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^-GENERATOR IDEALS IN PRUFER DOMAINS

RICHARD G. SWAN

Heitmann has shown that a finitely generated ideal in a Pruίer
domain of Krull dimension n needs at most n + 1 generators. I will show
here that this result is, in fact, the best possible. The same is true for
Heitmann's stability theorems.

These results, in particular, give additional counterexamples to the old
question of whether a finitely generated ideal in a Prϋfer domain can be
generated by 2 elements [GH].1 The first such example was given by
Schϋlting [S] who found a 2-dimensional Prϋfer domain with an ideal
requiring 3 generators. His example is included in those discussed here,
although the method of proof is very different.

A Prϋfer domain may be characterized as a commutative integral
domain in which every finitely generated ideal is invertible. Equivalently,
it is a commutative integral domain R such that the localization RP at any
prime ideal is a valuation ring [KC, Th. 64]. A very thorough discussion of
Prϋfer rings is given in [G]. A noetherian Prϋfer domain is a Dedekind
ring, so it is natural to ask whether a Prϋfer ring has properties similar to
those of a Dedekind ring. The 2 generator question presumably first arose
in this way. In some respects, a Prϋfer ring behaves very much like a
Dedekind ring. For example, every finitely generated torsion-free module
is projective and a direct sum of ideals [CE, Ch. I, Prop. 6.1]. In addition,
cancellation holds for such modules [KA, p. 75]. The results obtained here,
however, show that in other aspects, a Prϋfer ring behaves like a general
commutative domain.

Let μ(M) denote the least number of generators of a module M.

THEOREM 1. For any integer n > 1, there is a Prύfer domain R of Krull

dimension n and an ideal In of R with μ(In) — n + 1.

THEOREM 2. There is a Prϋfer domain R such that for every integer

n >: 0 there is an ideal In of R with μ{In) — n + 1.

1 The question was first raised by Gilmer around 1964.
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The construction of these examples is quite elementary but the proof
that μ(In) = n + 1 requires topological methods. Aside from the theory
of Stiefel-Whitney classes used in [SV], the main topological fact needed is
the existence of a fundamental class for algebraic spaces proved by Borel
and Haefliger [BH]. The results of [BH] are considerably more general and
the proofs assume familiarity with sheaves and the Borel-Moore homology
theory. In order to make the present paper more accessible to non-topolo-
gists, I have avoided using the results of [BH] and have instead repeated
the essential steps of the proof in Lemmas 5, 6, 8, 10, and 11, following
the suggestions in [BH, §3.8]. Thus only a knowledge of the basic
properties of Cech cohomology [ES] will be needed. An algebraic ap-
proach to the homology theory of real algebraic varieties has been
developed by Delfs and Knebusch [DK]. Gilmer [GG] has given a very
simple proof of the result of [SV, Example 2]. However, I see no obvious
way to extend this argument to cover the cases discussed here.

In §5 I will show that Heitmann's stability results for Prϋfer rings are
also the best possible. Finally, in §6, I will discuss the relation to
Schϋlting's example.

I would like to thank R. Gilmer, R. Heitmann, I. Kaplansky, and
T.-Y. Lam for suggesting a number of improvements to an earlier version
of this paper and for references to previous work on the problem.

1. The algebraic construction. The basic construction was intro-
duced by Dress [D] and generalized by Gilmer [G2]. A modified form of it
was used by Schϋlting [S]. Further discussion is given in §6. The construc-
tion is based on the following lemma, a variant of a result of Dress [D]. It
gives a sufficient condition for a ring to be a Prϋfer ring. The condition is
not necessary, e.g., let R be Z or a polynomial ring over a field. The last
statement in the lemma was pointed out to me by Heitmann.

LEMMA 1. Let R be a commutative integral domain with quotient field K
satisfying:

(*) If a, bERanda2 + b2^=0 then a\a2 + b2)'1 and ab(a2 + b2)'1

lie in R.
Then R is a Prϋfer domain. If yj- 1 E K, then R = K.

Since the elements in (*) are homogeneous of degree 0, it would be
equivalent to require (*) for all a, b E X with a2 + b2 φ 0,, or to require
(1 + JC2)-1, x(l + x2yλ E R for all x φ± S^T in K.
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Proof. If i = v^ΠΓ G K then (1 + ix){\ + x2)'x = (1 - /x)"1 can be

anything in K except 0 or 1/2 so i? = K. Therefore we can assume that

]/— 1 ξ£ AT. Let P be a prime ideal of R. We must show that RP is a

valuation ring, i.e. if w E ΛΓ then u or w"1 lies in i?P. Since / — T $ i£,

1 + u2 φ 0, so x = (1 + w2)"1 and j> = w(l + u2)~x lie in /? and so does

1 — x — u2(\ + u2γλ. One of x9 1 — x is not in P so one of yx~ι = w,

Now let A be any commutative domain with quotient field K. Define

A$ to be the result of adjoining (1 + x2)~x and x{\ + x2)~λ to A for all

x φ ± / — T in # . Clearly 4̂# is the smallest subring of K containing A

which satisfies (*) of Lemma 1. Therefore A% is a Prϋfer domain. The

following alternative description of A% will be useful. Let E(A) be the

collection of subrings B of K such that there is a finite sequence A — Bo C

BX c c Bm = 5 with Λ / + I = £ , K 2 K 2 + &,2)"1, * A K 2 + ̂ 2)"1L
where α p Z?z E 5Z and a2 + Z?2 T^ 0. Then E(A) is filtered by inclusion and

A*= U B over all 5

REMARK. Lam pointed out that if char K Φ 2 it would suffice to

adjoin only (1 + x2)'x for all x E Jί but then the analogue of Lemma 9

would be false, e.g. for A — R[ j , z] and x ^ ^ z " 1 . This follows from

Dress' observation [D] that 2x{\ + x2)~x = (y2 - z2)(y2 + z 2 )" 1 with

y — x + 1 and z — x — 1. Another approach is given in [LC, 11.4].

For Theorem 1 we start with Bn — R[x0, xl9... ,xn]/(Σxf — 1), let An

be the R-subalgebra of Bn generated by all xtxj9 and take R—A\. The

ideal In is (XQ, Λ:OJC15. . ,9xoxn). The ring 4̂W was considered in [SV,

Example 2]. It is clearly a domain for n > 1 since Σx 2 — 1 is irreducible.

It is easy to see that ]/— 1 does not lie in the quotient field K of An. In

fact K is the pure transcendental extension R(x 1xό 1,. . . ^ ^ Q 1 ) since

XQ2 — 1 + Σix^Q1)2. By [ST, Th. 5.4], dim R<n. The reverse inequality

will follow from Heitmann's result [H, Th. 3.1] once we show that

For Theorem 2 we start with the tensor product A of all the An for

n > 1. In other words, let C = R[xz

(w); 0 < / < w, w > 1], let / C C be the

ideal generated by all Ί^x\n)1 - 1, and let A C 5 = C// be the R-subal-

gebra generated by all x\n)xγ\ Then set R = A$ with In =

(x^ ) 2 , x^^ l ' 1 ^. . . jjc^jcj/1*). Here also A is a domain whose quotient field

AT does not contain ]/— 1 since 4̂ is a subring of i£ = R(x^n)x^~ι; 1 < /

< π ) , a pure transcendental extension of R. Note that 4̂ can also be

obtained as the union of the subrings A(N) = Ax ® R ® R ^4^. The

following observation is useful in this situation.
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LEMMA 2. If A is the filtered union of subrings Aa then A$ is the filtered

union of the A\ and therefore also of the B E U E(Aa).

Proof. If Aa C Aβ then A^CA^. Therefore \JA\ is a filtered union
and lies in A*. The reverse inclusion follows from the fact that ^A\
satisfies (*) of Lemma 1 and A* is the smallest such ring containing A.

2. Real algebraic varieties. We recall here some standard facts of
real algebraic geometry. If A is a commutative R-algebra, let V(A) =
HomR_alg(yί,R). Each a E A determines a real valued function a on V(A)
by the Gelfand representation ά(a) = a(a). We give V(A) the coarsest
topology such that all a are continuous. It is clear that V is then a
contravariant functor from R-algebras to topological spaces. The Gelfand
representation gives a natural R-algebra map A -* C(V(A))9 where C
denotes the ring of continuous real valued functions. These definitions are
identical with those used for Banach algebras [L] with R replacing C.
However V(A) will usually not be compact if A is not a Banach algebra.

If A — R[JC,,. .. ,*„]/(/„. . . ,/m), all a will be continuous if jc,,... 9xn

are. It follows that (xl9...,xn): F(^4) -> R" gives a homeomorphism of
F(Λ) onto the real algebraic set {a E R" \fλ{a) = = /m(α) = 0}.

Recall that Dubois and Efroymson [DE] define a ring A to be
(formally) real if Σaf = 0, αz E Λ, implies α, = 0 for all /.

LEMMA 3 [DE]. Let A be of finite type over R. Then A -> C(V(A)) is
injective if and only if A is real.

A simple proof is given in [ST, Cor. 10.5c]. Only the special case
proved in [ST, Th. 10.4] will be needed here. Some restriction on A is
clearly needed, e.g. V(R(x)) = 0.

Note that if A is a domain with quotient field K, then A is real if and
only if K is: If Σaf = 0 in K we need only clear denominators.

Suppose X C W is defined by equations /, = = fm = 0, where the
f are continuously differentiable functions. For x E X, let Jx denote the
Jacobian matrix (df/dxj) at x. Let r = maxrank(J^) over x E X and set
Xτcg = {x E X\ rank(/J = r) and Xsing = {x <Ξ X\ rank(/x) < r}. The
following is a well-known result of Whitney [W].

L E M M A 4. [W]. Xκg is an n-r manifold.

Proof. Suppose 0 E Xreg and the principal r X r minor of Jx is
non-zero. By the implicit function theorem, / ) , . . . ,fr9 xr+\>. -,xn are local
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coordinates at 0. Therefore, in a neighborhood of 0, we can assume f = xt

for i < r. Since rank( Jx) < r, we see that θ/ /θx,- = 0 for y > r, so the f
depend only on xλ,... 9χr9 and X, near 0, is given by xλ = = x r = 0.

The next two lemmas (modulo Lemma 3) were proved in [BH] by
complexifying.

LEMMA 5. Let A be a d-dimensional domain of finite type over R. Then
dim V{A) < d with equality if and only if A is real.

Proof. Let K be the quotient field of A. Then d = transc(ΛΓ/R) [AK,
Ch. Ill, Th. 2.6ii]. Write A = R[xl9.. . ,*„]/(/„.. . ,/„) and let / =
(dfydXj) as a matrix over ΛL Then / is the function x y-*Jx considered
above. By [R, Ch. Ill, §2, p. 31] / is a presentation matrix for ΏA/R as an
^4-module. Therefore, as a matrix over K, it presents K ®^ ΏA/R = Ώκ/R

[R, Ch. Ill, §2, Prop. 4]. This is a vector space of dimension d over K by
[ZS, Ch. II, §17, Th. 41] (since %/ΈL = Hom^(Ω^ / R, K)). It follows that
rank(/) = n — d, so rank(/x) < n — d for x E X If ^ is real, Lemma 3
shows that maxrank^) = n — d so dim F(^4)reg = d. If A is not real,
K(i4) = V(A/I\ where / is the kernel of A -> C(K(i4)). Since dim yί// <
dim Λ, we can use induction on d. If Λί is real, let / be the ideal of A
generated by the n — d X n — d minors of /. Then F(^) s i n g = V(A/I).
By induction on d, dim V(A)sing < d. It follows that dim V(A) = d, using
either the fact that V(A) is triangulable [fc], [DK], or by covering V(A)τeg

with a countable number of closed d-cells and using the sum theorem for
dimension [HW].

LEMMA 6. Let A be as in lemma 5 and real. Then dim F(^4)sing < d =
dim A. If A is normal, dim F(Λl)sing < d — 2.

Proof. The first statement was proved in the proof of Lemma 5. As in
that proof, let / be the ideal of A generated by the n — d X n — d minors
of / so that K(Λ)sing = V{A/I). It will suffice to show that dim A/I <
d - 2 or, by [AK, Ch. Ill, Th. 2.6iii], that no prime ideal of height 1
contains /. Suppose there is such a prime ideal P. Since A is normal, AP is
a discrete valuation ring and PP — (g). If L = A?/P? is the residue field,
the matrix /', obtained from / by adjoining the row (3g/3xl9...,dg/dxn)
and reducing mod PP, gives a presentation for Ω L / R [R, Ch. Ill, §2, Prop.
7]. Since P D /, rank(/mod P)<n- d~ 1, so / ' has rank <n- d.
Therefore dimL ΩL / R > d, contradicting the fact that transc(L/R) =
dim A/P — d— 1 since L is the quotient field of A /P.
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LEMMA 7. Let A be a real domain of finite type over R. Let a E A be

non-zero. Then {x E V(A)τtg\ά(x) φ 0} is dense in V(A)Teg.

Note that {x E V(A)\ά(x) Φ 0} = K(ΛΛ), so the set in question is

g Π V(Aa). It follows that V(A)τcg Π K(ΛJ ̂  0 . The non-con-

nected curvej>2 = X2(JC — 1) [M, p. 12] with a — x shows that V(Aa) need

not be dense in V(A).

Proof Clearly V(A) = V(Aa) U V(A/(a)) and

dim A/(a) < dim 4̂ = dim V{A) — d. If the conclusion is false, there is a

non-empty open set U of K(^) r e g with ί7 Π V(Aa) = 0. Therefore, ί/ C

V(A/(a)), but this is impossible since £/is a ^/-manifold.

The following result is a classical fact.

LEMMA S.IfBDA is finite over A then V(B) -> V(A) is proper.
p

In other words, p~\C) is compact if C is. In particular, V(B) is

compact if V(A) is.

Proof. It is enough to look at the case B = A[x] where x E ί satisfies

x" + tfjx""1 + +an = 0, αz E Λ(. Let C C V(A) be compact. Since

the άι are bounded on C, x is bounded on /?" !(C), so p~\C) is a closed

subset of C X {x E R11 x | < M) for some large M < oo.

A similar result holds for the construction used in §1.

LEMMA 9. Le/ A be a domain with quotient field K. Let a, b E A with

a2 + b2 φ 0. Let x = a\a2 + b2)~\ y = ab(a2 + b2)~\ and B = A[x, y]

C K. Then V(B) -> V(A) is proper. Therefore, V(B) -> V(A) is proper for

B E E{A).

Proof. Since (x - 1/2)2 + y2 = 1/4, F ( £ ) is a closed subset of

V(A) X S, where S is the circle defined by this equation.

3. Homological properties. Throughout this paper, H* denotes Cech

cohomology with coefficient group Z/2Z.

Recall that a relative ^-manifold is a compact pair (X, A) such that

X — A is an τ?-manifold.

LEMMA 10. Let (X, A) be a relative n-manifold and let U C X — A be

an open n-cell. Then Hn(X, X - U) -> Hn(X9 A) is injective. If X - A is

connected, this map is an isomorphism.
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This is an immediate consequence of Poincare-Lefschetz duality. An

elementary proof for X — A connected is given in [ES, Chapter XI,

Theorem 6.8iv]. If X — A has components Ua9 then Hn(X, A) =

®Hn(X, X - Ua) by [ES, Chapter X, Exercise B3] (cf. [ES, Chapter XI,

Theorem 6.10]) and the required result follows.

The following lemma uses an argument from [BH].

LEMMA 11. Let A be a real normal domain of finite type over R with

dim A = n. Assume X — V(A) is compact. Let U C X be an n-celL Then

Hn{X, X - U) -> Hn{X) is injective.

Proof Since dim Xs ing < w, U meets Xτcg. Let W C Xτeg Π U be an

/i-cell. Then Hn(X, X- W)^Hn(X,X- U) by Lemma 10, so it is

enough to prove the lemma with U replaced by W. Since (X, XsiΏg) is a

relative ^-manifold by Lemmas 4 and 5, Hn(X, X - W) -> Hn(X9 Xsing)

is injective by Lemma 10. Finally, since dim Xs ing < n — 2 by Lemma 6,

the exact cohomology sequence of (X, Xsing) shows that

LEMMA 12. Let A be a real domain of finite type over R with quotient

field K. Let A C B C K with B also of finite type over R. Suppose V(B) is

compact and V(A) is a compact connected manifold. Then p: V(B) -> V(A)

induces an injective map of cohomology Hι{V{A)) -> Hι(V(B)) for all i.

Proof. Let B' be the integral closure of B in K. It is finite over B and

so of finite type over R [ZS, Chapter V, §4, Theorem 9], and V(B') is

compact by Lemma 8. By replacing B by B\ we can assume B is normal.

This idea is also taken from [BH]. Note that B is real since A, and

therefore K, is. Also dim B — transc( A/R) = dim A — n, say. Let a E A

be a common denominator for a finite set of generators of B expressed as

fractions from A. Then Aa — Ba so p: V(Ba) = V(Aa). By Lemma 7 we

can find an Λ-cell U C V(Ba) Π V(B)Teg. Clearly p: C/= W = p(U) C

V(Aa). Consider the diagram

n

Hn(V(B),V(B)- U) -* H"(V(B))

Here γ is an isomorphism by excision [ES, Ch. X, Th. 5.4], a is an

isomorphism by Lemma 10, and β is injective by Lemma 11. Therefore,
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/?*: H"(V(A)) -» Hn(V(B)) is injective. We extend this to Hι by a trick of
Hopf [Ho]. Let u E H\V(A)) be non-zero. By Poincare duality, there is
some v G Hn'ι{V{A)) with iw ^ 0 in Hn(V(A)). Therefore, 0 φp*(uυ)
= p*(u)p*(υ)9 so/?*(w) ^ 0 .

REMARK. In the application given here, the use of Poincare duality
can be avoided. For Theorem 1, only Hn is needed. For Theorem 2, V(A)
will be a product of two manifolds Mp X Nq and we will need /?*( w) 7̂  0
only for an element u of the form u — prf(w'), where w' G HP(M) and pη
is the projection on M. If υ' G Hq(N) is non-zero, then wpr*(t/) ~ uf X
v' φ 0 by the Kϋnneth formula and the above argument applies.

REMARK. Under the hypotheses of Lemma 12, it follows that V(B) ->
F(>4) is onto. This can be generalized as follows: If A C B are domains of
finite type over R with the same quotient field K and if p: V(B) -> V(A)
is proper (e.g. if B G £(Λ)), then F(^4)reg Cp(V(B)). This follows from
Lemma 7 and the observation above that V(Ba) ^ V(Aa), since a proper
map of locally compact spaces is closed. The non-connected curve A =
R[x, y]/(y2 - x\x - I)) with B = A[x2(x2 + y2)~\ xy(x2+y2yι]
shows that p need not be onto. Here x2(x2 + y2)'1 = x~\ so the isolated
point is not inp(V(B)).

4. Proof of the theorems. In [SV] / showed that for certain classes
of spaces X, in particular the compact ones, the section functor gives an
equivalence between the category of vector bundles on X and the category
of finitely generated projective modules over the ring of continuous
functions C(X). It is easy to check that this is natural: If/: X -> Y and £
is a vector bundle on 7, we get a map Γ(£) -» T(f*ξ) taking a section s to
s o /which can be interpreted as a section of/*£ since we have a cartesian
diagram

/*(£) - t
1 1
x -»• y.

This map is semilinear with respect to C(Γ) -» C(X) and so induces a
map θ{. C(X) ® C ( y ) Γ(ξ) - Γ(/*£)

LEMMA 13. // ξ is a direct summand of a trivial bundle, 0j is an
isomorphism.

The hypothesis is satisfied for the spaces considered in [SV].
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Proof. Clearly θξθη = θξ θ θη. Using this we reduce to the case where ξ
is trivial. The result is obvious in this case.

Now let An be as in §1. In [SV, Example 2] it was observed that there
is a map An -» C(PΠ), where P" is real projective π-space. We need only
regard PΛ as the quotient of Sn by the antipodal identification and send
the xt to the usual coordinate functions. It is very easy to check that
P" = V(An) by using the relations (XiXj)(xpxg) - (XiXp)(XjXq) and Σxf
— 1. Since dim An — n = dimP", Lemma 5 shows that An is real and

An -» C(P") is injective. It is also quite easy to check this directly. From
[SV, Example 2] we see that the invertible ideal / = (XQ, xQxl9... 9XQXΛ)

oΐAn corresponds to the canonical line bundle γ on PΛ, i.e. C(Pn) ®ΛJ ~
Γ(γ). The total Stiefel-Whitney class of γ is w(γ) = 1 + α, where a
generates H\Pn) = Z/2Z. It is a unit in #*(P n ) = Z/2Z[α]/(απ + 1) with
inverse w(y)~] = l + α + +an [MS].

Form R — A\ as in §1 and suppose 7Π = i?/ requires fewer than n + 1
generators, say i?7 = (y1 ?.. . ,^ ) with k<n. Write ^ = Σαzyxox7 and
xox7 = Σ bjlyι with α/y, bβ E 7?. Some 5 E £(^4n) containsall α i7 and bJt

so 5/ = (y l 9... , ^ ) 5 has A: generators.2 Note that B ®An I ->BI since / is
locally principal. By Lemma 13, BI corresponds to the line bundle p*(y)
on V(B) where p: V(B) -> K(i4). We can find 0-* M ^ Bk -* BI -+0.
This splits since / is invertible soBk ™ M® BI. Therefore, ok ^ μ® ρ*(y),
where o is the trivial line bundle and μ corresponds to M. Now
w(μ)w(p*y) = w(ok) — 1, so w(μ) = w(p*y)~ι = p*(w(y)~ι). Therefore,
wn(μ) — p*(an) Φ 0 by Lemma 12. But μ has rank k — 1 so wz(μ) = 0 for
/ > k [MS]. The assumption that k<n thus leads to a contradiction.

For Theorem 2 we use the same method. If /„ has k < n generators,
the same will be true for (x{

0

n)2,...,x(

0

n)x(n)n)B for some B E E(A(N))
with A(N) as in §1. This follows from Lemma 2. Now V(A(N)) = Πf'P'
and (x^ ) 2,. . . ,X^ )X^ ))T4 ( ? V ) corresponds to the bundle ρr*(γ), where γ is
as above and ρτn is the projection of V(A(N)) on PΛ . Since ρrn has a
section, pr*: H*(Pn)-> H*(V(A(N))) is injective. As above we find
/?*pr*(γ) θ /A « <?*, getting wΛ(μ) =/?*pr*(α") ̂  0 by Lemma 12. This
gives the same contradiction as before.

5. Further results. In [H] Heitmann proves the following results
about ^-dimensional Prϋfer domains R.

(1) Finitely generated ideals / have μ(I) < n + 1.

2 This step, and similar arguments below, can be avoided by using the continuity property
of Cech cohomology to extend Lemma 12 to the case B = A*.
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(2) If M is a finitely generated torsion-free module of rank d then

μ(M) <n + d.

(3) If M is as in (2) and d > n then M has a free summand.

(4) The stable range of R is sv(R) = n + 1.

I will show that each of the results is the best possible. This is clear for (1)

by Theorems 1 and 2.

T H E O R E M 3. Let In be as in Theorem 1 or 2. Let d>\ be any integer

and set M = In® Rd~\ Then μ(M) = n + d.

Proof. It is trivial that μ{M) < n + d. The converse is proved by the

same method as in §4 since adding on free summands does not affect the

Stiefel-Whitney classes (cf. [SV, Example 2]), [MS].

THEOREM 4. Let In be as in Theorem 1 or 2. Let M be the kernel of any

epimorphism i ? " + ι -> In. Then M is finitely generated projective of rank n

with no non-trivial free summand.

Proof. Since the epimorphism splits, cancellation [KA, p. 75] shows

that M is unique up to isomorphism. Therefore we can restrict our

attention to the obvious epimorphism sending the standard base of i?" + 1

to the generators of In given in §1. Let Mo be defined like M using An or

A{n) in place of R. Then M — RMQ. If M had a free summand, we could

find B E E(A% A' = An or A^k) with BM0 = B θ N. Let/?: V(B) -> V(A')

and let A'M0 and N correspond to the bundles μ and v on V(Ά) and

F(5) . Then /?*(μ) — o® v, so w^(/?*μ) = wrt(^) = 0 since v has rank

n — 1. This gives the same contradiction as in §4.

THEOREM 5. For any integer n >: 1, /Λere w # Prufer domain R with

dim R — n and sr(i?) = w + 1.

Proof. The proof was suggested by Vaserstein's proof that

srR[x 1 ? . . . ,xn] = n + 1 [V, Th. 8]. We start with

Bn = R[xO9...9xn]/{lxf-l)

and apply the construction of §1 to get R = B\. We have dim R < n, and

the reverse inequality will follow from (4) once we show that sτ(R) > n +

1. Consider the unimodular row (xo,...9xn) over R. I claim there are no

ai E R such that (x0 + aoxn9... ,xn-λ + #„_!*„) is unimodular. If there

were such an they and the elements bt needed to write Σbi(xι + a^x^ = 1
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would lie in some B e E(An). Let X= V(B), I = [0,1], and define /:
XXI^Rn+*by

f(x,t) = (Xθ(x) + ίαo(*)*n( *)> ••»*„-!(*) + t&n-l(x)*n(x)>

(1 - /)*.(*))•

The unimodularity assumptions show that f(x, t) is never 0, so we can
define g: XX / -> S" by g(;c, *) = /(*, t)/\\f(x, t)\\. Now g(-,0) is the
map p: X = V(B) -^ S" = V(An) induced by An C B, while g ( - , 1) = q
maps X into Sn~] C S" and so is nullhomotopic. This gives the required
contradiction since />*: Hn(Sn) -> Hn(X) is non-trivial by Lemma 12,
while/?* = 9* = 0.

THEOREM 6. ΓΛere is a Priifer domain R with sr(i?) = oo.

Proof. Let 5 be the tensor product of all the rings Bn considered
above for n > 1. Then B = U 5 ( M ) with 5 ( n ) = S, ® 5 2 ® ®5Λ. These
are all domains whose quotient field does not contain /~~ΐ\ e.g. since
C ®R 5Π is a domain with quotient field C(x0,... ,xπ_2»

 x«-i + \/~ 1 ^«).
Since K(5(/I)) = 5 1 X XS\ Lemma 5 shows that B(n) is real. Let
R — B*. If sr(i?) < «, take the unimodular row (x(

o

n\... ,^iw )), where, as
before, x^π) is the image of xt E Bn in 5. As in the proof of Theorem 5 we
can find C e E(B(N)) and Λf. E C such that (x(

o

n) + aox
(

n

n\...,x(

n

n}ι +
an_λx

{^ι)) is unimodular over C As above we see that prΛj^: V(C) ->
K(5 ( ; v )) -> Sn is nullhomotopic, contradicting the fact that (prn/?)*:
^ Λ ( 5 Λ ) -> i/"(K(C)) is injective by Lemma 12.

6 Relation to Schulting's work. The construction of §1 can be
modified as in [S] by adjoining elements of the form xtj = a^ajiΣaf)'1 for
af E ̂ 4 (or even in K) with Σfl? Φ 0. This leads to a Priifer domain
A% D A% which can replace Λ* in all the above theorems. We need
only verify the analogue of Lemma 9 which follows from the identity

4
If these constructions are applied to the prime subring Zl C K (using

all α, b, resp. ai9 in # ) we get a ring Z)^ = (Zl)# which occurs in [D] and
the ring Aκ = (Zl)% defined in [S]. It is clear that for any A C K we have
^4% = ADK and ^4% = AAK. Dress [D] showed that Dκ is a Priifer domain
using the argument of Lemma 1. If AT is formally real, Schulting showed
that Aκ is the intersection of all valuation rings V of K whose residue
fields V/M are formally real. He defined Aκ by adjoining only elements
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of the form (1 + Σxf)~x. However, the same result is true for the defini-
tion of Aκ used here. If V/M is formally real, let | aλ | be maximal for the
valuation corresponding to F. Dividing the numerator and denominator
of xu by a\ shows that | x l 7 | ^ 1 so xέj E F. It follows that the present
definition of Aκ agrees with Schϋl ting's. The same argument shows that if
{—~T £ K then Dκ is the intersection of all valuation rings V of K such
that \/~ 1 ί V/M [D, §4]. It follows that similar characterizations hold
for A% and A*. We have only to add the restriction that A C F. As in
Lemma 1 we will have A% = Aκ = K if K is not formally real, since for
large n9 Q = xf + — +x% will be isotropic and (1 + Q)~x will represent
all elements of K* by [LQ, I, Th. 3.4(3)].

It is now easy to see that the ring R of Theorem 1 for n — 2 is the
same as the one considered by Schul ting [S] provided we use the A%

construction. This was pointed out by Gilmer, Heitmann, and Lam. In
fact, the ring A* was conjectured to have the property of Theorem 1 a few
years ago by Gilmer (unpublished) and by Lam [LO, p. 122]. Let K be the
quotient field of An. As we saw in §1, K — R(yϊ9... 9yn)9 where7, = xtXQl.
But xtXj =yiyj(Σoy?')~ι E Aκ (with y0 = 1), so An C Aκ and therefore
A* = Aκ. The ideal used by Schulting is (1, yl9 y2) = XQ2I2- Note that
y\9...9yn & Aκ, otherwise we could find C E E(An) with An C B =

1 + ΣΓtf)-1] C C. By Lemma 12, H\V{An))-+H»{V{B))
is non-trivial, but Hn(V(B)) = 0 since K(£) = RM. Since ^ ^

is stable under Aut( K/R), it follows that Λl̂  does not contain any set of
algebraically independent generators for K over /?, or even a single
element of such a set. In the case of the ring Bn used in proving Theorem 5
we also have B* = AL, where L is the quotient field of Bn. This is clear
from the fact that {xt = 1x̂ (1 + Σx?)"1.

In contrast to the above results, A\ φ Dκ since An is not contained in
Dκ for n>2. To see this, let F be the discrete valuation ring
R[j>1?... ,Λl(/)> where/= 1 + U[y} = XQ2. Then ̂ 4Π <£ F, since x^ E Λπ,
while XQ2 = / E M = /F. However \/~ 1 ^ F/M, so Dκ C F: Suppose g
and h are polynomials in the yx with g2 + A 2 Ξ θ mod /. Since / is
absolutely irreducible for n > 2, we can work over C and get g±ih =0
mod /, which implies g = A = 0 mod /.
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