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THE SEXTIC PERIOD POLYNOMIAL

D. H. LEHMER AND EMMA LEHMER

The coefficients of the polynomial whose roots are the six periods of
the pth roots of unity are given for every prime p — 6/ 4- 1 in terms of L
and M in the quadratic partition

4/? = L2 + 27M2.

An explicit formula for the discriminant of this polynomial is also given.
A complete analysis of the prime factors of the integers represented by
the period polynomial and its corresponding form is given.

1. Introduction. In 1893 Carey [1] developed a method for obtain-
ing the coefficients of the general period polynomial and gave a table of
the sextic polynomial for every prime p < 500. His method expresses the
coefficients in terms of a sequence {ak}, where ak is the au-element in the
kih power of the matrix (/, j) of cyclotomic numbers. It has recently been
shown [6] that these α's form a linear recurrence whose scale of relation is
the period polynomial and whose initial values are multiple sums of
cyclotomic numbers. That Carey's approach to the period polynomial is
inefficient is amply demonstrated by the rather long list of errata in
Carey's table given in the Appendix to this paper.

It is surprising to note that, until now, no one has given explicit
formulas for the coefficients of the sextic period polynomial although
there are formulas due to Dickson [3] and Whiteman [10] for the corre-
sponding cyclotomic numbers. In this paper we give the coefficients and
the discriminant of the sextic period polynomial in terms of the funda-
mental quadratic partitions

4/7 = I2 + 21M2 and p = A2 + 3B2.

There is also a complete discussion of the prime factors of the numbers
represented by the sextic and its associated form.

2. Notation. Let g be a primitive root of the prime

p = ef+l

and let

ξ = exp{2τπ/p}.
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We define the e periods ηi by

and the period polynomial by

(i) Ψ«00= π ' ( * - u , ) = Σ «λ*""λ

We will make use of the well-known relation

e-\

(2) W + ί = Σ (i,j) nk+j+β?>
j = 0

where (/, j) are the cyclotomic numbers, while a = 0 or e/2 according as
/ is even or odd. We will also use the notation

yt - ei\i + 1

and the reduced period polynomial

(3) Fe(x) = Π' (x-y,) = Σ cλx'"λ = e'%((x - 1)A).

ί = 0 λ = 0

For e = 6 the quantities

0, = iϊ/ + iί,+3 O' = 0,1,2)

are in fact the periods for e — 3. We shall use the well-known cubic period
polynomial

(4) Mx)= Π ( x - t f < ) = x 3 + x 2 -
1 = 0

whose discriminant D3 = p2M2. The reduced form of ψ3(x) is

(5) ^ ( ^ ) = Π { x - ( 3 ^ + l ) } = Π I*-*,}
1=0 i=0

Its discriminant is (ΠpM)2.
The parameters L and M used above are defined by the quadratic

partition

4/? = L2 + 27M2, L==l (mod 3),
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which determines M up to a sign. This ambiguity is resolved when
necessary, that is, when M is odd its sign is fixed so that

L + M = 0 (mod 4).

We use less often the alternative quadratic partition

p = A2 + 3B2 {A = \ (mod 3)).

We say that the number k (1 <k<p — 1) belongs to class h in case

indgk = h (mod 6).

We define the 36 cyclotomic numbers (/, j) as the number of members k
in class i for which k + \ belongs to classy. These numbers are expressible
linearly in terms of /?, L and M and also in terms of /?, A, B. Dickson [3]
gave the 36 cyclotomic numbers in terms of /?, A, B when/ = (p — l)/6
is even and Whiteman [10] when/is odd. Storer [8] gave (/, y) in terms of
/?, L, M when/is odd. There seem to be no published formulas for (/, y)
in terms of /?, L, M when/is even. These are given in the appendix of this
paper to complete the record. In giving a set of such formulas one is
forced to consider four kinds of primes/?. Not only need one consider the
parity of /, but also whether or not 2 is a cubic residue of p. This fact
leaves its mark on what follows. For brevity we write the cubic character
of x as χ(JC). When χ(x) φ 1 we have chosen g so that

indg(2) = 2 (mod 3).

In what follows we use a few well-known facts about the numbers A,B,L,
M, and two lemmas about quadratic and cubic residues. They are col-
lected here for easy reference.

If M is even, A = -L/2, B = 3M/2.

If Mis odd, A = (L + 9M)/4,B = (L - 3M)/4.

M even/even, L = 2 (mod4), M = 0 (mod4), B = 0 (mod6).

Modd/even, L = 1 (mod2), M = 1 (mod2), B =/(mod4).

^ ^ Meven/odd, L = 0 (mod4), M = 2 (mod4), B = 3 (mod6).

M odd/odd, L = 1 (mod2), M = 1 (mod2), B = 1 (mod 2).

χ(2) = 1 if and only if M is even.

χ(2) = 1 if and only if B = 0 (mod 3).

χ(3) = 1 if and only if M == 0 (mod 3).
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LEMMA 1. If p is a prime = 1 (mod 4) then any odd prime q ¥= p

dividing p — u2 is a quadratic residue of p. If p is a prime = 3 (mod 4) then

any odd prime qφ p dividing p + u2 is a quadratic residue of p.

This follows immediately from the law of quadratic reciprocity.

LEMMA 2. If p — 6/ + 1 is a prime, then every prime other than p that

divides F3(x) for some integer x is a cubic residue for p, and conversely.

This lemma follows from cyclotomy for e = 3.

COROLLARY 1. All the prime factors of LM are cubic residues of p.

Proof. Apply Lemma 2 to F3(L) = -21 LM2.

Tables of A, B, L, M are to be found in Cunningham [2] for all

primes/? = 6/ + 1 < 125683.

3. The sextίc period polynomial. We consider the polynomial (1)

whose roots are the six TJ'S. Our problem is to give formulas for the

coefficients ak in terms of/?, L, M. We find it much simpler to work with

the reduced sextic (3). There are four cases, depending on the parities of/

and M.

First we take up the case in which / is even. We arrange the six roots

y{ into three sets of two roots each, thus:

Then in view of (5) and (4) we have, in case M is even,

Λ + Λ + 3 = 2x i (ι = 0, l ,2) ,

and by (2),

(7) y i y l + 3 = -(p + L x i ) ( i = 0 , l , 2 ) .

Hence our reduced polynomial is

2

PβM= Π W-lXtX-p-Lx].
(=0

Multiplying and simplifying we obtain for M and/even:

(8) F6(x) = x6 - I5px4 - 20pLx3 + \5p{p - L2)x2

+ 6pL{2p - L2)χ-p(p2 - 3pL2 + LΛ).

(8a) F6(A)=0 (modM).
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In case M is odd, (7) becomes

ΛΛ+3 = ~P + HL + 9M)x, + {{9M - 3L)xi+λ.

This gives, for M odd, / even,

(9) F6(x) =x6- I5px4 + p(ΊL + ΠM)x3

+ 9p{4p - 9M(L - M)/2}x2

-3p{4p{2L + 9M) - L2(L + 9M)}x

+p{8p2 -h 6pL{9M - L) - L4}.

(9a) F 6 ( L ) Ξ 0 (mod B).

We next take up the case of odd /. We group the six roots into two sets of
three,

(JΌ> J ' i 'J 'J a n d ()Ί» Λ. ^If

so that our sextic becomes the product of two conjugate cubics. If M is
even, one of these cubics is

(10) jc3 - ^{^x2 - 3(p + LfΓp)x -pL - {Ίp - L^f^p .

Multiplying this by its conjugate we get, for M even, / odd,

(11) F6(x) = x6 + 3px4 + \6pLx3 + 3p(Πp + L2)x2

+ 6pL(8p - L2)x +p{49p2 - \3pL2 + L4).

(lla) F6(A)=0 (raodM).

Finally, if M is odd the cubic (10) becomes

JC3 - 3fΓpx1 -3(p-\{L + 9M)fΓ~p)x

+p(L - 21M) - (2p + L2)^p~.

Multiplying this by its conjugate we get for M and/odd,

(12) F6(x) = JC6 + 3px4~p{UL + 2ΊM)xi

+ 9p{\2M - L){(L + 3M)/2}x2

+ 3p{2L3 + 21M2{L - 9M)}x

+p[p{L - 21M)2 + (2p + L2)2],

(12a) F6(L)=0 (modM).

F6(x) has now been given in all four cases of p.
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To get Ψ6(JC) we have only to use the identity (3):

ψ 6 (*) - 6-βFβ{βx + 1).

For example, in case/is odd and M is even we find

Ψ6(x) - x6 + x5 + ±(p + 5)x4 + ± {p(4L + 3)

[P2(&L + 17) - p(L3 - L2 - 8L - 2) + \}x

+p(L4-6L3 + 3L2+ 16L + 3) + l}.

4. The discriminant. This important invariant of ψe(x) is defined

by

D. = Π (U, - VjΫ.

Kummer [5] observed that, in general, the discriminant can be decom-

posed into integral factors. In our case we have

(13) |Z»6| = P,2P2

2 |P3 | ,

where

(14) Pk=Jl(ril-Vi+k) (k= 1 ,2 ,3) .

Formulas for Pk will be given in terms ofp,L,M,A,B.

The simplest case is the factor P3. Here we need not separate cases.

THEOREM 1. P3 = {-\)f+λ

PM\

Proof. Using (2) we find that

where

θi =
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are the roots of the cubic ^3(x). Taking the product over i — 1,2 and 3 we

obtain

where D3 is the discriminant of %(x), namely p2M2. Since (η, — ηι+3) is

real or purely imaginary according as / is even or odd, the theorem

follows.

Evaluating Pλ and P2 involves splitting into the usual four parity cases

for M and /. There are two approaches via the two formulas

(15) π, = (η, - Ί]i+k){i]i+3 - i ϊ l + 3 + Λ ) = ax, + bxi+λ + c,

where i— 1,2 and 3, and a, b, c are integers, and

(16) p. = (i,. - i j.+J(iϊ f.+ 2 - ij |.+ 2 +^)(ij |.+ 4 - iίf + 4 + Λ ) = ok± rj

when/is odd, i — 1 and 2, and σ, T integers. They are obtained using the

fundamental identity (2) and are expressible in terms of p, L and M.

Taking the product over the three TΓ, and over the two conjugate p, over /,

respectively, we obtain Pι and P2 as polynomials inp, L and M. This gives

us the following two theorems.

THEOREM 2.

2ΊpM4/26 (M even, f even)

pMB3/23 (M odd, f even)

pM2(\6p + L2)/26 = L%(4p/L)/ (26 33) (Meven, f odd)

p[p(L + M)2 + 4(p-LM)2]/2*

= -(A/6ΫF3(-2p/A) (M odd, fodd).

THEOREM 3.

pM4/26 (M even, f even)

p[p(L - 3M)2 - 4(p - M2)2]/2* (Modd, f even)

pM2{4p + M2)/26 = -pM2F3(L/4)/ (27L) (M even Jodd)

p[p(L + M)2 + 4(p + Λ/2)2]/28 (M odd, f odd).
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5. Examples.

EXAMPLE 1. p = 307, / = 51, L = 16, M = 6, A = -8, B = 9. The

period polynomial is

%(x) = x6 + x5 + 26x4 + 381x3 + 4077.x2 + 9666* + 25596.

P, = 307- 711 = 3 2 79- 307,

P
2
 = 307 2907 = 3

2
 17 19 307,

P
3
 = 307 1296 = 2

4
 3

4
 307,

D
6
 = 2

4
 3

12
 17

2
 19

2
 79

2
 307

5
.

E X A M P L E 2. p = 331, / = 55, L = 1, M = 7, Λ = 16, 5 = 5. The

period polynomial is

Ψ
6
(x) = x

6
 + jc

5
 + 28x

4
 - 288x

3
 + 1950x

2
 - 9800* + 84427.

P, = 331 2339, P
2
 = 331 1723, P

3
 = 331 7

4
,

D
6
 = 7

4
 331

5
 1723

2
 2339

2
.

E X A M P L E 3.p = 349,/= 58, L = 37, M = -I, A = 7, B = 10.

¥
6
(JC) = x

6
 + x

5
 - 145x

4
 + 278x

3
 + 3961x

2
 - 5762x - 34459.

P, = 349 17
2
, P

2
 = 349 5

3
, P

3
 = -349, D

6
 = -5

6
 17

4
 349

s
.

E X A M P L E 4.p = 997, / = 166, L = 10, M = 12, A = -5, B = 18.

Ϋ
6
(JC) = χ

6
 + x

5
 - 415x

4
 - 1200x

3
 + 9820x

2
 + 17936x - 12352.

P, = 997 2
2
 3\ P

2
 = 997 2

2
 3

7
, P

3
 = -997 2

8
 3

4
,

D
6
 = -2

1 6
 3

26
 997

5
.

6. The prime factors of Ψ6(N). The prime factors of the numbers

%(N) and S6%(R/S),

where N, R, and S are integers, are almost all restricted to the class of

sextic residues of p. Such a prime q ¥= p is called exceptional in case g is

not a sextic residue of p. Kummer [5] proved in 1846 that the set of

exceptional primes is finite for a given p, and every exceptional prime

divides the discriminant De of Φ£x). Moreover, these primes must divide

Pk in case the greatest common factor of k and e exceeds 1. In our case of

e = 6 the exceptional primes must divide P2 or P 3 . Recently, Evans [4]

proved a more general theorem.
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THEOREM 4 [Kummer 5]. An exceptional prime q satisfies one of the

following two conditions. Either

q IP2 and q is a quadratic, but not a cubic residue ofp, or

q IP3 and q is a cubic, but not a quadratic residue ofp.

We first consider the case of q = 2.

THEOREM 5. If p = 24n + 1, then 2 is exceptional if and only if M is

odd. If q — 24n + 13 or 19, then 2 is exceptional if and only if M is even. If

p = 24w + 7 then 2 is not exceptional.

Proof. Let p = 24n + 1. Then (2/p) = 1. Suppose 2 is exceptional.

Then χ(2) T^ 1, for otherwise 2 would be a sextic residue oίp. This implies

Af is odd. Conversely, let M be odd so χ(2) ̂  1. Then %(0) or Ψ6(l) is

even according as A = 1 or -1 (mod 4). Hence, 2 is exceptional in this

case.

Next let p = 24« + 13 or 19. Then (2//?) = - 1 . For 2 to be excep-

tional it is necessary that P3 be even, that is, that M be even. Conversely, if

M is even, then Ψ6(0) or Ψ6(l) is even according as A = 1 or — 1 (mod 4)

in case/? = 24 w + 1 3 and Ψ6(0) is even in case/? = 24 « + 1 9 .

Finally, let p = 24« + 7. Then (2//?) = 1 and / is odd. If χ(2) = 1,

then 2 is a sextic residue of/?. If χ(2) ^ 1, then M is odd and so is P3. In

this case Theorem 2 gives

27P2 = p[p2 - 3p(A/2f + L{A/lf]

which is odd. Hence, 2 is not exceptional in this case.

THEOREM 6. If p = \2n + 1, ίλeπ 3 is exceptional if and only if M is

even and 3 \ M. If p — \2n + 7, ίAeπ 3 w exceptional if and only if 3\M.

Proof. First suppose /? = \2n + 7. Then (3//?) = - 1 . Suppose 3 is

exceptional. Then 3 divides P3. Hence 3 divides M. Conversely, if 3

divides M, then 3 divides Ψ6(0), Ψ6(l) or %(-\) according as L = 7, 4, or

1 (mod 9). Hence, 3 is exceptional since (3//?) = - 1 .

Now suppose/? = \2n + 1. Then (3/p) = 1 a n d / i s even. Suppose 3

is exceptional. Then χ(3) φ 1. Hence by (6), 3 {M and 31P2. Since 3 \ B if

M is odd by (6), only the first case of Theorem 2, namely

P2 = 2ΊpM4/26 (M even, / even),

is divisible by 3, so M is even.
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Conversely, if M is even and 3 \ M, so χ(3) Φ 1, then %(0), %(l) or

Ψ 6(-l) is a multiple of 3 according as L = 7, 4, or 1 (mod 9), so 3 divides

Ψ6(x). Hence, 3 is exceptional.

We finally consider the case q > 3. We need two lemmas:

LEMMA 3. If q\B, then (q/p) — 1 if f is even.

T h i s is a c o n s e q u e n c e of L e m m a 1, s ince 3B2 — p — A 2 , so q\p —A2.

LEMMA 4 [Sylvester [9]]. Every prime of the form \%n ± 1 divides

x3 — 3x — 1 /or some value of x and, conversely, every prime factor q > 3

ofx3 — 3JC — 1 w of the form \%n ± 1.

THEOREM 7. The prime q> 3 is exceptional if and only if either

fisodd,q\Mand(^\ = - 1 ,

or

/is even, g \ M, M ώ odd, g | J9 #«d ^ ^ 18Λ? =±= 1.

Proof. First let/be odd. Suppose q is exceptional, if q\P3, then q\M

and, hence, # is a cubic residue of/? by Corollary 1. Since q is exceptional

we have (q/p) = - 1 . If <y|P3, then q\M and g | P 2 The last two lines of

Theorem 2 show that q is both a quadratic and a cubic residue of/?, which

contradicts the assumption that q is exceptional in case q \ M.

Conversely, if q\ M and (q/p) = - 1 , then by (1 la) and (3) g divides a

value of Ψ6(Λ^) and, hence, is exceptional.

Next suppose/is even and q is exceptional. If q\M, then χ(q) — \

and 4/7 = L2 (mod #) so (p/q) — (q/p) — 1. Therefore g is a sextic

residue of/? and, hence, not exceptional. Hence, q\ M, so q\ P3. Therefore

q\P2 Hence, by Theorem 2, M is odd and q\B. By Lemma 3, (#//?) = 1,

hence χ(q) ¥= 1. By (6) we have 45 = L — 3M, S O L Ξ 3M (mod ^) and

/? = L2 (mod ^). Hence,

F3(Lx)/L3 = x3 - 3x{p/L2) - p/L2 = x3 — 3JC — 1 (mod 9).

Since χ(q) Φ 1, q cannot divide F3(N) for any value of N. Hence, by

Lemma 4, q φ ISn ± 1.

Conversely, suppose q\M, M is odd, q\B and q φ \%n ± 1. Since

q\B, q divides P2 and (q/p) — 1 by Lemma 3. Since q φ \%n ± 1, q does

not divide F3(N) for any value of N. Hence, by Lemma 2, χ(q) φ 1. By

(9a), ^ ( L ) = 0 (mod q). Hence q is exceptional.
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COROLLARY 2. All exceptional primes q divide MB.

To illustrate Theorems 5, 6 and 7 we refer to our examples:

Example 1 illustrates Theorem 6 with p — 307, / odd M — 6, q — 3,

— - l Hence, 3 is exceptional and 3 divides ^ ( 0 ) = 25596.

Example 2 illustrates Theorem 7 with p — 331, / odd, M' = 7, q = 7,

= - I - Hence, 7 is exceptional and 7 divides %(0) = 84427.

Example 3 also illustrates Theorem 7 with p — 349, / even, M — - 1 ,

5 = 10, ? = 5. Hence, 5 is exceptional and 5 divides %(\) = -36125.

Example 4 illustrates Theorems 5 and 6 with/? = 997,/even, M — 12,

^ = 2, 3. By Theorem 5, 2 is exceptional and Ψ6(0) = -12352 is even; by

Theorem 6, 3 is not exceptional since 3 | M. In fact 3 is a sextic residue of

997 and hence not exceptional.

7. Semi-exceptional primes. An exceptional prime divides a value

of ^Xx) and also its discriminant De. A prime which is not an eth power

residue of/?, but divides De9 has been called semi-exceptional by Evans [4].

Every exceptional prime is semi-exceptional. Evans [4] proved that when

e = 8 there exist primes p that have semi-exceptional primes q which are

not exceptional. We prove in what follows that no such phenomenon

exists for e — 6. Therefore e — 8 is the least e for which such primes exist.

For e = 6we call a prime q special, with respect to a prime/? = 6/ + 1,

in case # is not a sextic residue of /?, #|/>6 and # does no/ divide ^6(n) for

any integer AI. Hence, a special prime is semi-exceptional but not excep-

tional.

A special prime q must therefore satisfy either

(17) q\Px (and q is not a sextic residue of p),

or

(18) ^ IP2 and 9 is not a quadratic residue of /?,

or

(19) q IP3 and 9 is not a cubic residue of /?.

We first investigate the primes 2 and 3.

THEOREM 8. The prime 2 is not special.

Proof. Suppose 2 were special. We separate the four cases of Theo-

rem 5.
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Let/? = 24rt + 1. Then (2/p) = 1. If M were even, then χ(2) = 1, so
2 is a sextic residue of/?. Hence M is odd. But Theorem 5 tells us that 2 is
exceptional in this case, so 2 is not special.

Next let p — 24n + 7. Since (2/p) = 1, M is odd as before. In this
case D6 is odd. In fact in the proof of Theorem 5 we showed that P3 and
P2 are odd. It remains to show that Pλ is odd.

Since p = Ί (mod 8) and M is odd we can write p + M2 = 8m. Also
L + M = 8s by (6), so by the last line of Theorem 3 we have, after
dividing by 64, that APλ — p[ps2 + 4m2], so s is even. Let s = 2σ so
L + M = 16σ and Pj — p[po2 + m2]. Therefore we must show that σ
and m are of different parity. This follows from the fact that

(L + M) 2 = L2 + M2 + 2LM = 4p - 26M2 + 2ML = 256σ2,

while 4/7 + 4Λf2 ~ 32 m. Subtracting these equations and dividing by 2
gives 15M2 - LM = 16(m - 8σ2), but M2 + LM = 16Mσ. Finally, ad-
ding the last two equations and dividing by 16 gives M2 = m + Mo
(mod 2), which makes m and σ of different parity, therefore Pλ is odd.

Therefore 2 is not special if p = 24n + 7.
Next let/7 = 24w + 13. In this case Z>6is also odd. In fact, since 2 is

not exceptional, Theorem 5 tells us that M is odd. Hence P3 is odd. By
Theorem 2, P2=pMB3/8, and by (6) B=f =2 (mod4). Hence P2 is
odd. That P, is odd is seen from the formula

27/*! =p{L(a3 - b3) + 3ab[(9M + L)a + (9M - L)b]/2},

where 8α = L — 11M and Sb — L + 13M, so α and Z? are of different
parity.

Finally, let p = 24n + 19. Then (2/p) = - 1 . By Theorem 5 we have
M and, therefore, L odd, and by Theorem 2 we have

27P2 =p[p2 - 3p(A/2f + L(A/2)3],

which is odd.
To see that P, is odd we note that p 4- M2 — 8m + 4, while LΛ- M

— 8s. Using the last line of Theorem 3 we have, in this case,

4Pλ =p[ps2 + (2m+ I) 2],

and hence s is odd. Therefore 4Pj = p(p + 1 ) Ξ 4 (mod 8) and, hence, P 1

is odd.
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THEOREM 9. The prime q = 3 is not special.

Proof. Let p = \2n + 1. Then (3//?) = 1. By (18), 3\PλP3. If 3 |P 3 ,

then 3 \M and, hence, χ(3) = 1, so 3 is a sextic residue of p and is not

special, if 3 \ P3, but divides P l 9 then since 3 j M, Theorem 3 shows that 3

does not divide Pλ.

Let p = 12 w + 7. Then / is odd. By Theorem 6 we have 3\M, so

3 \ P3. By Theorems 2 and 3 we see that, with / odd, 3 \ PλP2. Hence 3 is

not special.

To prove that q > 3 is not special we need the following lemma.

LEMMA 5. Let m and aφb Φ c be integers and let d—(a,b, c). Let

mmi = axt + bxi+λ + c (i = 0,1,2),

where xf are the roots ofF3(x) = x3 — 3px — pL. Next let

G3(x) = (x~ πo)(x - π^ix - π2).

Then for all integers N the prime factors of G3(N) are cubic residues of p,

except possibly those that divide, 3pmd.

Proof This follows from Theorem 5.4 of [7] with the condition on a,

b, c being required for Lemma 5.3 of [7].

THEOREM 10. Let q > 3 be a prime q ¥=p dividing Pλ and suppose

q \ M. Then q is a sextic residue of p.

Proof. Of the four cases of Theorem 3, the first is excluded by q \ M.

The third case shows that q is a sextic residue oip by Lemmas 1 and 2. In

the remaining two cases q is seen to be a quadratic residue oip by Lemma

1. It remains to show that in the two remaining cases q is also a cubic

residue of p. In these cases (15) becomes

24τr0 = (L - UM)x0 ~{L+ \3M)xλ (Modd,/even),

and

24ττ0 = (L + M)x0 + SMxx + Sp ( M odd,/odd).

Hence, in both cases, d = 2α, since L and M have no odd factor in

common. Applying Lemma 5 and using the fact that Pλ = TΓQTΓĴ  =

-G 3(0)/m 3, we see that all the prime factors q > 3 of Pλ are indeed sextic

residues of p. Hence the theorem.



354 D . H. LEHMER AND EMMA LEHMER

THEOREM 11. No prime q > 3 is special.

Proof. Suppose q is a special prime and q \ M. Then by Corollary 1 we

have χ(q) = 1. Since q is not exceptional, (q/p) — 1 by Theorem 7.

Hence q is a sextic residue of p, so q is not special. Hence q\M. By

Theorem 10 we have q\Pλ. Also q\ \P3 \— pMA. Hence q\P2 I f/ i s even,

then q \ B by Theorem 2. But then

which contradicts (18). Hence/is odd. By the last two cases of Theorem 2,

q is a sextic residue of p by Lemmas 1 and 2, so q is not special in all

cases.

COROLLARY 3. All semi-exceptional primes are exceptional for e = 6.

APPENDIX I

Cyclotomic matrix for/even.

00 01 02 03 04 05
01 05 12 13 14 12

02
03
04
05

12
13
14
12

04
14
24
13

14
03
13
14

24
13
02
12

13
14
12
01

ind 2 = 0 (mod 3) ind 2 Ξ= 2 (mod 3)

36(0,0) = p - 17 + 10L 72(0,0) = 2p - 34 - ΊL - 2ΊM

36(0, l)=p-5-2L + 2ΊM 72(0,1) = 2p - 10 + 5L + 9M

3 6 ( 0 , 2 ) = p - 5-2L + 9M 72(0,2) = 2p - 10 - 4L - 36M

36(0,3) = p - 5 - 2L 72(0,3) = 2/) - 10 + 5L + 9M

36(0,4) = p - 5 - 2L - 9M 72(0,4) = 2P - 10 + 5L + 9M

36(0,5) = p - 5 - 2L - 2ΊM 72(0,5) = 2p - 10 - AL + 36M

3 6 ( 1 , 2 ) - p + \ + L 72(1,2) = 2/7 + 2 + 2L - 18M

36(1,3) = p + 1 + L 72(1,3) = 2p + 2 - ΊL + 9M

36(1,4) = / » + 1 + L 72(1,4) = 2/7+ 2 + 2 L - 18M

36(2,4) = p + 1 + L 72(2,4) = 2/> + 2 + 2L + 54M



THE SEXTIC PERIOD POLYNOMIAL 355

APPENDIX II

Errata in F. S. Carey, Notes on the division of the circle, Quart. J. Pure
Applied Math. 26 (1893), 371.

P
61
109
181
193

229
241
373
397
433
457

for
-27
39

13565
1936
5182

-2103
594
381

4960
-130032

3561

read
+ 27
135
1685
1744
5184
187
580
380

-5040
-1728
3461
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P
103
127
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163
223

331

for
1773
-977
6547
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-3276
-7122
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read
1373
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6543
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5644
4592
84427
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