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BIJECTIVELY RELATED SPACES I: MANIFOLDS

P. H. DOYLE AND J. G. HOCKING

The following equivalence relation is introduced: Two (Hausdorff)
spaces X and Ύ are bijectwely related if there exist continuous bijections
/: X -* Y and g: X -> Y. This first paper considers the case in which X
and Y are connected manifolds. If either / or g is not a homeomorphism,
then each space is necessarily non-reversible and hence this study
produces more knowledge of such spaces. The chief results here are the
existence theorem (Theorem 2) and, perhaps, Corollary 12, which states
that a simply-connected manifold having only compact boundary compo-
nents is reversible.

This is a continuation of a study of continuous bijections following
the work of Rajagopalan and Wilansky [5], Petty [4], and Doyle and
Hocking [2,3]. We introduce here the following equivalence relation
among topological spaces:

DEFINITION. TWO spaces X and Y are bijectwely related if there exist
continuous bijections /: X -> Y and g: Y -» X. Each space is then a
bijectiυe relative of the other, the maps / and g are relating bijections and,
to be brief, we say that "[X, 7, /, g] holds". We denote by B(X) the
equivalence class of all spaces (in the category under study) which are
bijectively related to X.

1. Preliminaries. Throughout this study spaces will be assumed to
be Hausdorff (at least). With this assumption we surely have B( X) — {X)
if X is compact. To provide a more general result in this direction, recall
that the space X is said to be reversible [5] if the only continuous
self-bijections/: X -» X are the homeomorphisms. If A îs reversible and if
[X, Y, /, g] holds, then g ° /: X -> X must be a homeomorphism. Then
f~ι — (S ° /) l ° £ i s continuous, so / is a homeomorphism. Thus B(X)
= {X} whenever X is reversible. However the condition B{X) — {X}
does not characterize reversible spaces, as we see next.

THEOREM 1. Among metric spaces the rationals Q constitute a non-re-
versible space for which B(Q) = {(?}.
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Proof. We use as a lemma the known fact that every countable perfect
metric space is homeomorphic to β. Write

β=[βn(-oo,*τ)] u[βn(*r,+oo)]

= [βnH,i)]u[βn(i,+x)].

Then there exist homeomorphisms

hx: QΠ (-00, ir) -> Q Π (-oo,l)

and

h2: Q Π (ττ,+oo) -> ρ Π[l ,+oo).

when we put these together we get a continuous bijection/: β ^ β that is
not a homeomorphsim. Thus g is non-reversible.

If X is a continuous bijective image of Q, then X is countable and
perfect. Thus we have B(Q) = {2} as claimed. D

It is perhaps more surprising to find that there are non-reversible
connected manifolds M for which B(M) = {M} (see Example 2 below).
First, however, we provide an existence theorem and a first example of
bijectively related manifolds.

THEOREM 2. For each n>2 there exist non-homeomorphic connected

bijectively related n-manifolds.

Proof. In R2 consider the following submanifolds (see Figure 1):

M= {(x,y): -\<y<0}

U U {(x,y): 3/1- 1 <x<3n,0<y<4]

U {(x,y): 3 Π < X < 3 Λ + 1 , 1 < ^ < 2 O Γ

U {(x, ̂ ) : - 3 Λ + 1 < X < - 3 « + 2, I < y < 2 o r 3 < } > < 4 } ,

and

7V-MU

The interior of iV contains a simple closed curve / which separates the
boundary of N. No such exists in M so the two are not homeomorphic. It
is obvious from inspection that M and TV are bijectively related, and the
rest of the theorem follows from consideration of the manifolds M X Sk

dLnάNXSkioxk= 1,2,3,.... D
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FIGURE 2

In Figure 2 we picture two more planar manifolds bijectively related
to those in Figure 1. These clearly indicate that the class B(M) is infinite
for the manifold M of Theorem 2. This gives rise to a problem which
seems to be difficult: Let M be a connected manifold for which B(M) φ
{M}. Is B(M) necessarily infinite?
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The non-reversible manifolds in Figures 1 and 2 might mislead the

unwary into making false conjectures about the number of boundary

components and ends which such manifolds must possess. The following

easily proved result is instructive in this regard.

THEOREM 3. If M is any connected non-reversible manifold, then

MX [0,1) is a non-reversible manifold having connected boundary and

precisely one end.

It is also interesting to note that for the manifolds M and N of Figure

1, M X [0,1) and N X [0,1) are homeomorphic, but M X [0,1] and

NX [0,1] are not homeomorphic. (There is a copy of the simple closed

curve J in the boundary of N X [0,1] that fails to separate this boundary.

No such nonseparating simple closed curve exists in the boundary of

M X [0,1].) These observations yield several more unsolved problems of

the following nature: If [M, N, f, g] holds and P is any other manifold,

surely M X P and N X P are bijectively related. If we assume M and N

are not homeomorphic, does there exist a manifold P such that MX P

and N X P are homeomorphic? Can such a manifold P be compact?

For general information as well as subsequent use, we list the next

five theorems. The proofs either are simple exercises or are already known.

THEOREM 4. // [M, N, /, g] holds, then each manifold embeds in the

interior of the other.

THEOREM 5. If[M, N, /, g] holds and if one manifold is orientable, then

so is the other.

THEOREM 6. // [M, N, f, g] holds and if dM has only compact compo-

nents, then dN has only compact components.

(We use dM and Int M to denote the boundary oϊ M and the interior

of M, respectively.)

THEOREM 7. // [M, N9 /, g] holds and if f(dM) = dN, then f is a

homeomorphism (Theorem 3.4 of [4].)

THEOREM 8. If[M, N, /, g] holds, if every component ofdM is compact

and iff is not a homeomorphism, then there is at least one component C of

dM such thatf(C) C Int N (Theorem 3 of [2]).
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THEOREM 9. // the connected 2-manifold M has infinitely many handles,

infinitely many compact boundary components and infinitely many annular

ends, then M is non-reversible, and if M has only compact boundary

components, then the converse also holds {see Figure 3).

Proof. To prove the second statement, let /: M -» M be a continuous
bijection which is not a homeomorphism. Theorem 8 says that/"swal-
lows" some component C of 3M. Then f~\C), f~\f~\C%... provides
us with infinitely many compact boundary components. If U is a suffi-
ciently small neighborhood of f(C), then f~ι(U) has one component V
which contains an annular end of M andf~ι(V),f~\f~\V)),... gives us
a sequence of such ends. There is a simple closed curve / in Int M that
meets f(C) transversely at a single point and is such that f'\J) is
connected. Then f(J),f(f(J)),... identify the required handles.

To prove the first statement we provide a continuous bijection / from
M to a manifold TV and then show that N — M. An annular end Sι X
[ — 1,0) and a collar Sι X [0,1] on a boundary component Sι X {0} are
carried by local homeomorphisms to handle S} X [— 1,1] to form N. Thus
/"Ms discontinuous along Sι X {0}. The details of this construction can
be left to the reader.

Next we select a sequence of disjoint handles HX,H2,... which
"converge" to an end ε of M. Then we choose a topological line / in Int M
having both ends at ε and separating M into components U and V. Select /
so that U contains the handles Ht, no other handles, no boundary
components and no ends of M. This line / also lies in N, of course, and
has the same properties there. Now run an arc from a point of / to a point
in some simple closed curve in TV cutting off the new handle Ho. Swell up
this arc and add the disk containing Ho to obtain an open set X in N
bounded by a topological line /' separating N into components X and Y.
We have constructed /' so that X and U are homeomorphic, and, in fact,
there is a homeomorphism of X onto U which carries Γ to / leaving Γ Π I
fixed. Analogously we may select topological lines in Int N, then alter
them in Int M, to cut off sequences of annular ends and boundary
components. This provides both four homeomorphic pieces of M and N
and the means of fitting them together. D

EXAMPLE 2. The 2-manifold M pictured in Figure 3 is an infinite tube
with countably many handles to the right and countably many compact
boundary components {C_n} and annular ends (at the tops of the chim-
neys) to the left. Theorem 9 tells us that M is non-reversible and we now
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claim that B(M) = {M}. To prove this, suppose [M, N, /, g] holds for

some manifold N. Express M as a monotone increasing union M = U Kn

of compact submanifolds where Ko = Jo and

dKι = U U

= / . UD_?nU C
_2 0

^—2

u
u U U

Clearly, no component of M — ΛΓn has compact closure and all but two of

such components are open annuli. Let Un and Vn be the non-annular

components of M — Kn to the right of /„ and to the left of /_„, respec-

tively. Then {Un} is a sequence of domains defining the "end to the right"

and {Vn} similarly for the "end to the left".

We first claim f\ Un is a homeomorphism for all n. This is certainly

true if f(Un) = f(Un). But if there were a point p e f(Un) - f(Un) (at

which/" 1 would not be continuous, of course), then/? would have to lie

on the image/(C) of some component C of dM. But/(C) C Int N, hence

some neighborhood of this compact set would contain points from in-

finitely many handles, and this is impossible.

We treat the end to the left differently. First we note that if/(9M) Π

Int N has finitely many components, then M and N are homeomorphic.

To see this, suppose / "swallows" components CZi, C / 2,... 9Cik of dM by

sewing them to annular ends εl5 ε 2,.. .9εk. Select n sufficiently large so

that M — J_n U JQ consists of the three components Vn9 P and t/0, where P

contains all of the components C, , . . . ,C, and all of the ends ε 1 ? . . . ,εk.

Applied to P, / simply forms k handles and we may rearrange these, via a

homeomorphism leaving/(/_„ U Jo) fixed, so tha t/(P) is homeomoφhic

to the bounded component of M — J_n+k U Jk. The homeomorphism

from M to N is now obvious.
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If/(3M) Π Int N had infinitely many components, then surely g ° /:
M -» M would "swallow" infinitely many components by creating in-
finitely many new handles. Because g ° / preserves the end to the right
(homeomorphically) and the end to the left as well, this is not possible. D

One question suggested by Example 2 seems to be difficult: Let M be
a non-reversible manifold and/: M -* N a continuous bijection of M to a
manifold N. Is every (isolated) wild end of M duplicated in NΊ

2. Some structure theorems. The results in this section serve to
elucidate the notion of bijectively related manifolds. There are, inevitably,
some recent additions to the knowledge of non-reversible manifolds.

Any non-reversible 2-manifold M has non-trivial first homology and
hence πx(M) φ I. However there do exist simply connected non-reversible
manifolds of higher dimensions. E. H. Kronheimer provided us with the
following example: Let M consist of the lower open half-space z < 0
together with countably many open annular boundary patches on the
plane z = 0. Using a well-known bijection due to K. Whyburn [6], it is
easy to construct a self-bijection/: M -» M that is not a homeomorphism.
In Corollary 12 below, then, we seem to have the strongest result possible
of its kind.

THEOREM 10. Let J be a simple closed curve in a normal space M.
Suppose some point p E J has an open neighborhood U with the following
properties: (1) U Π / is an open arc A in J with endpointspx andp2, and (2)
U — U is the union of separated sets Cx and C2 with Cι Π / = pi9 i = 1,2.
Then J is essential in M.

Proof. Define a retraction rx\ U-> A such that rx{Ct) = pt, i— 1,2.
Setting B — J — A, repeat the construction of rx to obtain a retraction r2:
M—U^B with ^(C,)=/?,-, / = 1,2. Thus there is a retraction r:
M^J. D

We shall say that the continuous bijection f: M-> N "respects
boundary components" if the following conditions hold:

(1) each component of dM is carried by/to a closed set in N;
(2)/"1(Int N) ΓΊ dM is a union of components of dM; and
(3) if C is a component of dM with f(C) C Int N, then f(C) is

bicollared in Int TV with a bicollar that fails to meet all other components
of/(3M).
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THEOREM 11. Let /: M -* N be a continuous bijection which respects
boundary components. Ifπ{(N) = 1, / must be a homeomorphism.

Proof. If / were not a homeomorphism, then by property (2) above
and Theorem 3.4 of [4] there is a component C of dM with/(C) C Int N.
We let U be an open bicollar on/(C) and assume U is homeomorphic to
C X [-1,1]. Surely U does not separate N. Thus by joining with an arc in
Int N — U the endpoints of a fiber in U9 we construct a simple closed
curve / which has the properties set out in Theorem 10. This tells us
irx(N) Φ\. D

COROLLARY 12. // the manifold M has only compact boundary compo-
nents and if πx(M) — 1, then M is reversible.

Proof. Each component of dM is collared and these collars can be
chosen to be pairwise disjoint. If/: M -» M were not a homeomorphism
and the boundary component C had/(C) C Int M, we use the/-image of
the collar on C and the core of this collar just as the bicollar on/(C) was
used in Theorem 11. D

COROLLARY 13. If M is a non-reversible manifold having only compact
boundary components, then 77j(M) is infinitely generated.

Proof. Let/: M -> M be a continuous bijection swallowing a boundary
component C. Construct the simple closed curve / piercing/(C) as in the
proof of Theorem 11. Then consider /(/),/(/(/)), etc. D

COROLLARY 14. // dM has only simply connected compact components,
then the universal covering manifold M is reversible. For a 2-manifold, M is
always reversible.

As Theorem 3 indicates, the number of ends plays little role in the
reversibility property of a manifold. The nature of the ends, however, is
very important in this regard.

THEOREM 15. // dM has only compact components and if M has only
euclidean ends, then M is reversible.

Proof. By assumption each end embeds in R", where n = dim M. If a
boundary component C could be sewed to an end by some bijection /:
M -* M, then C would also embed in Rn.
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Because/(C) cannot separate M, /has constructed a "handle" H on
M such that H does not embed in RM. By iterating / we see that M
contains an infinite sequence of such handles and hence that M has a
non-euclidean end. •

To facilitate the next discussion let us briefly describe the ends of a
non-compact connected manifold M. Represent M as a monotone increas-
ing union M — U™=ιCn of compact submanifolds Cn of M. We may
assume Cn C \ntMCn+λ for each w. Each end ε of Λf may now be
represented by a monotone decreasing sequence {[/„}, where Un is a
component of M — Cn for each « and Un is non-compact. (In fact, any
components of M — Cn which have compact closure may be added to Cn

without effect on the ends.)

DEFINITION. If, in addition to the above, the compact submanifolds
Cn can be so chosen that Fr Un C Int M for each n, we shall say that ε is
an interior end of M.

THEOREM 16. Let M be a non-compact manifold. Every end of M is
interior iff every component of dM is compact.

Proof Suppose B is a non-compact component of dM. Then B has at
least one end η. If M is expressed as a monotone increasing union of
compact submanifolds M = U Q, surely B- U(B Π Cn). Hence there
is a sequence {Fπ}, each Vn being a component of B - B Π Cπ, which
represents 77. This identifies a sequence {[/„} of components Un of M - Cn,
where Frt C £/π. Surely {£/„} represents an end ε of M. We claim that the
submanifolds Cn cannot be selected so that Fr Un Π B = 0 . This is true
because 5 Π Q is a submanifold of 2? and therefore must contain points
of Fr Vn C Fr Un. It follows that ε is not an interior end.

On the other hand, suppose each component B( of dM is compact. Let
pf. Bt X [ 0,1) be an open collar Cz onB^i— 1,2, For each / and 7, let
CiJ=pi(Bi X [0, \/j)) so C o + 1 C C o and n y C 0 - £,. Given any se-
quence of compact submanifolds M with M = UMB, we can obviously
adjust ΛfΛ so that

c , u c 2 u u ς c M π

while

\JCjjCM-Mn.
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Then if U is any component of M — Mn, Fr U C Int M, and thus every
end of M is interior. •

THEOREM 17. Suppose the manifold M has exactly one end and that end
is interior. If f:M -> N is any continuous bijection {to a manifold N) which
is not a homeomorphism, then N is compact.

Proof The map / carries some component B of dM into Int N. It
follows that M has a iMike end (see [3]). Let V be a connected neighbor-
hood of f(B) that is separated by f(B) such that Fis compact. Let U be
the component of f'\V) not containing B. Then Uis not compact and is
in some sequence representing the end. It follows that f(M — U) U
/(U U B) presents N as a union of two compact sets. D

THEOREM 18. // [M, N9 /, g] holds, if every component of dM is
compact and if M is euclidean (i.e. if M embeds in some euclidean space as a
codimension zero submanifold), then M and N are homeomorphic.

Proof. Each component of dM separates the euclidean space R" in
which M embeds. Since N embeds in Int M, N also embeds in R", whence
/cannot carry a component of dM into Int N. D

THEOREM 19. Suppose [Λf, N9 f, g] holds and dM has only compact
components. Suppose further there is some set C, closed in Int M and having
codimension > 2, such that (Int M) — C embeds in R", where n = dim M.
Then M and N are homeomorphic.

Proof. First notice that the set C - g'\C Π g(Int N)) is a set in
IntiV enjoying exactly the properties of C in IntΛf. If there were a
component B of dM such that f(B) ClntiV, surely Int N - f(B) is
connected, whereas (Int N — C) — f(B) is not connected. Thus the
euclidean domain Int N — B is separated by a set of codimension > 2,
which is impossible. D

COROLLARY 20. Suppose [M, N9 /, g] holds and dM has only compact
components. If Int N has a residual set R (see [1]) of codimension >: 2, then
M and N are homeomorphic.
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