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NONLINEAR ERGODIC THEOREMS
FOR AN AMENABLE SEMIGROUP
OF NONEXPANSIVE MAPPINGS IN A
BANACH SPACE

NORIMICHI HIRANO AND WATARU TAKAHASHI

Let C be a nonempty closed convex subset of a Banach space, S a
semigroup of nonexpansive mappings ¢ of C into itself, and F(S) the set
of common fixed points of mappings ¢. Then we deal with the existence
of a nonexpansive retraction P of C onto F(S) such that Pt = (P = P
for each r € S and Px is contained in the closure of the convex hull of
{tx: t € S} for each x € C. That is, we prove nonlinear ergodic theo-
rems for a semigroup of nonexpansive mappings in a Banach space.

1. Introduction. Let C be a nonempty closed convex subset of a
real Banach space E. Then a mapping 7: C — C is called nonexpansive on
Cif

[Tx — Ty| =[x — y|| forallx, y € C.
We denote by F(T') the set of fixed points of 7, that is,

FT)={z€C: Tz =z}.

Let S = {S(¢): t =0} be a family of nonexpansive mappings of C
into itself such that S(0) = 1, S(¢ + s) = S(¢)S(s) for all ¢, s € [0, 0)
and S(¢)x is continuous in ¢ € [0, o0) for each x € C. Then S is said to be
a nonexpansive semigroup on C.

The nonlinear ergodic theorem for nonexpansive mappings was origi-
nally studied in the framework of Hilbert spaces by Baillon [1], and later
extended to Banach spaces by Bruck [8], Hirano [15], Reich [21] and
others. A corresponding result for nonexpansive semigroups on C was
given by Baillon [2], Baillon-Brézis [3] and Reich [20]. Nonlinear ergodic
theorems for general commutative semigroups of nonexpansive mappings
were given by Brézis-Browder [4] and Hirano-Takahashi [16]. Recentlly
Takahashi [26] proved the following nonlinear ergodic theorem for a
noncommutative semigroup of nonexpansive mappings: Let C be a non-
empty closed convex subset of a real Hilbert space H, and let .S be an
amenable semigroup of nonexpansive mappings ¢ of C into itself. Suppose

F(S)= () {F(t):t€8)+ @.
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Then there exists a nonexpansive retraction P of C onto F(S) such that
Pt =1tP = Pforallt € S and Px Eco Sx for all x € C, where Sx = {tx:
t € S} and co 4 is the closure of the convex hull of 4. In this paper we
shall prove analogous results for semigroups of nonexpansive mappings in
Banach spaces. That is, we establish the existence of certain nonexpansive
retractions onto the fixed point sets of amenable semigroups of nonex-
pansive mappings in Banach spaces. Theorem 2 is a generalization of
Takahashi’s nonlinear ergodic theorem.

2. Preliminaries. Let E be a real Banach space and E* its dual,
that is, the space of all continuous linear functionals f on E. The value of
fEE* at x € E will be denoted by (x, f). With each x € E, we
associate the set

J(x)={reE* (x, f)=IxI"=I/I}.

Using the Hahn-Banach theorem it is immediately clear that J(x) # @
for any x € E. The multivalued operator J: £ — E* is called the duality
mapping of E. Let U = {x € E: ||x|]| = 1} be the unit sphere of E. Then
the norm of E is said to be Gateaux differentiable (and £ is said to be
smooth) if

Lt o=

-0 t
exists for each x and y in U. It is said to be Fréchet differentiable if, for
each x in U, this limit is attained uniformly for y in U. Finally, it is said to
be uniformly Fréchet differentiable (and E is said to be uniformly
smooth) if the limit is attained uniformly for x, y in U X U. It is well
known that if E is smooth, then the duality mapping J is single valued. It
is also known that if £ has a Fréchet differentiable norm, then J is norm
to norm continuous. Let K be a subset of E. Then we denote by 6( K) the
diameter of K. A point x € K is a diametral point of K provided

sup{[lx — y[:y € K} = 8(K).

A closed convex subset C of a Banach space E is said to have normal
structure if for each closed bounded convex subset K of C, which contains
at least two points, there exists an element of K which is not a diametral
point of K. It is well known that a closed convex subset of a uniformly
convex Banach space has normal structure and a compact convex subset
of a Banach space has normal structure.

Let S be an abstract semigroup and m(S) the Banach space of all
bounded real valued functions on S with the supremum norm. For each
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s €S and f € m(S), we define elements f, and f° in m(S) given by
() = f(st) and f°(¢) = f(ts) for all t € S. An element p € m(S)* (the
dual space of m(S)) is called a mean on S if ||p|| = (1) = 1. A mean p is
called left (right) invariant if u(f,) = u(f) (u(f°) = p(f)) for all f €
m(S) and s € S. An invariant mean is a left and right invariant mean. A
semigroup which has a left (right) invariant mean is called left (right)
amenable. A semigroup which has an invariant mean is called amenable.
Day [10] proved that a commutative semigroup is amenable. We also
know that p € m(S)* is a mean on S if and only if

inf{f(s):s €S} <u(f) <sup{f(s):s €S}

for every f € m(S). Let S be a right amenable semigroup. Then Ss N St
# @ for all s,¢t € S. See [13] and [14]. A right amenable semigroup is
directed by an order relation = defined by ¢ = s if and only if ¢ € Ss.
Throughout this paper a right amenable semigroup is directed by the
order relation defined above and a semigroup contains the identity. We
know the following proposition [25].

PROPOSITION 1. Let S be a right amenable semigroup and p. a right
invariant mean on S. Then we have
sup inf f(¢) < u(f) <inf sup f(¢) forallf € m(S).
s S§=t 5

S=t

Proof. Let f be an element of m(S) and p a right invariant mean on S.
Then
p(f) = p(f*) =sup f*(¢) = sup f(ts) = sup f(¢)
t t

S=t

and, hence, pu( f) < inf,sup,., f(¢). Similarly, we have sup,inf,_, f(7) <
p(f)-

3. Ergodic theorems in a reflexive Banach space. To establish the
existence of “ergodic” nonexpansive retractions onto the fixed point sets
of amenable semigroups of nonexpansive mappings in a reflexive Banach
space, the following proposition obtained by Bruck [7] is very useful.

PROPOSITION 2. Let X be a Hausdorff space, S a semigroup of map-
pings of X into X. If S is compact in the topology of pointwise convergence on
X and for each x € X, there exists a common fixed point of S in Sx, then
there is in S a retraction of X onto F(S) (the set of common fixed points of
S).
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THEOREM 1. Let C be a closed convex subset of a real reflexive Banach
space E which has normal structure and let S be an amenable semigroup of
nonexpansive mappings of C into itself. Suppose

F(S)= N {Fi):teS}# 2.

Then there exists a nonexpansive retraction P of C onto F(S) such that
Pt = tP = P for every t € S and every S-invariant closed convex subset of
C is P-invariant.

Proof. First we show, by making use of methods of [6] and [7], there
exists a nonexpansive retraction r of C onto F(S) such that every
S-invariant closed convex subset of C is r-invariant. Put G = {s: s is a
nonexpansive mapping of C into itself, F(s) D F(S) and every S-invariant
closed convex subset of C is s-invariant}. Then S C G. It is obvious that G
is a semigroup of mappings of C into itself. We show that G is compact in
the topology of pointwise weak convergence on C. Fix an element
v € F(S). Foreachx € C,let W, = {y € C: ||y — v|| =||x — vl|}. Then
since for any s € G, ||sx — v||<||Jx —v|, Gx C W, and W, is weakly
compact and convex. Since G is a subset of the product space W =
[I,ec W, and W is compact, to show that G is compact, it is sufficient to
prove that G is closed in W. Let {s,} be a net in G which converges to s in
W. Then since for any x, y € C and u € F(S),

1) Jsx = syl = w-tim (s, = 5,0

< liminfls,x — s, y]| =[x — ¥,
«a

and su = w-lim, s,u = u, we have that s is nonexpansive and F(s) D F(S).
Since an S-invariant closed convex subset K of C is also weakly closed, we
have sK C K. These imply s € G and, hence, G is closed in W. For any
x € C, consider Gx. Then, since for s, € G and 0 <k =1, ks +
(1 — k)t € G and G is a semigroup, Gx is an S-invariant bounded closed
convex subset of C. So, by [18], there exists a common fixed point of S
and, hence, a common fixed point of G. By Proposition 2 there exists a
retraction r € G of C onto F(G) = F(S).

Next we show there exists a nonexpansive mapping of C into itself
such that Qs = Q for all s € S and Qx € co Sx for each x € C. Let p be
an invariant mean on S and x € C. Then since F(S) # &, {sx: s € S} is
bounded and, hence, for each fin E*, the real valued function ¢ > (tx, f)
is in m(S). Denote by p, (tx, f) the value of p at this function. By
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linearity of u, this is linear in f; moreover, since
(e, £ )| =l sup (v, 1)1= ( sup el 1],
t t

it is continuous in f. So by the Riesz theorem, there exists an x, € E** = E
such that p,(tx, f)= (x,, f) for all f € E*. Setting Ox = x,, we have
that Q is nonexpansive. In fact, for anyj € J(Qx — Qy),

lox — ol = (@x — Oy, j)= p,(1x — 1y, j)

< (sup llox = Il = Ix =yl lox — Q.
t
From

(Qsx, )= p(tsx, f)= p,(tx, [)=(Qx, [),
it follows that Qs = Q for each s € S. If Qx &co Sx, then by the
separation theorem, there exists a f € E* such that

(Qx, fy<inf{(z, f): z €coSx}.

So we have
inf (1x, )= (rx, £)= (Ox, /)
<inf{{z, f): z Eco Sx} sh;f(m,f).

This is a contradiction. Therefore, Qx € co Sx.
Now, let P = rQ. Then we have that P is a mapping of C onto F(S).
Since r and Q are nonexpansive, P is nonexpansive. From

P*x = (rQ)(rQ)x = r(rQ)x = rQx = Px,

we have P? = P. Since Px is an element of F(S), it follows that tPx = Px
forallx € Candt € S. Since Qt = Q for all € S, we have

Pt=(rQ)t=rQ = P.

Let K Ee an S-invariant closed convex subset of C and x € K. Then since
Ox €co Sx C K and, hence, Px = rQx € K, it follows that K is P-in-
variant. This completes the proof.

4. Ergodic theorems in a uniformly convex Banach space. Using
Lemma 1 of [15], we can prove the following Lemma which is an
extension of Lemma 2 of [15].

LEMMA 1. Let C be a closed convex subset of a uniformly convex Banach
space E and let S be an amenable semigroup of nonexpansive mappings of C
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into itself with a common fixed point. Let x € C, f € F(S) and 0 < a < f8
< 1. Then for each € > Q there exists t, € S such that

s(Aex + (1 =A)f) — (Astx + (1 = A)f)|<e
foralls €S, t=t,and \: a =A< B.

Proof. Since f € F(S) and S is right amenable, we obtain

sup infljtx — f|| = inf sup|jtx — f|.
s St s

sS=t
Put r =lim,|ltx — f], ¢ = min{2A(1 —A): a<A =B} and ¢ =
max{2A(1 — A): a =A < B}. Let ¢ > 0. If r = 0, then there exists ¢, € S
such that sup, ,||zx — f|| <&/c’. So we obtain that for all s € S, t = ¢,
andA:a <A =<8,

ls(Aex + (1 = A)f) — (Astx + (1 = AN) )
S Als(Aex + (1 = X)f) = stx|[+ (1 = N)|ls(Aex +(1 = X)f) = £
SAMAx +(1 = A)f— x| +(1 = N)|Aex +(1 = X)f— ]|
=2A1 = A)|ex = | <2A(1 = N)e/c’ <e.

Let r > 0 and choose d > 0 so small that

(2) (r+d)1 —cd(e/(r+d))<r,

where § is the modulus of convexity of the norm. Then there exists 7, € S
such that for all t = ¢, ||zx — f|| < r + d. Suppose

ls(Aex + (1 =A)f) — (Asex + (1 = A)f)| =&

for some t =1ty,, s€ S and \: a =A=<L. Put u=(1 —A)(sz—f) and
v = A(stx — sz) where z = Atx + (1 — A)f. Then |ju]| < (1 —A)||z — f]|
= A1 — A)|jtx — t]| and ||o|| =< Aljex — z|| = A(1 — A)|jzx — f]|. By Lemma
1 of [15], we have

A1 = N)lstx = fll=[Au+ (1 = A)o]
A1 = A)|ex = (1 = 2A(1 = N)d8(e/ (r + d)))
<A1 = M)fex = fl[(1 = ¢8(e/(r + d)))
=M1 —=A)r+d)(1—cd(e/(r+4d))).
On the other hand, there exists s, € S such that

(r+d)(1—cd(e/(r+4d))) <Si0nsft]|tx —fll-
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Since S is right amenable, we can choose u, u; € S such that u,s, = u,st.
So we have

(r+d)(1—cd(e/ (r+ d))) <[lugsox — fll=lluystx — £
<|stx — fl| < (r + d)(1 — c8(e/ (r + d))),

which is a contradiction.

Let C be a closed convex subset of a Banach space E and D a closed
subset of C. A retraction P: C — D is said to be sunny if for each x € C,
Px = v implies P(v + a(x — v)) = v whenever v + a(x — v) belongs to
C and a = 0; see [5] and [19]. The following Proposition is due to Reich
[19]. For the proof, see Lemma 2.7 of [19].

PROPOSITION 3. Let C be a nonempty closed convex subset of a normed
linear space E whose norm is Gateaux differentiable and D a nonempty
closed subset of C. If P is a sunny and nonexpansive retraction of C onto D,
then

(Px —x,J(y — Px))=0
for all x in C and y in D, where J is the duality mapping on E.

THEOREM 2. Let C be a closed convex subset of a uniformly convex and
uniformly smooth Banach space E and let S be an amenable semigroup of
nonexpansive mappings t of C into itself. Suppose F(S) = (N {F(1): t € S}
is nonempty. Then the following conditions are equivalent:

(i) For each x € C, N _co{tx: t =s} N F(S) # .

(i1) There exists a nonexpansive retraction P of C onto F(S) such that
tP=Pt=Pforallt €S and Px € N co{tx: t = s} for each x € C.

Proof. 1t is obvious that (ii) implies (i). Suppose (i) is satisfied. Since
C has normal structure, by Theorem 1, there exists a nonexpansive
retraction of C onto F(S). Then from Theorem 4.1 of [23], there exists a
sunny nonexpansive retraction r of C onto F(S). Let Q be as in the proof
of Theorem 1 and set P = rQ. Then P is a nonexpansive retraction of C
onto F(S) such that Pt =1tP = P forallt € S. Let x € C. Put x, = Qx
and y = rx,. Then we show that y € ﬂSEB{tx: t =s}. Suppose y &
M, co{tx: t = s}. From the definition of y and Proposition 3, we have

(xo—y,J(y —0v))=0, forallv € F(S),
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where J is the duality mapping of E. Therefore from Proposition 1, we
have

(3) inf sup (2x = y,J(y = 0))Z p,(tx = »,J(y —v))

S=t
= <x0—y,J(y—v)>20

for each v € F(S). Let z € N co{tx: t =5} N F(S). Fix a constant a
such that 0 <a <1 and put y, =ay + (1 —a)z. For each r € S, let
VEly,tx]={Atx+ (1 —A)y,: 0=A=<1} be such that ||y, —z|| =
min{||u — z|: u € [,, tx]). Then ||y, — zI| < |, — z|| = ally — z|| and y,
satisfies the following inequality [11].

(4) (u—y,J(y,—2))=0 forallu€ly,, tx].

Suppose y, converges to y,. Then, since J is norm-to-norm continuous, we
have that, for given &€ > 0, there exists 7, € S such that

(tx =y, J(y,—2) =y, —2))= -
for all ¢ = ¢,,. Therefore, we have for t = ¢,
(tx =y, Iy — 2)) = (tx = 3, J(y, — 2) = J(y,— 2))
+(1x =y, J(y, = 2))
>—g+ 0= —=¢
Then it follows that for each v € M _co{tx: t = s},
(5) (0 =y, d (3, — 2))2 0.

If we set v = z in (5), then we have y, = z, and hence y = z, which is a
contradiction. So y, does not converge to y,. Then setting

y=atx+(1—a,)y, 0<a=1,

we obtain that a, does not converge to 0. Hence, there exists a positive
number ¢, so small that for each ¢t € S, there is a ¢ € S with t' = and
a, =c,. Let T={t' €8: a, =c,}. Since k = lim, ||tx — y,|| exists and k
is positive, we can choose ¢ > 0 so small that

(6) (R +€)(1 — 8(cok/ (R +¢))) <R,

where R = a||y — z|| and § is the modulus of convexity of the norm. Then
by Lemma 1 there exists ¢, € S such that

(7) lIs(cotx + (1 = ¢q)y,) = (egstx + (1 = o)yl <,
foralls € Sand ¢ =1¢,. Let t" € T such that ¢" = ¢,. Then since

la,tx + (1 = a.)y, = 2| =y, = zll=ly, — 2| = aly — 2| = R
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Ily, — z|| = Rand a, = ¢, we obtain ||c,t'x + (1 — ¢4)y, — z|| = R. Using
(7) we obtain

llegst™x + (1 = ¢o)y, = 2l =s(cot’> + (1 = o) y,) — 2| T e
<|cot’x + (1 —¢cy)y, —z| te<=R+e
for all s € S. We also know
by, —zll=daly —z|=R<R +e
and
llegst'x + (1 = ¢o)y, = vl = collst’x =y = ok

for all s € S. Then, by the definition of §, we have for all t = ¢/,

®

S _&) _
21x+(1 53 )Va— 2

=5t + (= cn =) + 500 - 2)

< (R +¢)(1 — 8(cok/ (R + €))) <R.

From (8) and ||y, — z|| = R, ||tx + a(y, — tx) — z||= R for all t = ¢" and
a = 1. Then we obtain

(tx +a(y, —tx) =y, J(y,—2))=<0
forallt =t and « = 1. From y, = ay + (1 — a)z, we obtain
(tx —z,J(y —z))—a(y—z,J(y —z))=<0
and, hence,
(tx =y, J(y —z))=— (1 —a)|y — z||2 forallz =1¢'.

Then we have
. 2
(9) inf sup (zx =y, J(y —z))= — (1 —a)ly — 2.
s<t

This contradicts (3). Consequently, we obtain that y is contained in
M, coftx: t = s}.

COROLLARY 1 (Takahashi [26]). Let C be a closed convex subset of a
Hilbert space H and let S be an amenable semigroup of nonexpansive
mappings t of C into itself. Suppose

F(S)= N {F(t):teS}# 2.
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Then there exists a nonexpansive retraction P of C onto F(S) such that
Pt=1tP =P forallt €S and Px € () co{tx: t = s} for each x € C.

Proof. Let Q be as in the proof of Theorem 1. Then we know
Ox € M co{tx: t = s} N F(S); see [26].

5. Ergodic theorems in a strictly convex Banach space. In this
section we establish the existence of ergodic nonexpansive retractions onto
the fixed point sets of commutative semigroups of nonexpansive mappings
in a strictly convex Banach space.

LeMMA 2. Let C be a closed convex subset of a strictly convex Banach
space E and let S be a commutative semigroup of nonexpansive mappings of
C into itself. Let x € C and suppose Sx is relatively compact. Then (a)
w(x) = N, {1x: t = s} is a minimal S-invariant nonempty closed set, (b) an
element t in S is affine on co w(x) and (c) co w(x) contains a common fixed
point of S.

Proof. (a) It is easy to see that w(x) is nonempty, closed S-invariant.
To show the minimality of w(x), it is sufficient to show that for each
y € w(x), w(x) Cw(y). Lety, z € w(x). Then for givene >0 and ¢ € S,
there exist ' € S and s” € S such that ||y — ¢'x|| <e&/2 and ||z — s'tt'x||
<e&/2. Thenst =t and

sty — z|| <||s’ty — s'tt’x]|| +||s'tt'x — z|| < e.

Therefore z € w(y) and, hence, the minimality of w(x) has been estab-
lished. (b) Let y, z € w(x) and ¢ € S. For given ¢ > 0, there exists 1’ € S
such that #' = ¢ and ||y — ¢'y|| < € since y € w(y). Then we show ||z —
t'z|| <e. In fact let {s,} C S be a sequence such that z = lim,, s, y. Then,
since S is commutative, we have

lz = vz <|lz = s,y + s,y — s,y +'s,y — 2's]]
=2z = syl +ly = o5l
Therefore we have ||z — ¢z|| < e. Then we obtain
ly =zl =lly =z =’y — 12|
zlly =z =lly = 'yl ~llz — ¢2|
=y = z] = 2e.

Since ¢ is arbitrary, ||y — z|| = ||ty — tz|. Thus ¢ is an isometry on w(x).
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Then by Proposition 2 of [12], 7 is affine on co w(x). (c) From (a) and (b),
co w(x) is S-invariant. Therefore it contains a common fixed point of S
[24].

THEOREM 3. Let C be a closed convex subset of a smooth, strictly
convex, and reflexive Banach space E and let S be a commutative semigroup
of nonexpansive mappings of C into itself. Suppose for each x € C, Sx is
relatively compact. Then there exists a nonexpansive retraction P of C onto
F(S) such that Pt = tP = P for eacht € S and Px € ﬂs&;{tx: t=s}.

Proof. Let x € C, x, € F(S) Ncow(x) and z € F(S). Let ¢ > 0 and
s € S. Then, since x, € co w(x), there exist elements t,(i=12,---n)in
{t: t =5} and nonnegative numbers a, (i = 1,2,---n) with 27, a, =1
such that

n
< > oatx — xg,J(xy — z)>2 —e.
i=1

So there exists a ¢; such that (¢,x — x,, J(x, — z))= —e. Then we have

sup (tx — xq,J(x, — 2z)) = —e.

s=t
Since ¢ is arbitrary, we obtain

sup (tx — xo, J(xy — 2))= 0.

st

Then since Sx is relatively compact and, hence, {¢x: ¢t = s} is compact for
each s € S, {#x: t = s} contains a point y, such that

(y,— xg,J(xy — 2))=0.
Therefore we obtain that there exists y € w(x) = ﬂsm such that
(10) (y = xq,J(xy —2))=0.
(10) implies that for each a, 0 < a < 1,
(ay + (1 = a)xy — x4, J(xg— 2))=0.
Then by [11] we have
(11) lay + (1 — a)x, — z|=|xo — 2| foralla,0<a<1.

While, since an element in S is affine and nonexpansive on co w(x), we
have that foreacha, 0 <a =<1,

(12) li¥n laty + (1 —a)x, — z||= lifn lt(ay + (1 —a)x,) — 2|
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Let u € w(x), 0 =a =1 and ¢ > 0. Then from (12) there exists 7, € S
such that

l laty + (1 —a)xy — z|| — d,< e/4

for all 1 =1¢,, where d = lim |lasy + (1 — a)x, — z||. Since u, y € w(x)
= w(y), there exists ¢ € S and t”” € S such that ¢/, 1" = ¢, [[t'y — y|| <
e/4 and ||t”y — u|| < e/4. Then we have

Hlau + (1 — a)xy — zl| =|lat”y + (1 — a)xy — z|| | < allu — ¢"y|| < e/4.
Therefore,
o+ (1~ )y — o > + (1~ a)xy — 2]~ /4

>limfJaty + (1 — a)x, — z|| — ¢/2
t

>llat’y + (1 — a)x, — z|| — 3e/4
>y +(1 = a)x, — 2] — .
Since ¢ is arbitrary, from (11) we obtain that
lau + (1 — a)xy — z|| =[xy, — z|| foralla,0 <=a=<1.

This implies (u — x, J(x, — z)) = 0 for all u € w(x). Therefore we have,
for each z € F(S),

(13) (u—xy,J(x,—2))=0 forallu €cow(x).

If y €cow(x) N F(S), then by setting u = z = y in (13), y = x,,. There-
fore we have co w(x) N F(S) = {xy}. Now we set Px = x,. Then P is
well defined on C and P is a retraction of C onto F(S) such that tP = P
for eacht € S and Px € N co{tx: ¢ = s} for each x € C. Since

{Px) =cow(x) N F(S) Ccow(tx) N F(S) = {Prx},

we also obtain Px = Ptx. We now show that P is nonexpansive. Let Q be
as in the proof of Theorem 1. Then Ox €co w(x) for each x € C. In fact,
if Ox & co w(x) for some x € C, then there exists f € E* such that

(Ox, fY<inf{(z, f):z Ecow(x)}.

Since {#x:¢=s} for each s € S is compact, we obtain y, € {1x: 7= s}
such that

irsnj (e, )= 1)
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Then we can obtain y € w(x) = M {tx: ¢ = s} such that
(y, fY<sup inf (1x, f).
s S=t
So we obtain

sup ;rg (tx, fysmp,(tx, f)={Qx, fY<inf{(z, f): z Ecow(x)}
=inf{(z, f):z€w(x)} =(y, f)<sup 1Ef[ (tx, f).

This is a contradiction. Since Qx € co w(x), we obtain
{PQx} = F(S) Ncow(Qx) = F(S) Ncow(x) = {Px)}

and, hence, P = PQ. Since Q is nonexpansive, it is sufficient to show that

I1POx — POy|<|0x — Qy| forx,y€EC.
From (13) we have
(Qx — PQx,J(PQx — PQy))=0
and
(Qy — PQy,J(PQy — PQx))=0.

Then we obtain

|POx — POY|" = (J(POx — PQy), 0x — O)
=||Pox — PQy| [Qx — Qyl.
This completes the proof.
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