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GENERALIZED COMPLETE MAPPINGS, NEOFIELDS,
SEQUENCEABLE GROUPS
AND BLOCK DESIGNS. I

D. F. Hsu AND A. D. KEEDWELL

The necessary and sufficient condition that the latin square formed
by the Cayley multiplication table of a group has an orthogonal mate is
that the group has a complete mapping. Here, we define two generaliza-
tions of the concept of a complete mapping and show how these generali-
zations are related to sequenceable groups and JR-sequenceable groups
respectively and that together they permit a complete characterization of
left neofields. In the second part of the paper, we shall show that these
generalizations also yield new constructions of block designs of Mendel-
sohn type.

Introduction. In [11] H. B. Mann introduced the concept of a
complete mapping of a finite group (G, •) and showed that, when a group
has such a complete mapping, the latin square formed by its Cayley
multiplication table has a transversal and, hence, an orthogonal mate. See
also §1.4 of [1]. Later, L. J. Paige [13] showed that complete mappings can
also be used in the construction of neofields. This fact has been used
extensively in [6].

More recently, it has been shown in [10] and [2] that a necessary
condition for a finite group to be i?-sequenceable is that it possess a
complete mapping. Similarly, we prove below that a necessary condition
for a finite group to be sequenceable is that it possess a near complete
mapping. In general, both sequenceable and i?-sequenceable groups permit
the construction of neofields and the neofields so constructed are of
special type.

In this first part of our paper, we define two generalizations of the
concept of a complete mapping to be called a (K, λ) complete mapping
and a (K, λ) near complete mapping, respectively, and we show that all of
the above-mentioned concepts can be described in terms of these generali-
zations. We are also able to give a complete characterization for all left
neofields. In the second part (to appear shortly), we show that these
generalizations also yield new constructions of block designs of Mendel-
sohn type whose automorphism group contains a specified subgroup and
we describe in more detail how (K, λ) generalized complete mappings and
near complete mappings may be constructed.
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We start with some definitions.

2. Basic concepts and definitions.

DEFINITION 2.1. A one-to-one mapping g -> θ(g) of a finite group

(G, •) onto itself is said to be a complete mapping if the mapping

g -» Φ(g)> where φ(g) = g 0(g), is again a one-to-one mapping of G

onto itself.

DEFINITION 2.2. A finite group (G, •) of order « is said to be

sequenceable if its elements can be arranged in a sequence a0 — e, # 1 ?

tf2> ">an-\ m s u c ^ a w a y t h a t Λe partial products Z?o = a09 bx — aoal9

b2 = αoα1α2» >^w-i = #o α i α 2 ' *" an-\ a r e a ^ distinct (and consequently

are the elements of C in a new order). It is said to be R-sequenceable (see

[2]) or near-sequenceable (see [9]) if its elements can be ordered in such a

way that the partial products b0 = aθ9 bλ — aoal9 b2 = a0axa2^.. ?fen_2 =

aoaιa2 * «rt_2 are all different and so that the product &„_, = aoaxa2

- - α π _! — bo = e9 where e is the identity element of G.

DEFINITION 2.3. A //mte neofield Nv comprises a set N of v elements

on which two binary operations, ( + ) and (•) are defined such that (N9+)

is a loop, with identity element 0, say; (N — {0}, •) is a group; and (•) is

both left and right distributive over ( + ) . A neofield whose multiplicative

group is cyclic is called a cyclic neofield.

In particular, a Galois field is a finite cyclic neofield which has

associative and commutative addition. The concept of a neofield was first

introduced and studied by L. J. Paige in [13]. Cyclic neofields have been

extensively studied in [6].

We shall denote the order of a finite group (G, •) by | G | .

DEFINITION 2.4. A (K, λ) complete mapping, where K =

{kl9 k29...,ks] and the ki are integers such that Σ; = 1 kf = λ(|G\ — 1), is

an arrangement of the non-identity elements of G (each used λ times) into

s cyclic sequences of lengths kx,k2,...,ks, say

(#11 #12 •• £u1)(S2lS r22 "mg2k2) " " (Ssl 8s2 '"8sk,)>

such that the elements gi~jgiJ+\ (where / = 1,2,...,$; and the second

suffix j is added modulo kt) comprise the non-identity elements of G each

counted λ times.
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A (K, λ) near complete mapping, where K = {hl9 A2,. . . ,hr\

kλk2,... ,ks} and the Λ, and kj are integers such that Σ ' = 1 Λ, + Σ* =i kj =

λ IGI, is an arrangement of the elements of G (each used λ times) into r

sequences with lengths hλ9 h2, . ,hr and s cyclic sequences with lengths

/Cj, / c 2 > . . . >kS9 say

[gίl gί2 * ' 8\h] ' ' [#H gr2 * " - ̂ A J («11 #12 " "Si*,) ' * ' (&1 &2 ' " & * , )

such that the elements (gίj)~]glj+\ a n ( * 8Γj8ij+ι together with the ele-

ments g'^gji comprise the non-identity elements of G each counted λ

times. (We have Σ(λ f — 1) + ΣΛ, = λ(| <?| — 1) so it is immediate from the

definition itself that r = λ.)

EXAMPLES. (2.1) (0 # 2 ^ 4 ) ( β 3 a6 a5) is a (^Γ, 1) complete mapping of

the cyclic group C 7 = gp{a: a1 — e}9 where K — (3,3}.

(2.2) (α a2 a4)(a3 a6 as)(a a3)(a2 a6)(a4 a5) is a (JSΓ,2) complete

mapping of the cyclic group C7, where # = (3,3,2,2,2}.

(2.3) (a3 ba2 ba3 a)(ba b a2) is a (AT, 1) complete mapping of the

dihedral group D4 = gρ{#, b: a4 = b2 = e, ab = for1}, where .fif = (4,3}.

(2.4) [etf 4 0 3 ](t f# 2 <2 5 ) isa( j£, 1) near complete mapping of the cyclic

group Q = gp{«: a6 - e}9 where K - {3; 3}.

(2.5) [e a5 a4][e a2 a a4](a a3)(a2 a6 aΊ){a3 a1 a5 a6) is a (K9 2) near

complete mapping of the cyclic group C8 = gp{α: α 8 = e}, where K —

{3,4; 2,3,4}.

(2.6) [e ba][e ba2](a2 b ba2 a)(a b ba a2) is a (K92) near complete

mapping of the dihedral group Z>3 = gp{#, b: a3 — b2 — e, ab — ba~λ),

where K= {2,2; 4,4}.

DEFINITION 2.5. A (k, λ) complete mapping is a (AT, λ) complete

mapping such that jfiΓ = {/:,/:,...,/:}. For such a generalized complete

mapping, s = λ(\G\- \)/k.
Similarly, a (A:, λ) near complete mapping is a {K, λ) near complete

mapping such that JSΓ = {Λ, Λ,...,A; fc, A:,...,&} and k — h= I.

EXAMPLES. (2.7) Example (1) above is a (3,1) complete mapping of

the cyclic group C7.

(2.8) [e a4][e a4](a a2 aΊ)(a3 a6 a5)(a a1 aβ)(a2 a3 a5) is a (3,2) near

complete mapping of the cyclic group C8.

Let x -» θ\x) be a complete mapping of a group (G, •) with identity

element denoted by e. Then the mapping θ such that θ(x) = θ\x)θ\e)~x
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is also a complete mapping of G and θ(e) = e. We shall call this the

canonical form of the complete mapping θ'.

We easily see that

THEOREM 2.1. (i) ̂ 4 (AT, 1) complete mapping of a group is equivalent to

a complete mapping in canonical form.

(ii) The concept of k-regular complete mapping of a group introduced

and discussed in [3] coincides with our concept of(k,l) complete mapping.

(iii) A finite group G is R-sequenceable if and only if it possesses a

(I G\ — 1,1) complete mapping.

Proof, (i) Let ( c π cn cxk)(c2l c22 c2ki) (c 5 l c j 2 c,*,) be a

(AT, 1) complete mapping of a group G. Define θ(e) — e and 0(c/y) =

cJjCij+1? where the second suffix is added modulo k{. Then θ is a complete

mapping of G.

Conversely, let x -> 0(Λ;) be the canonical form of a complete map-

ping of G. We suppose that the elements of G are a0 = e, α1? α 2 , . . . ,«„_!•

Since θ(e) — e, it follows that θ(ax) = flfty(fl,) T^ e and so Φ(β,) = a2 φ

av Then ^(« ι )^(α 2 ) = a\lΦ(a2)' Let φ(α 2 ) = a3 φ a2 since <!>(«!) = a2.

We have Φ(«2) ^
 a\ unless ^(α!)^(ύί2) = e. If θ{aλ)θ(a2) = e, (ax a2)

forms one cyclic sequence of the generalized complete mapping. If not, we

have θ{ax)θ(a2)θ{az) = ax

ιφ(a3). Let φ(a3) = α 4 . Then φ(α 3 ) T^ α 2 or a3

since φ(^,) = α 2 , Φ(«2) = «3. Also, φ(a3) Φ ax unless θ(ax)θ(a2)θ(a3) —

e. If ^(ύf,)^(α2)^(α3) = e, (αj α 2 α 3) forms one cyclic sequence of the

generalized complete mapping. If not, we have Θ(ax)θ(a2)θ(a3)θ(a4) =

ax

xφ(a4). Eventually, we obtain a product θ(ax)θ(a2) θ{ar) = e and a

corresponding cyclic sequence (ax a2 α r) of the generalized complete

mapping. Taking <z5 distinct from the members of this cyclic sequence, we

have θ(as) = a~ιφ(as) Φ e and so Φ(as) = <z5+1 Φ as and not equal to

any members of the previously constructed cyclic sequence (ax a2- ar)

because φ is a bijection of G. Hence, by repetition of the process, we

eventually separate the non-identity elements of G into disjoint cyclic

sequences which form a (AT, 1) complete mapping.

(ii) The definition of a fc-regular complete mapping given in [3] is

exactly that of a (k, 1) complete mapping.

(iii) Suppose that (cx c2 cn_x) is the cyclic sequence which defines

a ( |G| — 1, 1) complete mapping of a finite group G. Define θ(e) ~ e,

0(cz) = cr 1 c / + 1 = αf + 1 for i = 1,2,...,« - 2 and θ(cn_x) = c~lxcx = ax.

Then ^ is a bijection of G by definition of a ( | G | — 1 , 1) complete

mapping. Also b0 = a0 = e, ft, = a o a, = c;i,c,, 62 = α o

β i β 2 = ^ l , c 2 ,
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&3 = cπ-ic3> A _ 2 = Cπ-icn-2 are all different and bn_ι = aoaιa2

- - an_λ — c~l_ιcn__] = e, so Gis i?-sequenceable.

Conversely, if the finite group G is i?-sequenceable, then if, with the

notation of Definition 2.2, the element c is the one which does not occur

among the distinct partial products b0 = e, bx> b2,...,bn_2 the elements

c~\ c~xbx, c~ιb2,... ,c~1Z>/7_2 are the non-identity elements of G and form a

cyclic sequence to define a (| G| — 1,1) complete mapping of G.

THEOREM 2.2. A finite group G is sequenceαble if and only if it possesses

a (I GI +1,1) near complete mapping.

Proof. Suppose that [c0 c, cn_x] is the sequence which defines the

(IG\ +1,1) near complete mapping, where n =\G\. Define a0 = e and

α, = cfijC,- for / = 1,2,...,« — 1. Then the at are all different by defini-

tion of a near complete mapping and the partial products bo = aQ = e,

b\ = aoa} = Co'cj, 6 2 = a o « i « 2 = c ό 1 ^ , . . . , bn-\ = aoa\ ' " an-\ =

cό1cA7_1 are also all different, so G is sequenceable.

Conversely, suppose that G is sequenceable with sequencing aQ = e,

0,, α2> >αA2-i a n < ^ partial products b0 = a0 — e, bλ = α o α!, δ 2 =

tfQtfj^ A - i ~ α o β i *' 'an-\- Then, the sequence [/?0 bx - ^ - J de-

fines a(\ G\ +1,1) near complete mapping of G.

3. Construction of neofields.

DEFINITION 3.1. An algebraic structure (N, + , •) which differs from a

neofield only in that right distributivity of multiplication over addition is

not postulated is called a left neofield.

We note that a left neofield whose multiplicative group is abelian is a

neofield.

Let (G, •) be a finite group of v — 1 elements which possesses a (K, 1)

complete mapping. Then there exists a left neofield (NΌ + , •) whose

multiplicative group is G. Precisely we have

THEOREM 3.1. Let (G, •) be a finite group with identity element denoted

by 1 which possesses a {K,\) complete mapping and let x -> θ(x) be the

corresponding complete mapping in canonical form whose existence is

guaranteed by Theorem 2.1(i). Let 0 be a symbol not in the set G and define

N — G U {0}. Then (N — {0}, •) is the given group (G, •) and we can

define a second operation ( + ) on N by the statements 1 + z = zθ(z) for all
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z G N - {0,1}, 1 + 1 = 0, z + 0 = z = 0 + z for all z E N, x + y =
x(l + x~xy) whenever x and y are non-zero. If we also define 0 x =
0 = x 0 for all x G N9 then (N, + , •) is a left neofield.

Proof. We need to show that (JV, +) is a loop with identity element 0
and that multiplication is left distributive over addition.

The left distributivity of multiplication over addition follows im-
mediately from the definition x + y — x(l + x~ιy), for we have

tu + tv = tu[\ + (m)"1/!;] = ta(l + u~λv) = /[w(l + tr't?)] = ί(w + ι>).

Since 1 + z = z0(z) = φ(z) for all z T^ 0, 1, and since φ is a bijection
of G with φ(l) = 1 (because θ is a complete mapping in canonical form),
the elements 1 + z are all distinct. Consequently, for x φ 0, the elements
x + y = x(\ + x~λy) as7 varies are all distinct.

Thus the entries in each of the rows of the Cayley table of (N, +) are
all different.

Since for x, y non-zero, xΦy, x + y = x(l + x"1^) = x x"V *
^(x"1^) = >> ^(x"1^), and sincey + j = 0, 0 + y — y9 the elements x + y
as x varies are all distinct. So the elements in each of the columns of the
Cayley table of (N9 +) are all different.

The element 0 acts as identity for ( + ), so (N9+) is a loop. This
completes the proof.

DEFINITION 3.2. A neofield or left neofield (N9 +, •) for which
1 + 1 = 0 and for which the mapping φ: z -» 1 + z, z ^ O , 1, is a
permutation of N — {0,1} consisting entirely of cycles of length k is said
to be a neofield oί pseudo-characteristic k.

We note that any finite left neofield constructed in the manner of
Theorem 3.1 from a group (<?, •) which possesses a (&, 1) complete
mapping is a left neofield of pseudo-characteristic k.

A Galois field of order 2h has pseudo-characteristic 2. However, a
neofield of pseudo-characteristic 2 is not necessarily a Galois field. In
particular, some examples of cyclic neofields of pseudo-characteristic 2
will be found in [6].

If there exists an Λ-sequenceable group of order v — 1, then there
exists a left neofield of order v of the maximum possible pseudo-char-
acteristic: namely, pseudo-characteristic v — 2.

Next, we have the following:

THEOREM 3.2. Let (G, •) be a finite group of v — 1 elements which

possesses a (K, 1) near complete mapping such that K = {h; kx,k2,...9k^\.

Then there exists a left neofield (Nv, + , •) whose multiplicative group is G.
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Proof, Let the near complete mapping be as follows:

[g\8l * * ' g'h\{g\\ 8\2 ' " g\k){gl\ gll - S2k2) '" {SsλSsl '"Ssk)

We suppose that this has been put into canonical form with g[ equal to
the identity of the group G. (A (K, 1) near complete mapping can always
be put into this canonical form by premultiplying each element in the
sequences by g[~ι.) Define a mapping θ of G into itself by the statements
O(g'i) = g'Γιg'i+ι for i = 1, 2,... ,Λ - 1; θ(giJ) = gjgij+ι for i =
1,2,...,s, where the second suffix j is added modulo kt. Then, by
definition of a near complete mapping, θ maps G — {g'h} one-to-one onto
G — {1}, where 1 denotes the identity element of (G, •)•

Let 0 be a symbol not in the set G and define iV=GU{0} . Then
(N — {0}, •) is the given group (G, •) and we can define a second
operation (+) on N by the statements 1 + z = zθ(z) for all z e N —
{0, g'h}9 1 + g'h = 0, z + 0 = z = 0 + z for all z <Ξ N, x + y =
x(\ + x~xy) whenever x and y are non-zero. We also define 0 x — 0 =
x 0 for all xEJV.

Since 1 + 0 = 1 = gί; 1 + g/ = g/+1 for/ = 1,2 A - 1; 1 + g'h =
0; 1 + g/y = g/j+i for i = 1,2,...,5 where the second suffixy is added
modulo ki9 it follows that the elements 1 + z are all distinct. Conse-
quently, for x φ 0, the elements x + ^ = x(\ + x~ιy) as y varies are all
distinct. So the entries in each of the rows of the Cayley table of (N9 +)
are all different.

Since x + y = JC(1 + x~]y) — j> 0(x~1.y) Φy if x and 7 are not zero
and φ 0 unless x~ιy = g'h and, since 0 + y = y, the elements % + y as %
varies are all distinct. So the elements in each of the columns of the
Cayley table of (JV, +) are all different.

The remainder of the proof is exactly similar to that of Theorem 3.1.

DEFINITION 3.4. A neofield (N,+, ) for which the mapping φ:
z -* 1 + z is a permutation of N consisting entirely of cycles of length k is
said to be a neofield of characteristic k.

THEOREM 3.3. A finite left neofield constructed in the manner of
Theorem 3.2 from a group (G, •) which possesses a (k, 1) near complete
mapping is a left neofield of characteristic k.

Proof Let the canonical form of the (k, 1) near complete mapping be

t 1 g'l g3 ' ' g'k-\](g\\ g\2' g\k)(gl\ g22" glk) ' * * (gs\ gs2" gsk)'
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Then, from the definition of the mapping θ and the facts 1 + z = zθ(z)
for z ^ 0 , g [ _ , and 1 + 0 = 1, 1 + g'k_x = 0, it follows that the mapping
φ: z -> 1 + z is given by the permutation

( 0 1 g2 g3 g j k - l ) ( g l l g l 2 * * g\k)(g2\ S l l ' " Slk) ' ' ' ( g , l gs2 ' ' ' Ssk)>

which consists entirely of cycles of length k.
We note that a Galois field of order ph has characteristic p9 but, of

course, a neofield of prime characteristic is not necessarily a Galois field.
As an example, the following example of a cyclic neofield of order 9 and
of characteristic 3 is given in [6]:

z

1 + z

0

1

1

α4

a

a1

a2

a α5

α4

0 α6 «3

a1

a2

Addition in this neofield is neither associative nor commutative.

If there exists a sequenceable group of order v — 1, then there exists a
left neofield of order υ of the maximum possible characteristic: namely,
characteristic υ. Conversely, the existence of a left neofield of order and
characteristic v based on a group (G, •) implies that G is a sequenceable
group.

The concept of characteristic of a neofield was first introduced in [8]
where it was shown (among other things) that property D neofields of the
maximum possible characteristic exist of orders 9, 15 and 17, but not of
orders 3, 5, 7, or 11. (A property D neofield is a cyclic neofield with the
additional property that

1 + x< = 1 + xu

 = ,

1 + J C ' " 1 ~ 1 + " " 1 = > ^~

THEOREM 3.4. A finite left neofield constructed in the manner of
Theorems 3.1 or 3.2 from a group (G, •) is a neofield if and only if the
mapping θ maps conjugacy classes of G to conjugacy classes and, in the case
of Theorem 3.2, // and only if we have additionally that the element g'h is in
the centre of G.

Proof. We have

ut + υt = ut[\ + (ut)~xυt\ = ut(\ + Γλu'λυt) = utφ(rιu-{υt),

where φ(z) = 1 + z = zθ(z) for all z ¥= 0,1 in Theorem 3.1 and for all
ZT^O, g'h in Theorem 3.2. So, ut + vt — vtθ(t'ιu~ιvt) except for two
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special values of t~ιu~ιυt. Also,

(u + υ)t = u{\ + u~λυ)t - uφ(u~ιυ)t = υθ(u~λυ)t

except for two special values of u~]υ. Consequently, the right distributive

law holds if and only if θ(Γxu'ιvt) = t~ιθ(u~ιv)t for all except two special

values of t~ιu~]vt. For the special value Γιu~ιυt — 0, we have υ = 0 or

t = 0 and in that case wί + i ί ^ ί w + ϋ)^ always. For the special value

t~]u~]υt = 1 in Theorem 3.1, we have u — υ and then ut + υt = ut(ϊ + 1)

= 0 and (u + υ)t = w(l + l)ί = 0, so itf + υt — (u + υ)t in this case

also. Since 0(1) = 1, the conjugacy class {1} of G is preserved by 0. So, it

is clear that, for the case of Theorem 3.1, if the complete mapping 0 (in

canonical form) maps conjugacy classes of G onto conjugacy classes then

the right distributive law holds for all elements of (N9 + , •).

For the special value t~xu~λυt — g'h in Theorem 3.2 we have ut + υt —
uti} + g'h) = ° a n<* t Φ 0 so wί + υt - (u + v)t if and only if u'λυ = g£.

Consequently in Theorem 3.2 we require the extra condition that {g'h} be

a complete conjugacy class.

COROLLARY 1. A necessary condition that the right distributiυe law hold

in the left neofield constructed by the method of Theorem 3.2 is that the

elements gf

2 and g'h of the (K, 1) near complete mapping be both in the centre

of the multiplicatiυe group (G, •)•

Proof, We have already shown that gf

h must be in the centre. Since

0(1) = g'2 and since conjugacy classes are mapped to conjugacy classes, so

also g'2 must be in the centre.

COROLLARY 2. // (G, •) is a finite non-abelian group of odd order then

there exists a neofield whose multiplicatiυe group is G.

Proof. For such a group, the identity mapping is a complete mapping

and it maps conjugacy classes to conjugacy classes.

THEOREM 3.5. For abelian groups the constructions of Theorems 3.1 and

3.2 are mutually exclusiυe. An abelian group (G, •) has a (K, 1) complete

mapping if and only if the product of all its elements is the identity element e.

It has a (K, 1) near complete mapping if and only if it has a unique element

of order 2 and then the product of all its elements is this unique element of

order 2.
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Proof. Suppose that (G, •) is abelian and has a (K, 1) complete
mapping

Uii£i2 " ' SikXSn S22 '"S2k2) '" (&1&2 " gsks)'

Then the elements gf/g^, gf^gn,- >£ί/Uπ> £21̂ 22 > ^ f e - >
g ^ & b . & Ί 1 ^ g ^ i ^ & i a r e t h e n o n - i d e n t i t y elements of G
each counted once. It is clear that the products of these elements is e.
Conversely, by a theorem of L. J. Paige [12], if the product of the elements
of an abelian group G is e, then G has a complete mapping and, hence, by
Theorem 2.1(i), it has a (AT, 1) complete mapping.

Secondly, suppose that (G, •) is abelian and has a (K, 1) near com-
plete mapping

[8\8i m"8h]{gn8\2 '"S\k,) ' " {gs\8s2 '"SskX

Then the elements g'fιg'29 8i'λ8^- >gi-ig*> £π2i2> gf^is^ >
gu.gπ' 'g i 1 ^ ώ i 3 &"*% a r e t h e n o n - i d e n t i t y elements of G
each counted once. The product of these elements is g{~ιg'h Φ e. But, by
another theorem due to L. J. Paige [12], the product of all the elements of
an abelian group is equal to e unless the group has a unique element of
order 2. In the latter case, the product is equal to the unique element of
order 2. We deduce immediately that an abelian group has a (K, 1) near
complete mapping only if it has a unique element of order 2 and that then
it does not have a (AT, 1) complete mapping. Conversely, by a theorem due
to B. Gordon [4], an abelian group which has a unique element of order 2
is sequenceable. So such a group has a (|G| +1,1) near complete map-
ping. That is, it has a (K, 1) near complete mapping for at least one choice
of K.

COROLLARY. // an abelian group (G, •) has a {K,\) near complete
mapping in canonical form as required for Theorem 3.2, then the element gr

h

is the unique element of order 2 in G.

Proof. The product of all the elements of G is g\ιg'h and, when the
near complete mapping is in canonical form, g[ — e.

We end this section by proving that left neofields are co-extensive
with (^,1) complete mappings and near complete mappings of groups.

THEOREM 3.6. Let (N, + , •) be a left neofield with multiplicative group

((?, •) where G = N- (0). Then, if 1 + 1 = 0 in N9 N defines a (K91)

complete mapping of G. If 1 + 1 Φ 0, TV defines a (K, 1) near complete

mapping of G.
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Proof. Let Q: z -» 1 + z be the permutation of N induced by the

presentation function of (JV, + , •). If 1 + 1 = 0, Q takes the form

= (0l)(gng,2 •• glife1)(g2lg22 '"SlkJ ' " (g,lgg,2

when written as a product of cycles, where 1 + g Λ / = g^,/+i- Define

) ~ Sh!Sh,i+1 a n d 0(1) = 1. Then 0 is a complete mapping of G and

( g l l g l 2 '• " SlkXSll # 2 2 - ' S 2 k 2 ) ••• ( g , l gg,2

is a (K, 1) complete mapping. Since φ(ghι) = gΛ/ 0(gΛ/) = gΛ f / + 1, it is

sufficient to prove that θ(ghi) Φ θ{glj) unless ghi — gtj.

We have

J = Θ(g/J) =* g-h](\ + ghi) = g / ^ ( l + g / y )

since multiplication is left distributive over addition and addition is a

loop.

If 1 + 1 ¥= 0, β takes the form

Q = (0 1 #2 #3 •• gί)(gllgl2 glΛI) " {gsl gs2 ' " gskX

where 1 + 1 = gf

2 and 1 + gf

h = 0. Then

il gig's'" gh]{g\\ g\2" g\k) ' ' ' (gsl gs2 * * ' Ssk)

is a (K, 1) near complete mapping of G. We define β(gΛl ) = ghϊghj+\ a s

before and 0(1) = g£, 0(g/) = g;-1g/+1 for / = 2, 3,. . . ,A - 1. An argu-

ment exactly similar to that above shows that θ is a one-to-one mapping

from G — {gf

h} onto G — {1} so we have &(K9\) near complete mapping.

4. Examples. Since the left distributive law holds in any neofield or

left neofield (N9 + , •), the neofield is completely defined by its multiplica-

tive group and by the function φ: z -> 1 + z. This was pointed out in [8]

and, in that paper, φ was given in the form of a permutation Q of the

elements of N. In [6] and [7], φ has been called the presentation function of

the neofield.

When Q is a regular permutation consisting entirely of cycles of

length k, the corresponding neofield has characteristic k. When Q com-

prises the transposition (0 1) and a set of cycles each of length k9 the

corresponding neofield has pseudo-characteristic k.

EXAMPLE 4.1. The (3,1) complete mapping (a a2 a4)(a3 a6 a5) of the

cyclic group C7 = gp{a: a1 — e) defines a neofield of order 8 and
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pseudo-characteristic 3. Its presentation function is

z

φ(z)

0

1

1

0

a

a
2

a
2

a
4

a
3

a
6

a
4

a

a
5

a
3

a
6

a
5

We have Q = (0 \)(a a2 a4)(a3 a6 a5) and we note that the associated
complete mapping in canonical form is the identity mapping.

EXAMPLE 4.2. The (3, 1) near complete mapping [e a4](a a2 a7)
-(a3 a6 a5) of the cyclic group C8 = gp{a: a1 = e) defines a neofield of
order 9 and characteristic 3. Its presentation function is

Z

Φ(z)

0

1

1

a
4

a

a
2

a
2

a
1

a
3

a
6

a
4

0

a
5

a
3

a
6

a
5

a
1

a

We have Q = (0 1 a*)(a a2 aΊ)(a3 a6 a5).

EXAMPLE 4.3. The (5,1) near complete mapping

[e a6 α 1 8 an](a a22 a15 a2 axl){aΊ a* a4 a23 a21)

X(a19 a9 au aλβ a2O)(a13 a5 a14 a3 a]0)

of the cyclic group C24 = gp{a: a24' = e) defines a neofield of order 25
and characteristic 5. This is the Galois field GF[25], where a is a primitive
element satisfying a2 = a — 2.

EXAMPLE 4.4. The (6,1) complete mapping {a2 a a3 a6 a4 a5) of the
cyclic group C7 = gp{α: a1 = e) is constructed from the i?-sequencing e,
a6, a2, a3, a5, a, a4 of CΊ in the manner of Theorem 2.1(iii). It defines a
neofield of order 8 of the maximum pseudo-characteristic 6. Its presenta-
tion function is

z

φ(z)

0

1

1

0

a

a
3

a
2

a

a
3

a
6

a
4

a
5

a
5

a
2

a
6

a
4

We note that every cyclic group of odd order is i?-sequenceable. For
proofs, see [2], [6] and [10].

EXAMPLE 4.5. The (9,1) near complete mapping [e a2 a5 a a1 a6 a3 a4]
of the cyclic group C8 = gp{a: as = e] is constructed from the sequencing
e, a2, a3, α4, a6, a1, a5, a. It defines a neofield of order 9 which has
property D and also has the maximum possible characteristic of 9. In
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order to exhibit that it has property Z>, we exhibit its presentation
function in the following way, where the last line gives the values of

z

φ(z)

a
3

a
4

a

a
2

a
5

a
2

a

a
1

a
3

1

a
2

a
4

a
1

a
6

a
5

a
b

a
3

a
6

a
b

a
0

a
4

0

0

1

We remark that every cyclic group of even order is sequenceable (see,
for instance, [4] or [1]) but that, in general, the sequencings do not give
neofields which have property D.

EXAMPLE 4.6. The dihedral group

Dβ = gp{α, b: a6 = b2 = e, ab = ba~λ)

is both i?-sequenceable and sequenceable. Consequently, it permits the
constuction of a left neofield of order 13 and maximal pseudo-characteris-
tic 11 (Theorem 3.1) and also a left neofield of order 13 and maximal
characteristic 13 (Theorem 3.2). We exhibit the presentation function for
one example of each kind.

z

φ(β)

0

1

1

0

a

b

a
2

a*

a
3

ba
2

a
4

a
3

a'

ba
5

b

a
2

ba

ba
4

ba
2

ba
3

ba
3

ba

ba
4

a
5

ba
5

a

Q = (0 \){a2 a4 a3 ba2 ba3 ba ba4 a5 ba5 a b)

z

φ(z)

0

1

1

a

a

a
3

a
2

ba
5

a
3

ba
3

a
4

0

a
5

ba
4

b

a
2

ba

a
4

ba
2

ba

ba
3

b

ba
4

ba
2

ba
5

a
5

Q = (0laa3ba3b a2 ba5 a5 ba4 ba2 ba a4)

It is known that a dihedral group is i?-sequenceable if and only if it is
of doubly even order (see [10]). It is conjectured that all dihedral groups of
orders greater than 8 are sequenceable. There is strong evidence for this
conjecture in the case of dihedral groups of singly even order (see [5]).
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EXAMPLE 4.7. The identity mapping is a complete mapping of the
non-abelian group of order 21. It gives rise to a (K, 1) complete mapping,
where K = {3,3,2,2,2,2,2,2,2}, and hence to a neofield of order 22. (See
Theorem 3.4, Corollary 2).

We have G = gp{α, 6: α7 = 63 = e, α& = 6α2} and the (K, 1) com-
plete mapping is

(a a2 a4)(a3 aβ as)(b b2)(ba b2a3)(ba2 b2a6)

(ba3 b2a2)(ba4 b2a5)(ba5 b2a)(ba6 b2a4).

The complete addition table of the neofield is given in Table L The reader
may check that the right distributive law holds.

EXAMPLE 4.8. The (3,1) near complete mapping

[e ba3](a2 a a4)(a3 ba ba5)(a6 ba6 b)(a5 ba2 ba4)

of the dihedral group DΊ = gp{α, b\ a1 — b2 — e, ab — ba'1} defines a
left neofield of order 15 and characteristic 3. Its presentation function is

z

φ(z)
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ba2 ba6 a"
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