongs to μ(

o

α);

(iii) every finite open cover of X belongs to μ(

o

α).

Proof. The equivalence of (i) and (ii) is obvious. Thus, it is enough to

show that (ii) implies (iii). Consider the following statement P(a): if

Ύ= {Vl9...9Vn) is an open cover of a uniform space vY, {Wu..., Wn) is

an open refinement of Ύwith c l y Wι\ C V{ and each of the binary covers

{Vi9 Y~ cly Wi) belongs to v^a\ then Ύe v^a\ It is not difficult to see

that P(0) is valid. Indeed, let {Vi9 Y~ c l y Wt} be a uniform cover of vY

for 1 < i < n. Choose a uniform cover % such that for each /, the cover %

refines {Vi9 Y~ c l y Wt). Then for each U E % there is a ^ such that

U C F;, because otherwise U C Π {7 ~ c l y Ŵ  : 1 < / < Λ} = 7 -

U {cly f̂ : 1 < / < «} = 0 . Consequently, Ύis a uniform cover of vY.

Now suppose P{a) holds whenever α < β. To show that P ( β ) holds,

let Ύ= {F,,...,p;}, ? 7 and {Wu...9Wn} be as above and assume that

each of the binary covers β, = {Vi9 7 ^ c l y H^ } belongs to μ(£\ If >β is a

limit ordinal, then for each / there is an a(i) < β such that Q E μ(

o

α(/)).

Then Sl9...9Qn E μ(

o

α), where α = max{α(l),...,α(/i)} < /? and the induc-

tion hypothesis shows that Ύ E μ(

o

α).

On the other hand, let β — a+ 1. For each /, we can choose a

uniform cover % such that %t \ U E (μ \ ί/)(

o

α) for all U E %. Let % = {ί7y}y

be a uniform cover such that elL<6lLl Λ Λ9lπ. We contend that for

eachy, Ύ| ί̂  e (μ | ί^)[)α). To prove this, note that Uj Π(X~clx Wt) C

Π £^ ), and therefore the binary cover {Vέ Π Uj9

n Uj)} belongs by (ii) to (μ\ Uj%a) (since c l ^ ^ Π ί̂  ) C

cl^ WiΠUjC^Π Uj). By the induction hypothesis, Ύ\ Uj<Ξ{μ\ Uj)(

o

a\

as desired. But then TEju (

o

α + 1 ) . This completes the induction. Hence

P(a) holds for all ordinals α.

To show that (ii) implies (iii), let Ύ = {Vl9...9Vn} be a finite open

cover of X. Since by (ii) each binary open cover of X belongs to the fine

uniformity of X, the space X is normal and thus we can find an open

refinement {Wl9...9Wn} of Ύ such that c l^W^CF;. Condition (ii)

guarantees that each of the covers {Vi9 X~Q\xWi} belongs to μ(

o

α). It

follows from P{ά) that Ύ E μ(

o

α).

LEMMA 3.2. Let pX be a metric space of finitary rank a < ω{. Then

there is a compact K C X such that each point of X ~ K has a neighbour-

hood of finitary rank < a.

Proof. Let A be the set of all points x E X that admit no neighbour-

hood of finitary rank < a. We will show that A is compact. Since A is a
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closed subspace of X and pX is ranked, A is complete. If A is not
compact, then it is not totally bounded. Accordingly, we can choose an
infinite subset {xm: m EN} of A that is uniformly discrete relative to
some ε > 0. We can assume a is a limit ordinal since the case of a
successor ordinal is essentially similar, but simpler. Let {β(n): n E N) be
an enumeration of the set of ordinals smaller than a. Since xm does not
have a neighbourhood of finitary rank < α, the closed sphere Sm —
Sp(xm, ε/3) contains two closed disjoint sets Em and Fm for which there is
no cover Ύe(p\Sm)tf<m» with St(£m, Ύ) C Sm ~ Fm. (Here we use
Lemma 3.1!) Let E = U [Em\ m E N) and F = U {Fm: m E TV}. Then £
and i 7 are closed and disjoint subsets of X; consequently, there is a
ΎE μ(

o

α) such that St(£,Ύ) C X ~ F. Since α is a limit ordinal there
is an nE TV with T E μ f w » (since μ(

o

α) = U{μ$f<*»: jfc E #}). But
St(£ π ,Ύ|5J C S π - F n and Ύ\Sn E ( μ | S J ( Λ Λ ) ) , which is a contradic-
tion. Thus, A is compact. It is obvious that A satisfies the condition stated
for K in 3.2.

COROLLARY 3.3. Let pX be a metric space of countable finitary rank.
Then X is C-scattered.

Proof. If rank pX = 0, then X is C-scattered by Nagata's theorem
(Theorem 3 in [5]). Now proceed by induction on the finitary rank of pX
using 3.2.

Thus, it follows from a result of R. Telgarsky ([8], Theorem 1.7) that a
metric space of countable finitary rank is Fσ- and Gδ-absolute.

LEMMA 3.4. Let pX be a metric space such that each point of X admits a
neighbourhood of finitary rank < a < ω l9 and suppose the finitary rank of
pX is < a. Then there is an ordinal β < a and an ε > 0 such that the
finitary rank of each closed sphere of radius ε is at most β.

Proof. Let {β(n)\ n EN] be an enumeration of the set of ordinals
smaller than α. The result follows from the observation that there is no
infinite subset E— {xn\ n E N} of Z such that the finitary rank of
Sp(xn, \/n) is greater than β(n). (Recall that pXis complete and note that
either E contains a convergent sequence or a uniformly discrete sequence.
The first case contradicts 3.4, while the second has been handled in the
proof of 3.2.)

THEOREM 3.5. Let a < ωx. A metric space pX is of finitary rank a if,
and only if, there is a compact subset K C X satisfying the following
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condition: given any ε > 0, there exist β < a and η > 0 such that for each

x £Ξ X ~ Sp(K, ε), the finitary rank of Sp(x, η) is at most β.

Proof. Theorem 3.5 follows directly from 3.2 and 3.4.

The following corollary can be proved by transfinite induction on the

rank.

COROLLARY 3.6. A metric space is of finitary rank < ωι if and only if

the space is of rank < co1#

We conclude this section by considering finite products of metric

spaces. Telgarsky proved in [7] that if X and Y are scattered spaces, then

the Cantor-Bendixson rank of their product is

ξ(XX Y) = sup{a®β+ l:a<ξ(X)9β<ζ(Y)}9

where ξ(X) and ζ(Y) are the Cantor-Bendixson ranks of X and 7,

respectively. The following theorem shows that the Hessenberg sum can

be used in connection with countable ranks in our sense. I do not know if

the result can be extended to arbitrary ranks.

THEOREM 3.7. Let pX and σY be metric spaces with rank pX — a < ωx

and rank σY = β < ω,. Then the product space pX X σY has rank < a Θ β

+ 1.

Proof. We will proceed by induction on a θ β. The case α θ | 8 = 0

can be proved as the corresponding case α θ j 8 = γ below. Thus, suppose

the statement of 3.7 holds whenever 0<a® β<y. Let a θ β = γ. By

3.5 there exist compact sets Kx C X, K2 C Y such that for each ε > 0 we

can find v < α, r < β, κ)λ > 0, η2 > 0 with the following property: if

x E XE = X~Sp(Kl9 ε) (resp. yEYε= Y ~ Sσ(K2, ε)) then Sp(x9 ij,) is

of rank < v (resp. Sσ(y, η2) is of rank < r) . Put η = minlr^, τj2). Now

= (XXY)~{Sp(Kl9e)XSσ(K29e))

= ( i x y£) u (z ε x y).

Choose a point (JC, y) E _ ( I X ye) U (Xε X F). For example, let

x G Xε and7 E y. Then rank Sp(x9 η) < P. AS θ is strictly increasing, we

have v ® β <y and thus by the induction hypothesis the rank of Sp(x, η)

X S i >>, η) is < v θ j8 + 1 = (v + 1) θ β < α θ )8. Similarly if x E l
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and y G Ye, then the rank of Sp(x, η) X Sσ(y9 TJ) is < α θ τ + l = α θ

(T + 1) < a θ β. Therefore, the set (X X Y) ~ Spxσ(Kx X K2, ε) admits a

uniform cover by spheres of rank < α θ /?. As a consequence, 3.5 applies

to show that the rank of pX X σY is < a ® β + \.

COROLLARY 3.8. Let pιXι,...9ρnXnbe metric spaces with rank ptXt =

α, < ω,. 77ien rankΠ{ρf A;: 1 < ί < π) < «j θ ®an + (n - 1).

4. Separable complete metric spaces. We shall prove the main

result stating that the important class of σ-compact, complete metric

spaces coincides with the class of separable metric spaces of countable

Ginsburg-Isbell rank. The following result is due to Telgarsky ([9], 12.2.4):

THEOREM 4.1. A C-scattered metric space admits a σ-discrete cover by

compact sets.

COROLLARY 4.2. A separable, complete metric space is C-scattered if

and only if it is σ-compact.

In fact, necessity in 4.2 follows immediately from 4.1 and sufficiency

is a direct consequence of Baire's category theorem.

LEMMA 4.3. Let P be a countable partially ordered set and assume S is a

subset of P such that each descending chain in P ~ S is finite. Let {Up:

p 6 ? ) be a uniform cover of a uniform space μX such that for each p G P9

the restriction of {Uq: q a successor of p] to Up is a uniform cover of Up.

Then there is ana<ωx such that % = {Up: p E S} G μ{a).

Proof. A corresponding statement was proved in [3], VII.8. The same

method of proof applies here.

LEMMA 4.4. Let pX be a complete separable metric space and let Ύbe an

open cover of X. Then there is an a < ωx such that Ύ G μ(α).

Proof. For each n let % π be the cover of X consisting of all spheres

with radius 2~n. Since X is separable, Glln has a uniform countable

shrinking {Un a: a G An). Then proceed as in [3], VII.9., and use Lemma

4.3.

COROLLARY 4.5. // pX is a complete separable metric space, the

Ginsburg-Isbell rank of pX is < ωλ.
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The irrationals / form a Gδ-subset of the reals and thus by a theorem
due to P. Alexandroff, / admits a complete metric p. It follows from 4.5
that the Ginsburg-Isbell rank of pJ is at most ω,. On the other hand, if
that rank were a countable ordinal, then by 2.3 rank pJ <ωl9 and by 3.3 /
would be C-scattered. Hence, the Ginsburg-Isbell rank of pJ is ωv The
same argument shows that the Ginsburg-Isbell rank of an infinite-dimen-
sional separable Banach space is ωx.

THEOREM 4.6. Let pX be a separable complete metric space. Then the

following statements are equivalent:

(i) X is σ-compact;

(ii) the Ginsburg-Isbell rank of pX is countable.

Proof. By 3.3 and 4.2 it is enough to show that (i) implies (ii). To this
end, let X be σ-compact. By 4.2, X is C-scattered. As X is C-scattered, we
can choose a point JC0 E X and find an open neighbourhood ί/0 of x0 such
that clxU0 is compact. Initially, let Fo = X. Suppose the sequence
(Ua>

 Fa)a<β has been defined and β > 1. Let Fβ = X- U {Ua: a < β}.
Then Fβ is a closed subset of X, whence there is a point xβ E Fβ and an
open neighbourhood Uβ of xβ in X such that c\xUβΠ Fβ is compact.
Clearly there is an ordinal β such that X- U {Ua: a<β}. We call
(Ua9 Fa)a<β an exhaustion of length β. If Xhas an exhaustion of length 1,
then X is compact. Now we shall proceed by induction on the length of
exhaustion. Thus, assume that if a complete separable metric space has an
exhaustion of length β, where 1 < β < γ < ω,, then the Ginsburg-Isbell
rank of the space is countable. Let X have an exhaustion (Ua9 Fa)a<y of
length γ. We have two cases to consider. First, let γ = β + 1. Then
X — U {Ua: a < β} U Uβ. Therefore Fβ is a closed subspace oί c\xUβ and
thus Fβ is compact. Let Yn = X~ Sp(Fβ9l/n). Then Yn is complete and
separable. Moreover, clearly Yn has an exhaustion of length < β < γ,
whence by the induction hypothesis the Ginsburg-Isbell rank of Yn is
some countable ordinal τn. Let T = sup{v n EN) <ωx and let Ύbe an
open cover of X. As Fβ is compact, we can find a finite subfamily T c T
and an /? such that Sp(Fβ,4/n) C U(Ύ') and Ύr forms a uniform cover
of Sp(Fβ92/n). Now Ύ| Yn e (p | 7J ( τ ( / ϊ ) ). On the other hand, note that
{Yn, Sp(Fβ, 2/n)} is a uniform cover of X. It follows that Ύ E p^">+1) c
p(τ+i) χh e r ef o r e > every open cover of A" belongs to p ( τ + 1 ) . Thus, suppose γ
is a limit ordinal. For each β < γ, the set clxUβ is of some countable
Ginsburg-Isbell rank τn. (To see this, use the above argument with Fβ

replaced by c\xUβΠ Fβ.) As pX is complete and separable, 4.4 implies
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there is a v < ωγ such that {c\xUβ: β <y} E p{v\ Let Ύbe an open cover

of X. Then for each β < γ, we have Ύ|c\ x U β E(p\c\ x U β ) { τ { n ) \ Thus Ύ

belongs to ρ ( τ ), where r = max{sup{v « E N}9 v) + 1 < ωx. This com-

pletes our inductive proof, since every C-scattered separable metric space

has an exhaustion of countable length.

Theorem 4.6 together with 3.5 enables us to give an analysis of the

structure of σ-compact complete metric spaces. Let pX be such a space.

By 4.6 pX is of countable rank and thus by 3.5 there is a compact K C X

such that each point x in X ~ K admits a neighbourhood Ux of lower

rank. The same applies to each Ux. Hence, we obtain the following

tree-like presentation of X.

Suppose D Ux{n) D Ux{n+λ) D Ux(n+2) D is a part of a branch of

this tree and let > rank Ux(n) > rank Ux{n+1} > rank Ux(n+2)

 > * * * As

there are no infinite decreasing sequences of ordinals, the above sequence

stops at some Ux(my But Ux{m) is compact, for otherwise we can find a

point xm+λ E Ux{m) with a neighbourhood Ux{m+λ) such that either C/x(m+1)

= {xm+1} or rank ί 4 ( m + 1 ) < rank Ux{my Hence the branches of the above

tree are finite and their endpoints are compact sets. Since these trees give

an analysis of σ-compact complete metric spaces, it seems worth while to

study their structure. (There have been studies on tree-structures in
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connection with Ginsburg-Isbell derivatives; see [6].) However, that study
is outside the scope of this paper.

REMARK. It seems that many of our results can be extended to linearly
uniformizable spaces (i.e. ωα-metrizable spaces).
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