
PACIFIC JOURNAL OF MATHEMATICS
Vol. 111, No 2, 1984

AN INTERPOLATION THEOREM
AND ITS APPLICATIONS TO

POSITIVE OPERATORS

V. TOTIK

We answer a special case of a problem of Z. Ditzian. The obtained
estimate for the Peetre K functional is applied to the characterization of
functions for which \\TJ- f\\ = O(n~a) (0 < a < 1), where Tn is either
the Bernstein, Szasz-Mirakjan or Baskakov operator or their Kantoro-
vich-invariant and || || denotes either the Lp (p > 1) or the supremum
norm.

1. Let (a, b) be an interval, B - Lp(a, b) (1 <p < oo) or B -

C[a, b]9 φ a non-negative function on (a, b) and r > 1 an integer. Z.

Ditzian [6] estimated the Peetre K functional

Kr{tr

9f)= inf {\\f-g\\B + tr\\ψrg(r)\\B)
cont.

by norms of second order differences of / when φ had certain regularity

conditions. In connection with this he raised the problem if in the case

(*,*) = (0,1), B = L'(09l) ( 1 < / > < O O ) , Ψ(x) = xa ( α > 0 ) , / G 5 ,

(support/) c (0,3/4), the estimate

(1.1) />,«2V(A 0 ^ Kiλt1', f) ^ D2ωζr*(f, t)

holds, where

sup \ I \Δ2rf(x)rdx\ forO<α<l,

forα > 1,

and

\2

t f(χ) — f(x — h) — 7f(x) + fix 4- h)
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In §2 we justify this for the special case r — 1 in a more general
setting. Even this has many applications, e.g., the characterization of the
function classes

where the Kn are the Kantorovich polynomials, as well as other problems
concerning Kantorovich type operators. Finally, in the last section we
briefly discuss the analogous problem in the C-metric.

2. As we have already mentioned, Ditzian's result is complete when
φ behaves like xa (a > 0), however his "modulus of smoothness" is rather
complicated and the case of an infinite interval or an infinite singularity at
the endpoints is not covered. Ditzian also showed how the general case
can be reduced to that where φ has no singularity inside (a, b).

We want to estimate

(2.1) K{t\ f) = inf ( | |/- g\\Lf(atb) + /2||φ2g"ll W ) )
g abs. cont.

by norms of second differences of / which contain the function φ itself
and not another one of the same order. This will cause several problems,
but it turns out to be very fruitful in applications.

Since a linear substitution brings (a, b) to either (0,1), (0, oo) or
( — oo, oo), we may suppose (a, b) is (0,1), (0, oo) or ( — oo, oo). We also
assume φ is positive and twice continuously differentiable on (α, b). We
need further assumptions on φ around the endpoints, which we give for
a = 0 and b — oo with the agreement that similar conditions hold around
b — 1 or a — -oo. Thus, we suppose:

(1) φ is convex or concave in a right ("left") neighbourhood of a = 0
( 6 = o o ) ;

(2) there is a constant C > 2 such that in these neighbourhoods

and

x X

are satisfied;
(3) furthermore, if φ is concave in the mentioned neighbourhood of

def
a = 0 and φ(0 + 0) = lim^o+o φ(x) = 0, but φ(x)/x -» oo as x -» 0 +

0, then there is a γ < 1 such that φ(x)/xy decreases in a neighbourhood
of a = 0.



INTERPOLATION AND APPROXIMATION 449

For the sake of accuracy we give the analogue of (2) at b — 1:

(1/C)φ(x) < φ(y) < Cφ(x) for (l - x) < (1 - y) < 2(1 - x),

For example our assumptions are satisfied for the functions
xΛ(log(l + I x I))*, xa I log x f9 xa(l - x)β provided that at the second one
a Φ 1 when β > 0 and a = 0.

Let us agree that K denotes a constant not necessarily the same at
each occurrence, but C, C,, A and Ap always denote the following
constants:

(a) C is as in (2);
(b) A is the constant in

valid for all α' < b'J, f" E L'(β', ft') (see [6, Lemma 2.1]);
(c) Ax —2 and, for/? > 1, Ap is the constant in the maximal inequality

(Ap < 2(5p/(p - l)Y; see [14, p. 7]);
(d) finally, we set

(2.2) C}

Let ψ be a twice continuously differentiable function on (0, oo) with

+Ή
and 0 < ψ(x) < 1 otherwise. We may assume C is so large that |ψ' |< C
and I ψ" |< C are also satisfied.

For small h > 0 let

(2.4)

Λ* = in f (x |χ-Λφ( jc)>0} when (α, b) = (0, l )or(α,6) = (0,oo),

Λ* = inf{jc|Λ: + /2φ(Λ:)<0} when (α, 6) = (-00,00);

furthermore

Λ** = sup{jc|x + hφ(x) < 1} when (α, 6) = (0,1),

A** = sup{x|x — Λφ(x) > 0} when (a, b) — (0, 00) or ( — 00, 00).

By our assumptions φ(x)/x is monotone around the endpoints; hence for
small h, x± hφ(x) G (a, b) when x G (A*, A**), and, for (0, 6) = (0,1)
or (0, 00), (A*, A**) is the largest interval with this property. We also have
Aφ(A*) =|A*| in every case, Λφ(A**) = A** when (α, 6) = (0, 00) or
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(—00, oo), and hφ(h**) = 1 — A** when (a, b) = (0,1), provided A* and

A** are finite, respectively.

After these preliminaries we define, for small t (see (2.2)):

Ωo(/, 0 = Ω0(0 = sup
0<h<t

Ω<°>(0= sup | | Δ 2

A / | | L , ( A j 2 ( C | ή ) , + A ) ,
0<Λ<ί*

Q\l)(t) = sup llΔl

f-TΠ

where j = 0 or 1, /„ = (0,2(C,0*), and /, = (2(C,0* - 1,1). Finally with
the agreement /~ / = / ! £ / = 0, we put

(note that Ωj0) and Ωj1* (_/ = 1,2) are the same conditions around a — 0
and 6 = 1 , respectively).

Setting

0

0 ifφ(O + O)=O,

1 if φ(0 + 0) > 0,

= ίO ifφ(l-0) = 0,
1 [1 ifφ(l-0)>0

and

0 if lim
x->± oo

1 if lim
ψ(x)

< 00,
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we can now define for small t, say 0 < t < t0, our moduli of smoothness:

«(/, 0 = o0(0 + (l -

when (a, b) = (0,1);

«(/, /) = Ω0(0 + (1 - δo)Ωf(O + δ0Ωf (0 + β.Q^ίί)

when (Λ, Z?) = (0, oo);

and

«(/, 0 = o0(0 + W H O + β- or ̂ (O

when (a, b) = ( — oo, oo);

and for these we have

THEOREM 1. Lei φ, K(t, f) and ω be as above. There is a constant K
independent off e Lp(a, b) (1 < p < oo) αwd 0 < t < ί0

holds.

REMARKS. (1) If there is a constant K > 0 such that for h* < x < h**
we have 1 ± hφ'(x) > K, then we can write

QJ(0 = sup \\Δ?hφA\L'(k\h")

rather than Ωo(/). Also, in lieu of Ωf\t) and Qγ\t) we can always write

Ω*<°>(0= sup | | Δ 2

A / | | L , ( Λ ) f )

0<Λ<ί*

a n d

Λ ' λ 1 Λ / x = s u p \\Δ?hf"

(£ E (0,1) is fixed). The estimate of Theorem 1 holds just as well. Both of
these statements follow easily from the proof below.

The above remark enables us to write convenient bounds at the norms
in the applications, e.g. if (α, b) = (0,1) and φ(x) = /x(l — x), then
h* = Λ2/(l + A2), A** = 1/(1 + A2), but we shall write

« * ( / , * ) = sup | |Δ 2

Λ φ/| |^ ( Λ2 5 l_Λ 2 )+ sup | |Δ2

Λ/| |L, ( Λ i l_Λ )

0<Λ</ 2
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rather than co, and the estimate

(l/*)ω (/, 0 < K{t\ f) <

holds just as well as in Theorem 1.
(2) When (a, b) = (0,1) and φ(x) = xa (a > 0), then we obtain (1.1)

for r — 1 (see also Remark 1). The case r > 1 remains open.
(3) Ωί/}(0 and Ώ(

3

±0O\t) are not true moduli of smoothness. They
simply measure the growth of / around the endpoints (for the sake of
clarity we remark that in Ω^,

is the "orthogonal projection" of/onto the set of the linear functions, i.e.
lt is the only linear function for which

fli(t)Λ=[f(t)ώ and ίtli(t)Λ=ftf(t)ώ).'

We mention two corollaries which are by no means trivial.

COROLLARY 1. If φλ and φ2 are two functions satisfying our conditions
and if coφi and ωψi are the corresponding moduli of smoothness, then
<Pj < Kψ2 implies

ωφμ,t)<Kxωψi{f,t) (0<t<t0)

for all f E Lp(a, b) with Kx independent of f and t.

COROLLARY 2. ω(/, λt) < Kλ2ω(f, t) forλ>\ with K independent of
λ > 1, / G Lp(a, b) andQ<t< t0.

Proof of Theorem 1. First we show that K(t2, f) < Kω(f91).
(I) The case (a, b) = (0,1). It is enough to prove that for/ E Lp[0,1]

and (support/) C (0,3/4), we have K(t2, f) < Kω(f, t) (see [6, p. 310]).
(a) First let us suppose φ(0 + 0) = 0, φ increases and φ(x)/x de-

creases in the interval (0, d) and lim^o+o φ(x)/x — oo. In this case
δ0 = 0 and Λ* > 0 for all h > 0 (see (2.4)).

We show the existence of a function/ for which

(2.5) iiz-ZriUico-.T/g) +

\2C3A

provided / is sufficiently small (here K is independent of/and /).
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We may suppose 0 < t < 1/8. For the function

(2.6) ft(x) = \ fdu (\f{x + vφ(x)) + f(x - vφ(x))) dυ

we have (see Minkowski's inequality in [14, p. 271])

r , 7 / 8 ) ^ < ω(f, t),

and a simple calculation shows that, with φ = φ(x),

+ φ'2Δ2,ψf(x) + Γ2Δ2

ίφf(x)

t J0

-2f(x + uφ) + 2f(x ~ uφ)] du

Hence, using the fact that for {Cxtψ < x < 7/8 and sufficiently small

we have, by φ(>0 Φ O(y) (y -> 0),

(C,<)*2 (C,/)

we obtain from Minkowski's inequality

* \\Ψ //ΊL

< t2r2\%\\ft - / | | L , ( ( C | ί r , 7 / 8 )

where

- 2f(x + uφ) + 2f(x - uφ)) dul
\

Let g E L^O, 1) be a function the derivative of which is locally

absolutely continuous with φ2g" E Lp(0,1). Clearly,

(2.7) B(f)<B(f-g)
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B(f-g)<Z2( sup |
v(C,/)*<x<7/8

X6r sup| | (/- g)( +uψ)\\Lp((CιtrJ/S)

<.24C

where we used the fact that for the substitution p = x + uφ(x) we have

(2.8) dp = (1 + uφ'(x)) dx > 1 - *CΨ^^*

when |w|<r, | > x > ( C , O * and r is small enough. Also, for small ί,
I >x > (C,/)* and|ϋ |< tφ, we have

> x 1 -
CttJ-2'

x + v < x(l + tφ(x)/x) < 2x,

and, hence, by Taylor's formula,

f'g'(x)(2tφ - 4«φ) du

' t)) cfo — / (— tφ — v)g"(x + u) c/t)

-2 (uφ- Ό)g"(x + υ)dυ
•Ό

+ 2^ "Φ(-wφ - v)g"(x + υ)dυ\ du

M(φ2g";x)<6/3φ max
v)

<6C2t3M(φ2g";x) ( | > Λ > (C,/)*),
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where M(g; x) denotes the maximal function of g. This and the maximal
inequality give, for 1 < p < oo and small t,

(2.9) B(g) < 2 6C

For/> = 1,

<ίφ max — — - — - / / φ2(x + v) \g"{x + v) \ dv
\M<ίφ φz(χ + v) IJo\Jo

< C2tφφ~2Cdu f φ2(x ± τφ) \g"{x ±τφ)\φdτ

= C2t ί\t - τ)φ2(x ± τφ) \g"(x ± τφ) \ dτ
Jo

< C2t2 fφ2(x ± τφ) \ g"(x ± τφ) \ dτ,
Jo

and so, by Taylor's formula,

(2.10) B(g)<2-6C2t2( nwx Iφ'Wl)

II ft

X max / φ (x ± τφ) \g"(x ± rφ) I dτ
£.'((C,O*,7/8)

(φ2l*"O(*±i*(*))«fcrfτ

where at the last step we used (2.8).
By (2.7), (2.9) and (2.10)

B(f) < \2C3ApCTι{\\f- g\\L, + /2||φVΊI^)

Taking on the right side the infimum over all possible g, we obtain

for all sufficiently small /, and (2.5) has been verified.
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For the function

f/2

2{u + v))) du do,

we have, for small / (see e.g. [6, pp. 319-320]),

:= ω(f,t)),

and since in our case φ(x)/xΎ decreases around Λ: = 0 for some γ < 1, we

also have

= Ct2 2 ω(/)φ 2 C,/

<Ct2{t*) 2ω(t)φ2 C,/
(t*y

= ct2(t*y2ω(t)φ2(cy(]~Ύ)t*)

<Kt2(t*Γ2ω(t)Ψ

2(t*)<Ko>(t);

hence

(2 11) II f— /**!! ~\~ t IIQ? /*"ll

Now if ψ is the function of (2.3) and

gt(x) = ψ((C,/)*x)/*(x) + (1 -

(let/,(x) = 0 for I < Λ: < 1), then from (2.5) and (2.11) we obtain (using

[6, p. 310])

-

11/-& I

by which (see (2.2))

and the proof is complete.

\2C3An2AC3

0 + F
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(b) If φ(x)/x increases in a right neighbourhood of x = 0 or if
ψ(x)/x is bounded there, then A* = 0 for small h, and for/, as in (2.5) we
have, for small t,

(see the above proof).
Finally, if φ(0 + 0) > 0 we can also argue as above, except we must

use the linear function

/ = (0,2(^0*)

rather than/* (for/** our assumption gives

(II) The case (α, b) = (0, oo). Here we must show that for/ G Lp(0, oo)
and (support/) c (1, oo), we have K(t2, f) < Kω(f91) (see (I) and [6, p.
310]). If φ(x)/x is bounded as x -> oc then /z** = oc for small h and the
proof of (I)(a) holds here also (even /* need not be used). If, moreover,
φ(x)/x -> oo as x -> oo then A** < oo for all h. By the method of (I)(a) it
can be proved that

t

and since we also have

the proof can be completed as above.
The case (a,b) — {— oo,oc) can be treated similarly.
We now turn to the proof of ω(/, /) < KK(t2, / ) . The estimate of

Ω o ( Λ 0 = sup \\Δ2

hψf\\Lp{{Cιhy,{cλhγ*)

is standard: Let gt be chosen so that it satisfies

(2.12) | |/ - gt\\LP{aM + ί2||φ2g;ΊlL>(β,*)
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Considering (2.8), which holds for (C,0* ^ x ^ (C\*)**> we obtain, for
p > 1 from the maximal inequality (see also the considerations above),

sup

hφ/2

χ|g,"( +w

For j7 = 1 use Fubini's theorem (also compare (I) and [6, pp. 317-318]).
Around the endpoints the smoothness of / is also measured by other

terms. We shall estimate these only at a = 0 or b = oo since the cases
a — -oo ox b — 1 are similar.

The term

= sup |
0<Λ</*

occurs when φ is concave in a right neighbourhood of a — 0, φ(0 + 0) = 0
and \imx_^Q+Qφ(x)/x — oo. By our assumption in this case, φ(x)/xΎ is
decreasing around a — 0 for some γ < 1. For x < h,

•x+h/2 u

Ψ2(u)

rx + h/2 U

2Ύ , _ 2 γ

du - f — r — M yduΨ2(u)

<κ

<κ

h2'

Ψ2(h)

Ψ2(h) Ψ
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so the Holder inequality gives, for 0 < h < /*,

459

x + h/Ί
/

0 \Jx

{x-u)g'/{u)du dx

o \Jx

<κ Ί { *\ ^ 6f

2 / . \
dudx)

This and (2.12) yield

Q?>(f,t)<KK(t2,f),

exactly as in [6, p. 318].
If a = 0 and <p(0 + 0) > 0 then we have to estimate

Lp(f)

where / = (0,2(^0*). Let us consider the function gt from (2.12). Since
g" E L\I), we may assume the continuity of g't(x) at x = 0, i.e.

Using Hardy's inequality ([14, p. 272])

1
(2.13) lfh(τ)dτ

X J0 P ~
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and the fact that φ(x) ^ Kφ(u) for u < x < |I\, we obtain, for/? > 1,

^U,U) - sM - g;(o)x

<κ \du

L'(ί)

For p = 1 we obtain, similarly,

Nowφ 2 ( | / | )/ | / | 2 >
as

so

^ ( W ) I J W <

2, hence the two previous estimates can be written

^ K{\\f- gt\\p + t2\\φ2g'/\\p)

Finally, for fe = oo, φ(x)/x -» oo (x -* oo) we have to estimate

Since g,, g" E Lp(l, oo), Stein's inequality ([13]) gives g't E Lp(l, ao).
However, g't is uniformly continuous on (1, oo) (take into account that
φ2g," G Lp(\, oo)), hence lim,_«,&'(*) = 0. Similarly, l im^^g^x) = 0
and we obtain, from Hardy's inequality ([14, p. 272])

h{τ)dτ
Lp(0,oo)

^p\\xh(x)\\L,{0tao)
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that for small /,

tW L'((C|O""72,oo)

X * /2,oo)

x','(u)\du

* /2,oo)

where we used the fact that φ is convex for sufficiently large x (φ(x)/x

oo!), hence φ(x)/x increases for large x. Since

<p2G(c,0**)/ (He,/)**)2 * ̂ r 2 (Λ: > o),
it follows that

, 0 < Ω<3-)(/- gt, t) + o^)( & , r)

and the proof is complete.

In applications it will be important to supplement Theorem 1 with an

estimate of K(t2, f) by the second difference Δ^φ/ alone. Keeping the

above notation let

v(t) - v(f, t) = sup IIΔ^

and for this we can prove

THEOREM 2. With the assumptions of Theorem 1 let φ have limit zero at

finite endpoints of {a, b) ((a, b) = (0,1) or (0, oo)) and let φ(x)/x be

bounded at infinity ((a, b) = (0, oo) or ( - oo, oo)). Then there is a constant

K such that

holds for all f and 0 < t < t0.

Specially, K(t2, f) = O(ta) and υ(f, t) = O(ta) are equivalent for

a > 0 .
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REMARK. Our comment concerning the bounds in the norms in

Theorem 1 applies also to Theorem 2.

Proof. By Theorem 1 and Remark 1 we need only prove that

when / E Lp(0,1), (support /) C (0, f) and /* > 0 for t > 0 (take into

account that by assumption in this case there is a γ < 1 for which

φ(x)/xy decreases in a right neighbourhood of x = 0; thus φ\x) ^

y<p(x)/x there so 1 — hφ'(x) > 1 — hyφ(x)/x > 1 — γ (x > /**), and we

can apply Remark 1).

Let

K*{t\ f) - inf ( | | / - g | | L , ( ( C i 0 V / 8 ) + t2\\φ2g"\\LP((CιtrJ/S))

be the incomplete AΓ-functional. By the proof of Theorem 1

(2.14) K*(t2,f)<Kυ(f,t)

(see (2.6)-(2.7)) and, since

x - tψ(x) > (C,/)* - ^ -

(the last inequality comes from (2.4)), we obtain, as in the proof of

Theorem 1,

B(f) < \2C3ApCϊl(\\f- g

and, together with this,

B(f) < p

This and (2.14) yield (see also (2.2))

K*{t\ f) * Kυ{t) + \κ*\\£f, f

where we used the fact that K*(t9 /) < | |/ | | L ^ for all t.
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Now

t* = tφ(t*) < tφ(x) for x > (Cjί)*

so

is also satisfied and this easily implies

(2.15) l|Δ?./||L,((Clo +r .7/8-/ ) ^

By the assumptions on φ there is a γ < 1 such that φ(x)/xy decreases
around x — 0, and for this γ we have

) γ) > 2/(φ((2ί)*)/ ((2/)*)Y)

i.e.

This, (2.15) and the continuity of the mapping t -> t* imply there is an L
and a K such that

for all t0 > ί > 0.
Since

one can easily get from the previous estimate that

(2.16)

also holds with K independent of small /, say t < t0.
Now let

(2.17) w(t)= supJ|Δ2

Λ/||L,(Λ)1/2).

Since

k X • 2Δ2

A/2/(x)
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it follows readily from (2.16)-(2.17) that

3 sup | |Δ 2

Λ / 2 / | | L , ( M / 4 )

Kv(t).

Iterating this and taking into account t h a t / E Lp(a, b) implies w(t/2n)
= o(\) (n -* oo), we obtain

and the proof is over.

3. As a first application let us consider the Kantorovich polynomials

KJ(x)= Σ

where

These can be used to approximate a function/ G Lp(09 l ) ( l < / ? < o o ) i n
the L^-norm and the saturation properties of this approximation were
settled by Maier [9, 10] and Riemenschneider [12]. It has been an open
problem for some years to characterize those functions / for which
\\Knf-f\\LP = O{n~a) (0 < a < 1) (see [2, 3, 4, 5, 7]). We solved this
characterization problem in [18,19] and now we give a somewhat different
characterization by the aid of Theorem 1. This new approach can be
applied to other operators (see the subsequent sections) and it treats the
cases p = 1 and p > 1 simultaneously (our earlier method was very
different in these two cases, compare [18] and [19]).

Letφ(x) = /x(l - x),
D — {s\g Ξ Lp(0,1), g' absolutely continuous,

and

) = {x(l-x)g".(x),g(x))9

Then D C L*(0,1) is a linear dense set and S: D -> L*(0,1) X Lp(091) is
a linear operator. We set

(3.1) K{t\ f) = inf ( | |/- g\\ + t2(\\g\\p + HφVΊI J )
g
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and notice that this K differs from the K functional (2.1) associated with φ

only by ^HgH^. Since in (3.1) we may assume \\g\\p ^ 211/H ,̂ we obtain

that K(t2, f) = O(t2a) (K from (3.1)) and K(t2, f) = O(t2a) (K from
(2.1)) are equivalent for 0 < a < 1. If we show that

(3.2)

(3.3)

and

(3.4)

\\κnf-f\\p<Kn-ι\\sf\\p

\\SKn(f)\\p<Kn\\f\\p

\\SKn(f)\\p^K\\Sf\\

(/EL'),

are satisfied with a constant K depending only on /?, then a result of

Grundmann [8] shows that, for 0 < α < 1, \\Knf-f\\p = O(n~a) and

K(t2i f) — O(t2a) are equivalent. Combining this with Theorem 2 and

the following remark, we obtain

THEOREM 3. Let 1 </> < oo, 0 < a < 1 and φ(x) =

/or α function f E Z/(0,1) w
- x)

(3.5)

z/

of Theorem 3. (3.3) and (3.4) can be proved by a direct

calculation (see e.g. [17, 18]), so we justify only (3.2), the strongest of the

estimates (3.2)-(3.4).

First we show that

Let /i(x)=/(Λ;)ψ(3jc), where ψ is defined in (2.3). Since f(x) =

f(x)ψ(3x) + f(x)(\ — Ψ(3JC)) and | | /ΊIL'(I/3,2/3) — ^Πl̂ /H/? ( s e e [6, Lemma

2.1]), by symmetry it is enough to show | |/I'|IL'(O,I/3) — K\\Sf\\p. lfhG

L*(0,1) (l/p + l/q= 1) with compact support in (0,3/4), then an

integration by parts gives

(3.7) \fj[{x)h{x)dx dx

h{τ)dτ
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where at the last step we also used the Hardy inequality (2.13). Since
h G 1^(0,1) and (support h) C (0, 3/4) was arbitrary, (3.7) yields

\\f[\\p < K\\^f[% < K\\φ2f"\\LP{0Λ/3) + (max|ψ"

+ (2max|ψ'|)ll/ΊLw3,2/3)

by which (3.6) is proved.
Now let

be the nth Bernstein polynomial of/. By (3.6) and Jensen's inequality (put
/ ' = 0 outside [0,1]),

\\KJ-BJ\\p

D-*/» fu

ff(k , \ , , \

K K

where we used the equality

Hence it is enough to prove that for/ G 2) we have

(3.8) \\BJ-f\\p^*\\Sf\\p.

By Taylor's formula

f{t) = f(x) + f'(x)(t - x)

2J0 (x + τ)(l - x - τ)
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N o w for τ G ( 0 , ί - x), t,x E (0,1), we have

467

- X - T ! ' - * !
*(!-*)*

so, since Bn(t — x; x) = 0, it follows that

\BJ{x) - f{x)\

For p > 1 we use the maximal function M( ) and the maximal
inequality to obtain

= f
where we also used the fact that

^ f \\φf"\\p =£ f

(,£[0,1]).

For/? = 1 Fubini's theorem yields (putj^ _ι = 0)

"M(l - u) |/"(u) I

= Σ

s f IIS/11,...

A similar estimate holds on the interval ( i, 1) and the proof is complete.
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4. Generalizations. The method of the previous section solves the

characterization problem for more "wild" operators than the "regular"

Kantorovich ones; furthermore it enables us to give general direct and

indirect estimates for the order of Kantorovich approximation (cf. [11]).

First let us consider the operators

= Σ
1n,k\JIn

f(u)du)pnΛ(x) ( x £ [ 0 , l ] ) ,
!

where [In k}n=ι 2, o<^<« *s a system of intervals C [0,1] with centers at

the numbers [xn,k}n=\χ .. ,o<k<n If we assume:

(i) for each n [xn k}
n

k=0 constitutes an arithmetical sequence (i.e.

*n,*+i =i(χ

n,k + xn,k+2)Λ = QA, . ,n - 2), and

(ii) there is a constant K such that for all n and k,

then K^ behaves similarly as Kn, namely \\K*f —f\\LP(0Λ) = O(n~a) is

equivalent to (3.5) (/ G Lp(091), 1 </? < oo, 0 < a < 1). An example for

K* is the operator

\)/(n + 2)- l/2(n

We now turn to the estimate of \\Knf — f\\Lp(0Λy

f(u)du\pnk(x).

THEOREM 4. Let 1 </? < 00,/G L^O, 1), Ψ(Λ ) = /x(l - x ) ,

ω ( / , δ ) = sup

(i)

ω

(ii)/or γ > 0 ,

i τ
 Λ=I

REMARK. If 0 < α < 1 and α + γ < 1, then we obtain from (ii) that

= # ( « " " ) implies

1
k~Ύ~a<Kn~a;

k=\
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hence Theorem 4 contains Theorem 3 (see Theorems 1 and 2).

Proof, (i) follows easily from the results of the previous sections: with

a suitable g

ω

In the proof of (ii) let L be a constant for which

\\SKJ\\p <L\\Sf\\p (Λ = 1 , 2 , . . . )

is satisfied for every n and/ E D (see (3.4)), M — L 1 / γ and let kt = /:, „ be

defined by

M M n/M' + l<k<n/M'

Here i = 0,1,. . . , / „ , where /„ is the first integer with n/M'n+λ < 1. Now

by Theorem 1 and (3.3)

\\\SKkKkJ\\p

f '"+ f Σ L%EkJf) + ^

Σ

n i M'
-Λ/'^ΊI/II,

and the proof is complete.
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5. Let us consider the Szasz-Mirakjan operators

and their Kantorovich variant (see [17])

f
Jk/n

Let ψ(x) = ]/x9

D= {/|/EL*(0,oo)J'abs.cont.,x/"(x)

and

Sf(x) = (xf"(x), fix)), \\Sf\\p = ||φ2/Ί

Exactly as in §3 it is enough to justify the analogues of (3.2)-(3.4) for the

verification of

THEOREM 5. Let φ(x) = /x, / E Lp(0, oo), 1 </? < oo, 0 < a < 1.

Then

= O{n-«) iff | | Δ 2

Λ φ / | | L , ( Λ 2 ) 0 0 )

Proof. Again we prove only

(5.1) \\s;f -/l l,^f \\Sf\\p

(see also [17]). Using Stein's inequality ([13])

.oo) ^ K)/\\g\\p\\g"\\P ^

the inequality \\f'\\p ^ ^115/1^ can be shown as the analogue (3.6) in §3.

This reduces (5.1) to

(see also §3), the proof of which coincides with that of (3.8) when/? > 1.

The case/? = 1, however, requires a finer consideration, which we give

below. By the method of §3 the problem is the estimation of

=o
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Here

k
x

n

and since the terms under the integral sign are non-negative, we can write
(5.2) as

k/n

K/n

Γu\f"(u)\Γsn0(x)dxdu

s {

where at the last step we used the fact that

and

(k,n = 1,2,...).

Since jo

u[(k/n — x)/x]5/2^(x) ί/x increases for u < A:/« and decreases for
w > /c/w, furthermore j™[{k/n — x)/x]sn k{x) dx = 0, we have

κ/n x , v / - ^ A \

Taking into account that, for fixed u, (k/n) — x is non-negative for x < u
and large enough k and that

/c/π — x 0 — x
Sn(t -χ;χ)= sn 0(χ)9

k=\
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we can continue the above equality as

f™u\r{u)\[j™snv{x)dx)du

+ u\f"(u)\ί[ Σ ^Z
J0 J0 \k=\ Xk=\

Γ= Γu\f"(u)\Γsn#(x)dx

= ±-Γu\f"(u)\du
n Jo

and the proof is complete.

6. Let

be the n th Baskakov operator and

*?/(*)= 1 [nfk+X)/nf(u)du)bn,k{x)
k = 0 \ Jk/n I

its Kantorovich-variant. For this we have

THEOREM 6. Let φ(x) = /x(l + x), 1 <p < oc and 0 < a < 1. For

G LP(Q, oo) the statements

equivalent.

Proof. We follow the arguments of the previous points. Since the

analogues of (3.3) and (3.4) for the operators V* can be proved easily (the

computations are very similar to those in [17, 18] — see also [16]), we need

only consider the estimate
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where

= {/|/eL'(0,oo),/'abs.cont.,x(l +

Sf(χ) = (χ(l + χ)f"(χ), f(χ))

and

By Taylor's formula

Λt)=f(x)+f'(x)(t-χ)

Jo (x + τ)(l

and here for T E (0, t — x),

L*(0,oo)},

τ ) r { x + τ )

(6.1)
— X — 7

(x

Thus,

\Kf(χ)-f(χ)\

f or t > -j or x < 1,

where Λf( ) is the maximal function, and where we used that Vn(t — x; x)
= 0 and, by [16, Lemma 4],
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Thus, for/? > 1,

V. TOTIK

; )\\p^*\\Sf\\P

For/? = 1 let

lnx/2]

UJ(x)= Σ f\±)bn.k
k—0

By (6.1)

C\VJ{x) -f(x)\dx+ Γ\VJ(x) - UJ(x) -f(x)\dx
•Ό Jι

^ 1 + «)\Π«)\dubHιk(χ),

and the method used in the previous section shows the right-hand side is
atmost(A/Λ)||5/||,.

Thus it remains to prove

or, by ||/ΊL'(o,oo) ^ K\\Sf\\x (see §3),

(6.2) Γ "i ( Λ / Λ + 1 ) / V ( « ) | Λ ) ^ Λ W Λ < ^ | | S / | | P

' 'I A: = Q ^ k/n '

The left-hand side is

Σ (n
1,2 k/n)

bn,k(
x)dx>

and if we show that

r0 0

'max(l,2*:/«)

then we obtain the bound

K
(6.3) / bnΛ{x)dx<-2 (k = 0,l,2,...),

S K

Σ -
for the left side of (6.2), which already proves (6.2) because ||/||Li(0oo) —

\\Sf\\x.
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In (6.3) x > 2k/n, hence

bnΛ{x) = {n + k- \){n - \)x[n + \ ~ 2)xk~\\ + x)

<-3(n + k

475

-n-k

n- 1 + k - 1
k

so, with K = max(l, 2k/n);

By Stirling's formula we obtain for k > [n/2\

— 1 + —
n \ n

n + k)/k

and, forO<A:<[«/2],

(\+(n/2)/(n + n/2)){nA

1
1 + 1/6

n + k — 2\Ί-n-k+ι

~ 2 J 2 - Λ -[ n

hn/2 3/2

because (n + k — 1)&,,_, ̂ .(1) increases for r̂ < [«/2].
We have proved (6.3) and, together with this, also Theorem 6.
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7. Finally, we sketch briefly the continuous case. Let B be any of the
Banach spaces C[α, b], C[a, b), C(α, b] or C(α, b) with supremum norm
|| ||. In the first three cases we can identify B with the subspace of C(α, b)
consisting of functions having limit at a and ft, at a, and at ft, respectively.
This enables us to work on {a, ft).

We keep the notations and simplifications introduced in §2. In the
continuous case we need one more assumption on φ: if b = oo and
]ίmx_o0φ(x)/x = oo, then there is a γ > 1 such that φ(x)/xy /Όo in a
neighborhood of b — oo (naturally a similar condition must hold around
-oo when a = -oo).

For/ e B let

K{t2

9f) = inf
g abs. cont.

We define for small t\

Ω0(ί) - sup H
0<Λ</

*(r) = sup | | Δ 2

A φ / | | C ( 3 Λ V 2 5 2 Λ *
0h

-17,1/2)

V 3 ) ,

where / = 0 or 1, 70 = (0,2/ ), 7, = (2/* - 1,1),

and

With

Ω<2«>(ί)= sup \f(x)-f(y)\
x,y>t**/2

= sup

0 ifφ(O + O) < oo, _ fO i f φ ( l - 0 ) < o o ,

1 ifφ(O + O) = oo,' Y l ~ | l i f φ ( l - 0 ) = oo,

and

Y±oo ~~ "

0 if

! if
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we can define our moduli of smoothness as

when (a, b) = (0,1);

ω(f, r) = ( l - γ jΩ 0 (0 + yJ2*(0 + γoΩΓ(O + 1^0)

when (a, b) = (0, oo);

and

«(/, /) = (l - γJO - γ_ JΩ0(0 + (ϊoo + y-oo - YooV-JW

when (α, 6) = ( — 00,00);

for these we have

THEOREM 7. Let B, φ, K and ω be as above and f G 5. Γ/z^ there is a

constant K independent of f and t (0 < / < ί0)

The proof is similar to that of [6, Theorem 3.1]. We omit the details.
Just for the sake of illustration let us prove the estimate ίl^°\t) <
KK(t2, / ) . The term Ω^oo) occurs in ω when b = 00 and limx_^O0φ(x)/x =

00. By our assumption there is a γ > 1 such that φ(x)/xΎ increases for
large x9 say for x > x0. Let gt be given by

\\f-gt\\ + t2\\φ2g','\\<2K{t2,f).

We have for £ > x > x0,

(7.1) i g ; w - g ; ( ^ / ^ f τ i Φ 2 ( ^
^x φ ( M ) W2 <P ( * ) x

so φr has a limit at infinity. Since gt is bounded on (1, 00) we necessarily

have lim^oo g/(f) = 0, by which (see (7.1))

\g;(x) |< 2 ( v φ 2 ( i ) ) ( ^ ( / 2 , / ) / / 2 ) (x ^ χ0)
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Thus, ίoτy > x > \t* > x0,

φ2

Ψ2 φ2(x)

(t*f
t2 <p2{t*)

KK{t2,f),

so

\f(x) -/( j ) |<2 | | /- g,\\ + \g,(χ) - gt(y)\

as we stated above.
Now let us apply Theorem 6 to the following positive linear operators.

Let Tn be any of the operators:

Kf{χ)=
/c — U

, /eC[0,oo),

k(\+xy"-k, /ec[o,α>),

i.e. any of the Bernstein, Szasz-Mirakjan and Baskakov operators (see [1,
15,16]). We put

ωτ(f, δ) = sup \
0<Λ=£δ

ωτ(f,δ)= sup | |Δ 2

A φ / | | C ( Λ 2 i O O ) ,

and

ωτ(f9 δ) - sup ) , φ(χ) x) , Γπ - Kπ,
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respectively, and for these we have

THEOREM 8. Let Tn and ω = ωτ be as above and En(f) = Eξ(f) =
\\f-TJ\\.Then

(i)

En(f)<Kω(f,l/fi),

(ii) for γ > 0 ,

ω

COROLLARY 3. | |7;/--/| | = o(l) if and only ifω(f, S) = o(l) (δ -> 0).

COROLLARY 4. For 0 < a < 1, | | 7 ; / - / | | = O(n~tt) (n -* oo) if and
only ifω(f, 8) = O(δ2a) (8 -» 0).

REMARKS. (1) When Tn — Bn Corollary 3 is simply the statement
Pn/~/llc[o,i] = °0) f o r every/G C[0,1]. However in the cases Tn = Sn

or Tn= Vn, Corollary 3 characterizes those bounded functions for which
Tnf{x) — f(x) = o(\) uniformly on the positive real line (see also [15,
16]).

(2) For Tn = Bn Corollary 4 was also proved by Ditzian [6].
(3) Since, e.g.,

sup l|Δ2

Aφ/||C(ή2>00) < Kh2a, φ(x) = {x',
0<Λ<δ

is equivalent to

φ2*(x)\Δ2

h(f,x)\<Kh2« (χ>Λ),

we obtain that Snf — f= O(n~a) is equivalent to

xa\f(x - A) - 2/(x) +f(x + h) |< Kh2a (x > h)

(cf. [15]).
(4) The Meyer-Kόnig and Zeller operators (see [16]) could be treated

similarly.
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The proof of Theorem 8 uses Theorem 7 and the arguments applied in
§4, namely if we put

D = {/|/e C[θ,1],/' abs. cont., |x(l - x)f"(x) |< K),

Sf(x) = x(\ - x)f'(x) (Tn = Bn),

D = {/|/ £ C[Q, oo),/' abs. cont., \xf"(x) |< K),

Sf(x) = xf'(x) (Tn = SJ,

and

D = {/|/ e C[θ, oo),/' abs. cont., |x(l + *)/"(*) |< K],

Sf(x) = x(\ + x)f"(x) (Tn=Vn),

respectively, then the estimates

\\TJ\\^K\\f\\, \\STJ\\^Kn\\f\\ (fGB)

and

| | Γ n / - / | | < | | | 5 /||, ||S7;/||<tf||S/|| (fED)

are satisfied in every case. We omit the details.
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