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STIEFEL'S THEOREM AND TORAL ACTIONS

J. A. DACCACH AND A. G. WASSERMAN

The second Stiefel-Whitney class of an orientable manifold admit-
ting an effective codimension three toral action is shown to be Poincare
dual to the fixed point sets of circle subgroups and cyclic subgroups of
even order.

0. Introduction. Stiefel [5] proved that the second Stiefel-Whitney
class of an orientable 3-manifold is zero. A simple generalization of this
theorem is that the second Stiefel-Whitney class of an orientable (n + 3)-
manifold, M, vanishes if M admits a free action of Tn

9 the «-torus. If Tn

acts almost freely and effectively on an orientable manifold Mrt+3, that is,
if all isotropy subgroups are finite, then w2(M) need not vanish; in fact
w2(M) is Poincare dual to the fixed point sets of cyclic subgroups of even
order.

In this note, we consider an arbitrary effective action of Tn on an
orientable manifold ΛP4"3 and show that the Poincare dual of w2{M) is
represented by the fixed point sets of circle subgroups and cyclic sub-
groups of even order.

In §1 we establish some notation and give a precise statement of the
theorem. In §2 we reduce the proof of the theorem to the case of compact
manifolds having only cyclic or circle isotropy subgroups. In §3 we study
the cases of only cyclic isotropy subgroups or only circle isotropy sub-
groups and in §4 we prove the theorem by reducing to the two special
cases of §3.

1. Statement of Theorem. If M is a manifold with a smooth action
of Tn and H is any subgroup of Tn then £(M, # ) = {*£ M\ Tx

n = H)
where T" is the isotropy subgroup at x\ E(M, H) is open in F(M, H) —
{x G MI h(x) = x for all h G # } , the fixed point set of H [3]. If X is any
component of F(M, H) then X is a closed submanifold of M and
X Π E(M, H) is either empty or dense in the Tn/H space X by [3]; hence
E(M, H) is a union of disjoint closed submanifolds of M.

If Aa is a closed submanifold of a manifold Bb, the Poincare dual of
A, D(A) G Hb~a(B; Z2) ^ Hom(7^_α(£; Z 2); Z2), is defined by
(D(A)9 Z)= number of points in A fh Zmod2 where fti indicates the
intersection of A with the cycle Z in general position [4].
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If Tn acts smoothly and effectively on an orientable manifold M"+ 3,
then for any cyclic subgroup H C Tn

9 E(M,H) is a codimension two
submanifold since H must act linearly, effectively, and in an orientation
preserving manner on the three dimensional slice. If H is isomorphic to
S\ E(M, H) will in general have components of codimension two and
four; let E2(M9 H) denote the components of codimension two. Finally,
for Tn acting smoothly and effectively on an orientable manifold M"+ 3,
we define A(M) E H\M\ Z2) by

A(M)= Σ D(EJM7ΪΓ))+ 2 D(E(M9H)).

THEOREM. // Tn acts smoothly and effectively on an orientable (n + 3)-
manifold, M"+ 3, then A(M) — w2(M), the second Stiefel-Whitney class of
M.

The remainder of the paper is devoted to the proof of this theorem.

2. First reduction.

LEMMA 1. // is suffficient to prove the theorem for compact manifolds
without boundary.

Proof. We wish to prove that A(M) = w2(M) for an arbitrary orienta-
ble (n + 3)-manifold M with effective smooth Tn action. If A(M) ~
w2(M) φ 0 E H\M\ Z2) then there is a singular cycle Z E H2(M, Z2)
with (A(M) — w2(M)9 Z)ΦQ. But any such cycle is contained in a
compact, invariant, submanifold with boundary X that is Z = i*Zr for
Z' E H2(X; Z2), i: X^M. Hence

(A(M) - w2{M), Z) - (A(M) - w2(M), UZ')

= (i*A(M) - i*w2(M)9 Z')= (A(X) - w2(X)9 Z')

and so it is sufficient to prove the theorem for compact manifolds,
possibly with boundary. Finally, let Ύ = X UdxX be the double of X and
j : X^Y. Then

(w2(Y) - A(Y)9 j*Z>)= (j*A(Y) -j*w2(Y)9 Z')

= {A{X)-w2{X)9Z')

so it is sufficient to prove the theorem for Y9 that is, for compact
manifolds without boundary. D
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If Tn acts effectively on the orientable manifold AΓ + 3 , then Tf, the

isotropy subgroup at x9 can only be isomorphic to one of {e}, Z m , S\

Sι X Z m , T2 or T3 because the isotropy subgroup must act linearly,

effectively, and in an orientation preserving manner on the slice at JC.

LEMMA 2. It is sufficient to prove the theorem for compact manifold M

without boundary, such that E(M, H) — φ for H isomorphic to Γ 3, T2 or

Sι X Zm and such that E(M, H) = E2(M, H) for H isomorphic to Sx.

Proof. Let Hλ9... ,Hr be the isotropy subgroups isomorphic to Γ 3, T2

or Sι X Zm and suppose that Hx is isomoφhic to T3. Then Hx is a

maximal isotropy subgroup and hence E(M,hx) — F(M, Hx) is a closed

submanifold of M of dimension n — 3 since T3 must act effectively on

fibre of the normal bundle of F(M, Hx) in M. Let ί/be a closed, invariant

tubular neighborhood of E(M, Hλ), dU the boundary of U. Then we have

# 2 ( M , M-U\ Z 2 ) ^ H2(U, W\ Z 2 ) by excision and H2(U9 dU; Z 2 ) ^

Hn+x(U; Z 2 ) ^ Hn+X(F(M, Hλ); Z 2 ) = 0 by Poincare duality, and hence

we have in the exact sequence

if 2 ( M , M - t/; Z 2 ) -> H2{M; Z 2 ) ^ i / 2 ( M - ί/; Z 2 )

that i+ is injective and hence it is sufficient to prove i*(A(M) — w2(M))

= 0, that is^f(M - U) = w2(M - U).

By doubling M — U as in Lemma 1 we see that it is sufficient to

consider compact manifolds without boundary having isotropy subgroups

H2,...,Hr. Repeating this argument a finite number of times removes all

isotropy subgroups isomoφhic to T3. If Hs is isomorphic to T2 and if

E(M, H) = φ for H isomoφhic to T3 then E(M, Hs) = F(M, Hs) is a

closed invariant submanifold of codimension four and hence

Hn+X{F(M, Hs)\ Z 2 ) = 0 as before and we may repeat the argument.

Continuing in this manner, we remove next F(M, H) for H isomorphic to

Sι X Z m since codimension F(M, H) is four in this case and finally we

remove the components of F(M, //) , H isomoφhic to S\ whose codimen-

sion is four. D

3. Two special cases.

PROPOSITION 3. Let Tn act effectively and smoothly on the closed

orientable manifold M w + 3 with all isotropy subgroups finite. Then w2(M) —

A(M).
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LEMMA 4. With the same hypothesis of Proposition 3, Mn+3/Tn is a

closed orientable 3-manifold.

Proof. Let π: Mn+3 -* Mn+3/Tn denote the orbit map. To give a
chart (Uι9 φ7) in Mn+3/Tn it is sufficient to give a smooth invariant map
φ7: π - ' ί φ -> R3. If x G M with Γ/ = e then the slice at x9 Sx is diffeo-
moφhic to R3 [1], and we take U=TnX S,φ: Tn X S -> 5 ^ R3. If
JΓ" = Zm then S X - C X R with g E Zm acting linearly on C X R via
g(z,_ί) = (£z, 0 for ξ an mth root of unity. Define Φ: Tn X 2 S X ->CXR
viaφ(Z,z,O = ( ^ O

To prove that M/Tn is orientable we note that Tn acts freely on
M- UH^eF(M,H) so that (M - (JH^eF(M, H))/Tn is orientable
and UHφe F(M9 H)/Tn consists of isolated curves in M/Tn so M/Tn is
orientable also. •

Proof of Proposition 3. Let x E H2(M] Z2) and let x be represented by
a submanifold Q1 CM [6]. We must show <w2(M), β > = <Λ(M), Q).
We may assume that Q intersects each fixed point set F(M, H) transver-
sally, that Q Π \JHφeF(M\ H) = {p{,...,pr}, and that in a neighbor-
hood of an intersection point pt E Q Π F(M, H^), Q coincides with a
fiber of a tubular neighborhood. More precisely, there is a slice at /?,,
Sp- CXR and a neighborhood ί^ of pι in β with ί/̂  C C X 0. To
compute (w 2 (M),β) we split T(M)/Q as (9Λ+1 θ η 2 where θn+] is a
trivial bundle and then (H>2(M), g > = (w2(η2), Q) = (χ(r/2), β> =
number of zeroes of a generic section of η2 mod 2, where χ denotes the
Euler class. First note that we have a splitting T(M) = θn θ ξ3 where θn,
the bundle of tangents to the orbits, is trivial since all isotropy subgroups
are finite. We must now split | 3 / β = η 2 θf l ' , We have dπ: T{M) ->
T(M/Tn) is an epimorphism with kernel θn off the fixed point sets;
therefore dπ: ξ3 -> T(M/Tn) is an isomorphism off the fixed point sets,
and at a fixed point x of i/, dπx has rank 1. Since every orientable
3-manifold is parallelizable by StiefeΓs theorem [5], we can find vector
fields Xl9 X29 X3 which are linearly independent at every point of M/Tn.
Around each point pι we can choose a slice S' — C X R with coordinate
functions (z, t) such that π(SPι) is a coordinate chart of M/Tn at ιττ(pι)
with coordinate functions (H>, /) where τr(z, /) = (zm% t). So we can
consider in π(SPι) the vector fields d/dx9 d/dy9 3/3/ where w = (x, y).
Since, up to permutation of the indices, the frame Xλ \π(SPι)9 X2\π(SPι),
X31 π(SPι) is homotopic to the frame d/dx, d/dy, 3/3/ we can modify the
vector fields Xl9 Xl9 X3 to Xl9 X2, X3 so that in the neighborhood π(Sp)
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we have Xt = d/dx9 X2 = d/dy, X3 = 3/3/. Note that the vector field Yλ

on S Λ given by Yx = 3/3/ satisfies dπ(yx) — Xv Then on Q — Pt we have
a well defined nonzero vector field Y2 that corresponds via dπ to the
vector field X3, since dπ is an isomorphism off the fixed point set.
Restricting the vector field Yx to Ut we have that Yλ = 72 in Uι - {Pt}. So
Y2 extends to a nonzero vector field Y in ζλ Let us use this vector field to
split ξ3\Q-η2®θ. Now Z = dπ-\Xι) is a section of η 2 | β - { i > } .
Denoting by χ, the index of Z at P,. we have that χ ( η 2 ) m o d 2 =
Σ ' = 1 x ; m o d 2 . The map π restricted to Ui is given by π(z) = zm' and
dπ(Z) — 3/3^ for Z\Ui— pt. Writing this in a matrix form we have

y.mι

cos(mi — 1)0 -sin(mi — l)θ

sin(mι — \)θ cos(mi — 1)0
_ /I

0

where z — reιθ and Z = (z{, zι

2) so in \Ji the vector Z can be written in the
form Z = (l/mιr

mι)(cos(mi — 1)0,-sin(mz — 1)0) which shows that the
degree of Z at pι is 1 — m;. Then χ(τj2)mod2 is the number of /?/s mod 2
such that ra, is even. D

LEMMA 5. Let π: En+2>

(i) F{En+\ H) = E{En+\ H) = Bn+λ for some H ^ S\
(ii) £ w α« orientable manifold,

(iii) Γ" έicte effectively on En+\

2(En+3) =Then w2(En+3) =

/. Since // acts effectively on the fibers of E by (iii), T" = e for
hence ^t(£ n + 3 ) = D(Bn+λ). We have Γ(£) = π*(T(E)\B) =

π*(T(B)®v). Since i/ ^ 5 1 acts effectively on E, E has a complex
structure and is hence orientable and thus B is orientable and w2(E) —
π*(w2(B) + w2(v)). Since Tn/H ^ Tn~λ acts freely on B, B/Tn~λ is an
orientable 2-manifold and thus w2{B/Tn~λ) — 0. From the fibration/?:
B -> ̂ / Γ " " 1 we have that T(B) =p*T(B\T"-χ) Θ TF where 7>, the
tangent bundle along the fibers is a trivial bundle [1] and hence w2(B) =
/?*w2(£| Γ""1) = 0. Thus w2(E) = π*w2(v). Now any z E h2(E; Z2) can
be written as z = /^z', z' E H2(B; Z2) and z' can be represented by a
2-manifold β C 5 . Then

z ) = (D(B),z)=Qά)B mod 2
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and

— number of zeroes mod 2 of a generic section s,

where χ denotes the Euler class. But this generic section can be used to
put Q in general position with respect to B and the number of points in
the intersection s(Q) Π B is just the number of zeroes of the section. D

4. Proof of Theorem.

DEFINITION. A Tn manifold M" + 3 is said to be a nice Tn manifold if
(i) M is closed and orientable,

(ii) every isotropy subgroup is cyclic or isomorphic to S\
(iii) for H isomorphic to S\ such that E(M, H) Φ φ, E(M, H) has

codimension two,
(iv) for every component F of E(M, //), H isomorphic to S\

w2(v(F, M)) φ 0 where v(F, M) is the normal bundle of F in M.

LEMMA 6. The theorem is true for nice Tn manifolds.

Proof. Let £ b e a tubular neighborhood of UHc,s\E(M9 H) with
boundary 3ίs. Consider the cohomology Mayer-Vietoris sequence for
(Af, E, M — E) with Z 2 coefficients

-> H\Έ) Θ H\M - Ef^*2 ^

JΪ^2*H2(E)®H2{M-E).

By Proposition 3, j*w2(M) = w^M - EJ = A(M - E) =jξA(M), and
by Lemma 5 jfw2(M) = w2(E) = A(E) =jfA(M), hence w2(M) -
v4(M) G image δ. To prove the lemma it suffices to show if: H\E) ->
H\dE) is onto and hence that δ = 0. To prove that if is onto, we
consider the Gysin sequence for one component π: Ex -* F of the vector
bundle E -> U ^ 5 , £(M, //)

and note that HO(EX) ^ Z 2 since £Ί is connected and that α(l) =
7Γ*w2(^(F, JS,)) [2], and 7Γ*W2(J>(1% £,)) T^ 0 by condition (iv). Hence a is
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1-1, β is zero and i*\H\Ex) is onto. Taking direct sums over the

components of E yields if: H\E) -* H\dE) is onto. D

To complete the theorem we need one final reduction lemma.

LEMMA 7. It is sufficient to prove the theorem for nice actions of Tn.

Proof. We shall show that for any smooth effective action of Tn on an

orientable manifold Mn+2> and any x G H2(M\ Z 2 ) there exists a nice

action of Tn on a manifold M " + 3 and an x G H2(M, Z 2 ) such that

(w2(M), x)= (w2(M), x) and (A(M)9x)= (A(M)9x). Clearly that

will prove Lemma 7.

We may assume, by Lemma 2, that the action of Tn on Mn+3 satisfies

the niceness conditions (i), (ii) and (iii). Let x be represented by a closed

submanifold Q2 C M" + 3 which is transverse to F(M9 H) for every isot-

ropy subgroup H isomorphic to S1. To construct the manifold M we will

first choose an invariant neighborhood U of Q2 and then construct M so

that U is contained in M. The class x will then be represented by

β C ί / C M . Clearly then

= (i*A(M),Q)= (A(U),Q)= {

and

w2(M)9UQ)= (i*w2(M)9Q)= (w2(U)9Q)

)9Q)= (w2(M)9j\Q)

where /: U ~* MJ\ U ̂  M are inclusions.

Since Q is transverse to U ^ ^ i F(M9 H) the intersection is finite, say

{P ι,. . .,PΓ}. Also for any isotropy subgroup H — S\ F(M9 H) is an

(n + l)-dimensional oriented closed manifold with free action of Tn/H ^

Tn~\ hence F(M9 H)/Tn is a 2-manifold and π: UH^sιF(M,H) -*

UH^sιF(M,H)/Tn is a union of principal Tn~ι bundles. Choose

neighborhoods Vi of T^JP) in F(M, H)/Tn with Vt diffeomoφhic to the

open disc D2. Then T Γ " ^ ) ^ Tn/H X Vt. Let C = U ^ s . F(M, H) -

Όr

i=iχ

tιτ~\Vi). Note that C is compact and invariant and hence M — C is

an open invariant neighborhood of Q. Let U be an open invariant

neighborhood o f β , Q C U C M - C such that U C M - C and Ό is a

manifold with boundary and let Mf + 3 = double of U— U ΌdjjU—

3(ί/X/). Note that M1 is not a nice Tn manifold, in fact, the normal

bundle of every fixed point set F{MX, H) in Mx is trivial. But Mx does
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have the property that H2(F\ Z 2) Φ 0 for any component F of a fixed

point set F(Ml9 H)9 H - S\ (One could have a T2 action on M5 for

example, with F(M5, H) — S3). To prove the last statement we note that

U F(C7, H) c U F(M - c, //) = U ryfl, x

and hence
r

U F(t7, H) = U ry/f, x M̂

for ^ a compact 2-manifold with boundary C V( — D2. Thus

r

U F(Ml9 H)=\J Tn/Hι X (MK u a H , ^ )

and

To construct the manifold M we shall modify the manifold Mx by

twisting the normal bundle at each component of each fixed point set

F{Mr H), H — S] to satisfy condition (iv) of niceness. Let Fl9...,Fr be

the components of U ^ ^ i F(M{, H) and let {/*,,... ,pr} — Q Π

U / / ^ s i F ( M 1 , H) with /?z E i^, ,FZ a component of F(Mι9 H^. Choose

qt E Ft so that pι and ^ί are on different orbits. Choose a tubular

neighborhood C, of the orbit g/? diffeomoφhic to Γ71 X// C X D2.

Let

- Uc l u, ύc;

where

c; = rπ χ//ic(2) x D2, a; = r" x//;c(i) x z)2,

where C(r) denotes the closed disk of radius r in C, and/: T" XH C(l) X

3D 2 -> Γ π X 7 /C(2) X 3D 2 is given by f(t9 z9 θ) = (t9 eιθz, θ). Note that

F(M29 Ht) = F(Ml9 Ht). See Figure 1.
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FIGURE 1

Finally M is constructed by choosing M3 C M2 so that M3 is a manifold
with boundary and U ^ ^ i F(M2, if) C int M3, U C M3 and setting M =
double of M3. M clearly satisfies conditions (i), (ii) and (iii) of niceness
and Q C U C M. So we need only show that condition (iv) is satisfied. To
that end we note that v{F{Mu #.)) is a trivial bundle and therefore has a
nonvanishing section X. Then, in Af2, we have a nonvanishing section of
v(F(M29 Ht\ M2)\F(M2, Ht) - T^/H, X D2. Recall that F(M2, Ht) -
ΓV7y X (W; UdWι Wt) - Γ y j ϊ X B2 where 5 2 is a closed 2-manifold.

We shall show that (w2(v(F(M2, Ht\ H2), B2)^0. The section X
restricts to a section of KF(M2, #,-), M2) 152 - Z)2 and we want to look
at this section in local coordinates on D2. Then X: dD2 -> C has the form
*(0) = e''^(β) where deg X = 0, X: 9£>2 -. C - {()}, since X extends to}
D2 C M{ and therefore deg ^(β) = 1 and hence extending X generically
gives (χ(v(F(M2, A,)), B2) φ 0 where χ is the Euler class. D
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