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HOLOMORPHIC REPRODUCING KERNELS
IN REINHARDT DOMAINS

HAROLD P. BOAS

The orthogonal projection Po: L 2 ( Ω ) ^ L 2 ( Ω ) Π {holomorphic
functions} (the Bergman projection) is studied, together with its ana-
logue Ps: Ws(ti) -> Ws(ti) Π {holomorphic functions}, for smooth
bounded pseudoconvex complete Reinhardt domains Ω C C". It is shown
that Ps maps the Sobolev space W(&) boundedly into itself for each
r > s. Explicit formulas are computed for the representing kernel func-
tions for the case of the ball.

The Bergman projection Po for a bounded domain in CΛ, along with
the associated Bergman kernel function, has proved fundamental for the
theory of boundary behavior of holomoφhic mappings: see [3, 6] and
their references. In this paper we study the analogous projection Ps from a
Sobolev space Ws onto its holomorphic subspace, and the corresponding
reproducing kernel function Ks(w9 z), in the case of Reinhardt (multi-cir-
cular) domains. (See §1 for definitions.) In §2 we compute explicit
formulas for this new kernel function in the ball. A notable feature is the
appearance of a logarithmic term, even in the simplest case:

THEOREM 2.1. For the unit ball in C2

Kλ(w9 z) = π~2[(l - (w, z ) Γ + (w, z ) ' 1 log(l - (w, z))' 1]

where (w9 z) = ΣWjIj is the usual hermitian scalar product. For comparison
we recall that the usual Bergman kernel for the unit ball in Cn is

The "main term" of the kernel Ks(w, z) turns out to be

(n-2s)\π~n{\ - (w,z>Γ~1+2ί iίls^n;

when 2s > n + 1 the leading term involves log(l — (w, z)). Theorem 2.3
contains the details.

S. R. Bell and the author showed [5] that the Bergman projection Po

for a smooth bounded complete Reinhardt domain Ω C Cn is bounded on
C°°(Ω); in other words for each t > 0 there is N = N(t) > 0 such that Po
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is bounded from Wί+N into Wt (see also [2]). Using a different method we

now show that N may be taken equal to 0 if Ω is additionally a domain of

holomorphy; moreover the projection Ps admits the same property.

THEOREM 3.1. Let Ω C Cn be a smooth boundedpseudoconυex complete

Reinhardt domain. Then (a) the Bergman projection maps W\Q) boundedly

into itself for every t > 0, and, more generally, (b) for each integer s > 0 the

orthogonal projection Psfrom the Sobolev space W5(Ω) onto its holomorphic

subspace maps W(Ω) boundedly into itself for every t > s.

We give two proofs of this theorem. In §3 we obtain the result as a

corollary of J. J. Kohn's theory of the 3-Neumann problem with weights.

The second proof, presented in §4, is elementary in spirit (but valid only

for the convex case). In §5 we discuss a key ingredient of the second

method, an integral inequality for convex domains pointing in the oppo-

site direction to the Cauchy-Schwarz inequality; it has some intrinsic

interest.

A second lemma of independent interest, which holds for any smooth

bounded domain, says roughly that we can integrate by parts with no

boundary term if the integrand has a holomorphic factor.

LEMMA 6.1. (Holomorphic integration by parts.) Let Ω C C" be a

smooth bounded domain. For eachj, 1 <j < n, there is a linear differential

operator

the a's and b's being functions in C°°(Ω), such that for all sufficiently

regular functions f and h, with h holomorphic,

(It suffices iff, h E W\Ώ).)

Section 6 contains the proof, based on a remark of J. J. Kohn.

I thank my thesis advisor Norberto Kerzman, who suggested study of

the Ks kernel. The computations of §2 for the ball and the holomorphic

integration by parts lemma are based on a part of my thesis, as is the

discussion of interpolation spaces; the remainder of §3 and §§4 and 5 are

new.
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1. Preliminaries. Let Ω C C" be a bounded domain. The space of
complex-valued functions on Ω with square-integrable (distribution) de-
rivatives through order s is denoted WS(Ω) or simply Ws. Provided with
the scalar product

</.*>.=...?. L h -dm

and the norm \\f\\* — ( /, / ) s9 Ws is a Hubert space. Here dm is Lebesgue
measure and a and β are multi-indices. When 5 = 0we regain the usual L2

scalar product — indeed, W° = L2. The subspace of those functions in
Ws which are holomorphic is denoted HS(Ώ>).

Warning. Often Hs is used in the literature for the Sobolev space we
call Ws. We always reserve the letter H for spaces of holomorphic
functions.

By the mean-value property

\f(z)\<\\f\\oy-n^
2d{z)-" forz E Ω , / e F ,

where yn is the volume of the unit ball and d(z) is the Euclidean distance
from z to the boundary of Ω. It follows first that Hs is a closed subspace
of Ws and second that the point evaluation functional/ -> f(z) is bounded
in H° and a fortiori in ΐP.

By the general theory of reproducing kernels [1, 8] it follows that
there is a kernel function Ks(w, z) with the following properties:

(1) for z fixed, Ks( ,z) E Hs\

(3) PJ(w) = (/(0, ^ ( , w)>,, / e ^ , where />/. ^ - i/5 is the
orthogonal projection;

(4) Ks(w9 z) — Σφ/(>v)φ/(z)/||φ/||^ where {φy} is a complete orthogo-
nal system for Hs\

(5) the norm of the point evaluation functional at z is

Hence the sum in (4) converges absolutely and uniformly on compact
subsets of Ω X Ω.

The kernel Ks has also been mentioned by S. R. Bell [4].

A complete Reinhardt (or multi-circular) domain is one which,
whenever it contains a point (z,,...,zπ), also contains all points
(λjZj,... ,λπzπ) with |λy |< l,y — 1,.. >,n. In such a domain the monomi-
als za form an orthogonal system in both H° and H\ as follows by nΛolά
integration in polar coordinates; they also form a complete system since
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every holomoφhic function in a complete Reinhardt domain has a power
series expansion valid throughout the domain. By property (4) the Hs

reproducing kernel takes the form
.n—cί

(1.1) Ks{w,z) = l
α IK Ib

A bounded domain Ω C Cn is called smooth if there is a C00 defining
function p: Cπ -» R such that Ω = {z: ρ(z) < 0}, the boundary bΩ = {z:
p(z) = 0}, and the gradient of p does not vanish on bΩ.

2. The Hs reproducing kernel for the ball. In this section we

compute Ks by formula (1.1) for the special case of Ω = Bn, the unit ball
in C". It is easy to see that any unitary transformation U preserves the
Hs(Bn) scalar product. Hence Ks has the invariance property Ks(Uw9 Uz)
— Ks(w, z). If for a fixed w E Bn we choose a unitary U such that Uw has
only its first coordinate non-zero, we obtain

(2.1)

It is a straightforward induction, using the one-dimensional formula

V ( l - x)bdx = T(a + l)T(b + \)/T(a + b + 2),/
o

to show that

= 77"
k\

n)\

(see e.g. [15, page 49]).
Since the Hs norm is the sum of the W° norms of the derivatives, it

follows that, with m = min(λ;, 5),

= 7Γ
ife)!

1 + j k(n + Λ)(ik - \)(n + k - I)
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It is legitimate to extend the final summation all the way from 1 to s
because the supplementary terms (if any) are all zero. Thus

where ps is a monic polynomial of degree 2s.
The series (2.1) now takes the form

(2.2) Ks(w,z) = Fs((w,z))

where

(2.3) Fs(x) = π Σ uy
κ

x reproducing kernel for the unit ball in C 2
THEOREM 2.1. The Hx reproducing kernel for the unit ball in C 2 is

Kχ(w, z) = 7Γ"2 -. r- + η r- log -, r-

where we take the principal branch of the natural logarithm and define
x~λ log(l — x)~x at x = 0 to be equal to its limit 1.

For the proof we sum the series (2.3) with pλ(k) = 1 + k(2 + k) =
( * + I)2:

v2F(χ) - y (2 + *) ! xk _ y 2±Aχk

which is the desired result.
For n > 2 the series has the following integral representation.

THEOREM 2.2. The Hλ reproducing kernel for the unit ball inCn,n>2,
is

Kλ(w,Z) = — /
«2 - 4)/4 ;o

". In this case the series (2.3) becomes

nk+\
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The rational function (k2 + nk + I)"1 is the Laplace transform of

[1/(w

2-4)/4]~Vn'/2 sinh y/(^2-

so

= J S±1ΛL f χke-kte~n'/2smhj(n2 - 4)/4tdt

/o o fc

0 _/\ n+ 1
— xe r)

The exchange of summation and integration is justified because

e-kte-nt/2 s i

>.oo /

</ e-"'/2smh)J(n2-4)/4tdt

< Γe-"'dt< oo,
where a = n/2 - ]j(n2 ~ 4)/4 > 0.

In general the series (2.3) does not admit a simple closed form
representation, but the main term is not hard to determine.

THEOREM 2.3. The reproducing kernel Ks(w, z) for the unit ball Bn is

represented by the following asymptotic series:

(n-2s)\ 1
* , ( " > *) —n ( 1 _ / Z\)H+1-2J

X [ l + (1 — (w, z)) X p o l y n o m i a l i n ( ι v , z ) ]

00

~ 2 cj(s)(l ~ (w> z ) ) y l ° § ( l ~" ( > v ? z ) ) if2s<n;

= 25-/7
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The symbol ~ means that if the series is terminated with the rath power
then the difference between the right-hand and left-hand sides is an
analytic function of the single variable (w, z) which is bounded in
(I (w, z)\< 1} together with all derivatives through order ra.

REMARK. The asymptotic expansion of C. Fefferman [12] for the usual
Bergman kernel on a strongly pseudoconvex domain contains a logarith-
mic term in general, but this term vanishes for the ball. Theorem 2.3
shows, in particular, that for large enough s the Ks kernel inevitably
contains a logarithmic term.

To prove the theorem we have to determine the behavior of (2.3). The
result follows immediately from an elementary

LEMMA. Let S(x) = Σ™=ix
kq(k)/r(k) where q and r are monk poly-

nomials of degrees a and b, respectively, with r(k) φ 0 for k > i. Then S(x)
represents an analytic function in the unit disk with the following property:

x)

7 = 0

~ Σ c'j(\ - x)Jlog(\ - x) ifb>a+\.
j — b—a

Once again — means that if the series is stopped with the rath power then
the remainder represents an analytic function on \\x\< 1} bounded
together with all derivatives through order ra.

Proof. If b ^ a + 2 then the series for S(x) is uniformly majorized by
the convergent series Σl/k2. Hence all derivatives of S of order b — a — 2
or less are bounded analytic functions in the unit disk.

For b > a + 1 set

r(k) ~ ~"Λ Π ( J)
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with deg rλ — deg qλ > deg r — deg q. Since

= (-1) a{\ — x) a log(l — x) + (polynomial in x)

the second part follows by induction.

For b < a set

q(k) _

r(k)

with deg q2 < deg q. Since

Y xk(k + a — b)\ _ (a — b)\

0 K' (1 ~ X)

the first part follows by induction and by the second part.

3. The projection Ps in Reinhardt domains. It is well known that on

smooth bounded strongly pseudoconvex domains the Bergman projection

preserves each Sobolev space W\ r > 0. The same is true more generally

for those smooth bounded weakly pseudoconvex domains which admit

sub-elliptic estimates for the 3-Neumann problem. Reinhardt domains, on

the other hand, can have complex varieties in the boundary, which means

that sub-elliptic estimates cannot hold in general. Nonetheless we get

optimal regularity estimates for Po and also for Ps.

THEOREM 3.1. Let Ω C Cn be a smooth bounded (weakly) pseudoconvex

complete Reinhardt domain. Then (a) the Bergman projection Po: W°(Ώ) ->

H°(Ώ) is bounded from Wr(Ώ) to Hr(Ω) for every real number r > 0; and

more generally (b) for each integer s>0 the orthogonal projection Ps:

WS(Ώ) -> HS(Ώ) is bounded from Wr(ti) to Hr(ti) for every real number

r>s.

Proof. The proof is based on the regularity estimates of J. J. Kohn [14]
for the 3-Neumann problem with weights on a smooth bounded (weakly)

pseudoconvex domain. (However, we give another proof in the next

section.) It is a consequence of Kohn's work that given an integer r > 0

there exists T > 0 such that for all t > T the orthogonal projection P 0

( o

from the weighted space W°(Ώ,Qxp(-t\z\2) dm(z)) = W^ onto the sub-

space of holomorphic functions is bounded from Wr(Ω, dm) to //r(Ω, dm).

Here dm is Lebesgue measure and an index in parentheses refers to an

object relative to the weighted norm.
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When Ω is a complete Reinhardt domain the usual Bergman projec-
tion Po and the weighted projection P0

( 0 are related in a particularly
simple way. The weight function exp(-ί \z\2) has multi-circular symmetry,
so the monomials za are orthogonal with respect to the weight as well as
in the usual norms. Accordingly

i>0«>/(w) = (κP(w, z)/(z)exp(-ί|z|2) dm

where

a \\Δ 11(0

Let 911 denote the multiplication operator

Since exp(-ί|z|2) < 1, we have ||zft||(
2

0 < ||z f t | |2, so 911 is bounded (with
norm < 1) from Hr to Hr for every integer r > 0. Now

so by the cited result of Kohn,

where the constants are independent of /. This proves that the Bergman
projection Po is bounded from Wr to Hr for each integer r > 0.

To extend this result to non-integral r we have first of all to define
Sobolev spaces of non-integral order. This is done by interpolation. We
digress briefly to remind the reader of a simple method [16] for defining
intermediate Hubert spaces. We need only a special case of an elaborate
theory; for a discussion of the general case see e.g. [7].

Given two separable Hubert spaces X and Y and a continuous
inclusion i: X-> Y with dense image there is a positive (unbounded)
self-adjoint operator Λ on Y such that X is the domain of Λ and
||x||;r = ||Λx||y. Define the intermediate space [X9 Y]θ for 0 < θ < 1 as
the domain of Λ1"^ with norm equivalent to IJΛ1

 ~^JC||^.

In the case at hand X and Y are Sobolev spaces of different orders, so
the inclusion / is compact (by the Rellich lemma). Then //*: Y -» Y is a
positive compact self-adjoint operator and we may take Λ = (ιϊ*)~1/2. In
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particular if {φy} is an orthonormal basis for Y of eigenvectors of ii* we
have the representations

y= [2W Σ l«/<oo), X= [lajΨj- Σ \af λ)<ao},

and

where λy = Hφyll̂ . When X and Y are Sobolev spaces of holomorphic
functions in a complete Reinhardt domain, we may take for the system
{ψj} the monomials za suitably normalized.

One of the fundamental principles of interpolation theory is that if
Xl9 Yλ and X29 Y2 are two pairs of Hubert spaces as described and if L is a
linear operator which is bounded from Yx to Y2 and bounded from Xλ to
X2 then L is bounded from [Xl9Yx]θ to [X29Y2]Θ, ° - θ - L I ι i s

well-known for the usual Sobolev spaces Ws on a smooth bounded
domain that [W\ Wr]θ = wθr+{]~θ)s when s9 r, and θr + (1 - 0)j are
integers, 0 :< r :< s, 0 < 0 < 1, in the sense that the two spaces have the
same elements and equivalent norms. When θr + (1 — θ)s is not an
integer the preceding equation defines the space on the right-hand side.
The following natural observation does not seem to have been made
before.

THEOREM 3.2. Let Ω C Cn be a smooth bounded domain of holomorphy

{not necessarily Reinhardt). Let Hs be the subspace of holomorphic functions

contained in the Sobolev space Ws. Then

(3.1) [H\Hr]e = H9r+V-e">5

with equivalent norms, where 0 < r < ^ , 0 < 0 < 1.

Proof. It suffices to consider the case of r and s integral, the general
case following by the reiteration theorem. Considering our definition of
intermediate spaces we should note that Hs is dense in Hr\ in fact, David
Catlin has shown [9] the stronger statement that C°°(Ω) Π (holomorphic
functions) is dense in Hr for every integer r > 0.

Fixing r and s we know from Kohn that for sufficiently large t the
weighted projection P0

(ί) is bounded from Wr to Hr and from Ws to H\
and therefore by interpolation it is bounded from [W\ W]θ = Wθr+{λ~θ)s

to [Hs, Hr]θ. But /Q(/) is the identity on holomorphic functions, so the
identity maps Hθr+{X~θ)s continuously into [Hs

9 Hr]θ. Conversely, the
inclusion is bounded from Hr into Wr and from Hs into W\ hence from
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[H\ Hr]θ into wBr+{χ-9)s. Thus the identity also maps [H\ Hr]θ continu-
ously into }jθr+{X~θ)s. Therefore the two spaces coincide and have equiva-
lent norms.

The author does not know the answer to the next question.

Question 3.3. Does the preceding theorem hold if Ω is not a domain of
holomorphy?

What we needed in the proof of Theorem 3.2 was the boundedness
from Wr to Hr for all r of some projection — it could be the Bergman
projection, a weighted projection, or even one of the Sobolev space
projections.

Proof of Theorem 3.1 concluded. We showed statement (a) for integral
r\ the case of real r follows by interpolation. It remains to prove statement
(b)fors> 1.

Since the monomials za are a complete orthogonal set in Hr for every
r >: 0 equation (3.1) implies the estimate

(3.2) ||z«|ί ||zi!~" < C(r, t, 0)IMk+<i-*)r

for 0 < θ < 1, where the constant C(r, t, θ) is independent of a. (An
inequality in the other direction holds as well, but we do not need it.)

Consider the operator Us given by

Ush(w) = (κs{w,z)h{z)dm

where h is a holomorphic function. (This operator has also been consid-
ered by Steve Bell [4] in the setting of smooth bounded strongly pseudo-
convex domains.) Supposing, to ensure convergence, that h(z) = ΣCaz

a is
a holomorphic polynomial, we compute for any / > 0

\ r I 2 II « I I 4 I I « l l 2

" _ y \ C a \ \\z \\o\\z II/+2J

\\zaA

., , τ«l|2

— y \c i \\7

a\\
~ Zd l C α l \\Z \\t

2 , , Λ , , 2 \\Δ \ \ n \ \ Δ \\t + 2s

*ΊI?
2s

' ' ί + 25

by the inteφolation estimate (3.2). Therefore Us is bounded from H' to
H'+2s for every / > 0.
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To prove (b) we apply the holomorphic integration by parts lemma to

write for any / E C°°(Ω)

= Σ

= 1 USoL'τr—fiw).

Since θH/3wα loses at most s derivatives, La also loses at most s deriva-

tives, Po breaks even, and Us gains 2 s derivatives, we conclude that Ps is

bounded from Wι to Hΐ for every t > 2s. By definition Ps is bounded

from Ws to Hs

9 so by interpolation we obtain the result for all t > 5. This

completes the proof of Theorem 3.1.

4. Regularity of the projection: a second proof. In this section we

give another proof of Theorem 3.1, in the special case of a convex

Reinhardt domain, which avoids the theory of the θ-equation. The tools

we use are comparatively unsophisticated, consisting primarily in some

inequalities for integrals which ought to be better known.

There are several reasons for presenting this alternative proof. First, it

is more aesthetically satisfying to extract a kernel with a nut-cracker than

with a sledgehammer. Second, the techniques have independent interest.

Third, David Catlin has shown [10], at least for smooth bounded pseudo-

convex domains in C2, that regularity estimates in Sobolev norms for the

Bergman projection are completely equivalent to such estimates for the

Neumann operator; therefore we have an elementary proof of regularity

of the 3-Neumann problem in the very special case of smooth bounded

convex Reinhardt domains in C2.

The precise statement we are going to prove, which is weaker than

Theorem 3.1, is the following.

THEOREM 4.1. Let Ω C C " be a smooth bounded convex Reinhardt

domain. Then

(a) the Bergman projection PQ is bounded from Wr to Hr for every real

number r > 0; and more generally

(b) for each integer s > 0 the projection Ps: Ws -> Hs is bounded from

Wr to W for every real number r > s.

The key to the proof is the following lemma, which does not involve

the smoothness hypothesis.



HOLOMORPHIC REPRODUCING KERNELS 285

LEMMA 4.2. Let Ω C C" be a bounded convex Reinhardt domain. For
each multi-index β there is a bounded linear operator Mβ\ H° -» H° such
that

(41) (••£•).=(£*•••).
for all holomorphic polynomials u and v.

It is essential not only that Mβ be bounded, but also that it preserve
holomorphic functions.

Proof. The operator Mβ is determined by its action on monomials.
Setting u = za and v = zα+/* in (4.1) we find

.a = -

where (α + )8)! means (aλ + βx)\(a2 + β2)\ •••(«„ + )8Π)!, etc. The real
content of the lemma is that Mβ is hounded.

If we view H° as a sequence space /2 then Mβ acts essentially as a shift
operator followed by a multiplication operator. It is enough therefore to
show that Mβ is bounded on monomials, i.e. that

~ *

with the bound Cβ independent of α. Observing that

( a + β ) \ ( a + β)\ _{a + β \ /la + :
a\(a + 2β)\ \ β V \ β

we reduce to proving the estimate

(4.2) \\z%\\z«+2%<Cβ\\i

By setting γ = α, δ = a + 2/?, ε = f = α: + /Jin the following assertion
we get (4.2) with Cβ = 16Π^.

THEOREM 4.3. Let Ω C CΛ be a bounded convex Reinhardt domain. For
all multi-indices γ, δ, ε, f .ywcΛ ίΛα/ y + 8 = ε + ζwe have

We defer the proof of Theorem 4.3 to the end of the next section.
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Proof of Theorem 4.1. (a) First suppose r > 0 is an integer. We have to
show that if f e w then Pof e Hr and \\Pof\\r < C||/|| r, with the con-
stant C independent of /. It is the same to show for an arbitrary
multi-index β, \ β | < r, that

(i) PofeH° and (ii)

Given a holomorphic function g(z) = Σacaz
a we denote the partial

sum Σγ_α>o caz(X by Sy(g), where γ — a > 0 means γy — OLJ > 0 for ally.
Then (i) and (ii) will both follow from the estimate

(4.3) s C||A||011/11,

for all γ and all holomorphic polynomials A, where C is independent of γ,
h, and/.

To prove this estimate we invoke Lemmas 4.2 and 6.1:

where Lβ = L^] L^π. In modulus this is at most the norm of Mβ\
H° -> ̂ ° times the norm of Lβ: Wr -> fΓ° times ||Λ||0||/||Γ This proves
estimate (4.3).

We have shown that Po is bounded from Wr to Hr for integral r > 0.
Just as in §3 it follows that

[H\ Hr]θ = Her+{\-θ)s^ o < r < j , O < t f < l ,

and that Po is bounded from Wr to Hr for all real r > 0. Since the proof
of Theorem 3.1(b) made no use of 9 methods beyond these facts, we may
as well deduce Theorem 4.1(b) from the same proof. It is possible instead
to prove Theorem 4.1(b) by the same method used to prove Theorem
4.1 (a), introducing an operator Mβs analogous to Mβ.

5. Moment inequalities in convex domains. This section is indepen-
dent of the previous ones and involves only real analysis. It is devoted to
the proof of the following theorem, central to the proof of Lemma 4.2.
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THEOREM 5.1. Let G C R+ be a bounded convex domain. For every

quadruple of vectors α, b, c, d in R+ such that a + b — c Λ- d we have the

inequality

xd(5.1) ίxadm(' xb dmn<4rip-*(' xc dmί'
JG JG JG JG

where

\a-b\= 2 \*j-bj\

The constant on the right-hand side of (5.1) is not the best possible,

but it is an easy one to write. In the application the precise value of the

constant is irrelevant, but it is important that it depends only on the

difference | a — b | .

Our approach to estimating the integrals involved in (5.1) is first to

study integrals over (n — l)-dimensional slices. Fixing an arbitrary

(n — l)-tuple p = (Pi, . . . ,ρ π _i) of nonnegative real numbers we define

I(Y) = jγy? dmn_λ for any measurable set Y C R"+~
l

LEMMA 5.2. Let measurable sets Yo and Yx in R"^1 be given. For each

fixed p we have

(5.2) / ( 7 o ) λ / ( 7 1 ) 1 - λ < / ( λ 7 o + ( l - λ ) 7 1 )

for all λ E (0,1).

Proof. We follow exactly the scheme of the proof of the Brunn-

Minkowski theorem in [11, page 97]. By a standard approximation argu-

ment we can reduce to the case in which each of Yo and Y, admits a

decomposition into a finite number of closed parallelepipeds with faces

parallel to the coordinate hyperplanes, the interiors of the parallelepipeds

being mutually disjoint.

Suppose to begin that each of Yo and Yλ is a single parallelepiped.

Denoting the coordinates of the vertices of Yo by AJ and Bp 0 < A} < Bp

those of Y, by Cy and Dr 0 < C; < Dr j = 1,... 9n - 1, and setting

Pj + 1 = σ7, we compute

= "Π °j-X(Bj> ~ Λ"f), /(y,) = "Π o-\D°' - C°>),

+ (l - \)D,)°' - [\Aj + (l - λ)ς.)σ'].
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Therefore to prove (5.2) it is enough to show

(Bσ - Aσ)λ(Dσ - Cσγ~λ < (λB + (1 - λ)D)σ - (λA + (1 - λ)C)σ

for 0 < A < B, 0 < C < 7>, 0 < λ < 1, σ > 1. It is equivalent to show that
the function φ(x, y) - {x + y)° - y°, σ > 1, is logarithmically concave
for (x, y) E R 2

+ . (We recall that a continuous non-negative function /
defined in a convex region in Euclidean space is called logarithmically
concave if f{u)λf(υ)ι~λ </(λu + (1 - λ)v) for all λ e (0,1) and all u, v
in its domain.)

We show in fact something stronger: The function ψ(x, y) —
φ(x, y)x/σ is concave. To show this we must check that the Hessian matrix
of ψ is negative (semi-)definite. A computation gives

where

X(xyy) = (o-l)(x+yy-2

φ(x,yγ/a-2.

Thus

Ψ , ^ 0 , ψ^<0, and ψ,xψ^ ~ Ψ*A* = °>
which proves the result.

Next we assume inductively that the result holds when the total
number of parallelepipeds in yo and Yλ is less than k9 and suppose that Yo

and Yλ together are composed of k parallelepipeds. We may assume that
Yo contains at least two of them. There is some hyperplane, say yJ — μ,
such that some parallelepiped of Yo has no points in yj < μ and some
parallelepiped of Yo has no points in y.> μ. Let Γ, denote those paral-
lelepipeds and parts of parallelepipeds in j y < μ and Γ2 those in j>. > μ.
Similarly split Yλ into Δj and Δ2 by the hypeφlane y^ = v, where v is
chosen to ensure that

_ 7(Γ2) = I(Y0)

7(Δt) 7(Δ2)

The induction hypothesis applies to each of the pairs Γ,, Δ, and Γ2, Δ2.
Observing that λTx + (1 — λ)Δx and λΓ2 + (1 — λ)Δ2 are disjoint, we
find

7(λ70 + (1 - λ)Yι) > 7(λΓ, + (1 - λjΔ,) + 7(λΓ2 + (1 - λ)Δ 2)

= 7(r o ) λ 7(7 1 ) 1 " λ .

This completes the induction and proves the lemma.
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LEMMA 5.3. [13, 17, p. 77] If f is a non-negative logarithmically concave

function of z E [0, oo) then

is a logarithmically concave function of r E [0, oo).

LEMMA 5.4. (i) The function Γ(z + l)/z z w logarithmically concave in

z E (0, oo).

(ii) For v4 > 0 we /zfli e

Γ(l + A) <2^Γ(1 + ^ / 2 ) 2 .

/V00/. We remind the reader how to prove these fairly standard facts.

The formula

°
H 2

for z > 0 yields statement (i).

Applying (i) on the interval [0, A] (which requires invoking continuity

of Γ(z + l)/z z at the left-hand endpoint) we get

+A/2)2

1 AA (A/2)A

which is statement (ii).

Proof of Theorem 5.1. We denote points x £ G by x = (y, z) where

y E R ^ 1 and z E R + . Let G(z) = [y E R ^ 1 : ( j , z) E G}. Since by

hypothesis G is a convex domain,

λG(z) + (1 - λ)G(zO C G(λz + (1 - λ)z')

It then follows by Lemma 5.2 that

/ω =
7G(z)

is a logarithmically concave function of z E [0, oo) for each fixed p. (Of

course/(z) = 0 for all large z.)
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Observe that if f(z) is logarithmically concave on [0, oo) so is the
function zmf(z) for every m >: 0. Hence it follows by Lemmas 5.3 and 5.4
that for 0 < an < bn

JG
JG

( ( ) ) ζ b { f ( ) ) dzf (z°-f(z)) dzζzb»-««{z«»f

Γ(1)Γ(1 + K - aJ / rzΛ-.Λy2{z.af{z))ib\
T(\ + (b-α)/2f\Jo I

The analogous statement holds equally for each of the other variables.
Let us write J(α) — j G x

α dmn. We have just shown that if the ̂ -tuples
α and b differ only in they'th place then

(5.3) J(α)J(b) < 1frH j((α

Let us assume inductively that if α and b differ in at most 2k~ι places
(where k >: 1 is some integer such that 2k < n) then

(5.4) J(α)J(b) < / ( ( Λ + b)/2)22lk~x*-*.

Inequality (5.3) provides the basis step k = 1. Suppose now that α and b
differ in at most 2k places, say the first 2k places. Let αf E R+ agree with
α except in the first 2k~x places, where α' agrees with Z>, and let V agree
with b except in the first 2k~ι places, where br agrees with α. Applying the
induction hypothesis (5.4) three times we find

J(α)J(b) < J((α + α')/2)2 J((b + b')/2)2 J{αr)~x J{b')'x i^-^-'W-W

where the last step follows by the Cauchy-Schwarz inequality. By induc-
tion we conclude that for arbitrary a and b

(5.5) J(a)J(b) </((α + 6 ) / 2 ) 2 2 M

if n is a power of 2.
If n is not a power of 2 we increase the dimension by taking the

Cartesian product of the domain G with a suitable number of copies of
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the unit interval. Since there is a power of 2 between n and 2n, we

conclude from (5.5) that

J(a)J(b) <J{(a

for all n. Finally, observe that if a-\-b = c + d then

J((a + b)/lf = J((c + d)/2f < J(c)J(d)

by the Cauchy-Schwarz inequality, so (5.1) follows. This completes the

proof of Theorem 5.1.

Proof of Theorem 4 .3 . L e t

G= {{xx,...,xn): (xu...,xn) = (\zι\,...9\zn\),z E Ω } .

Then

where 2γ + 1 denotes the multi-index (2γ, + 1,... ,2γ,7 + 1). Since Ω is a

convex Reinhardt domain, G is convex. Hence Theorem 4.3 follows from

Theorem 5.1.

6. Holomorphic integration by parts. The idea behind this lemma is

that tangential derivatives contribute no boundary terms upon integration

by parts, and by the Cauchy-Riemann equations normal derivatives of

holomorphic functions can be rewritten as tangential derivatives.

LEMMA 6.1. Let Ω C C " be any smooth bounded domain. There are

first-order linear differential operators LJ9 j — 1,. . . ,n9 with C°°(Ω) coeffi-

cients, such that

for all f EL W\Ώ) and all holomorphic h E H](Ω).

Proof. We may assume/ E C°°(Ω), since this space is dense in

Via a partition of unity we reduce to the case of / with small support. If /

has compact support there is no difficulty, so we may assume s u p p / c ί /

where U is a small neighborhood (in Cw) of a boundary point p E 6Ω.

If £ is any tangential derivative in U (that is, tp = 0 where p is a

defining function for Ω) then (/, £ λ ) 0 = ( £ ' / , Λ) o where £' is a dif-

ferential operator of the same order as £ containing lower order terms

involving derivatives of the coefficients of £ and derivatives of the smooth
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mapping which flattens the boundary near /?. If U is so small that for
some k we have dρ/dzk φ 0 on ί/, then we can construct in U smoothly
varying orthonormal holomorphic vector fields £l9...,fcn such that
£ p . . . , £ n _ p and tn + tn arejangential to the boundary. Say
Σ?=1 ciJti in U with c l7 e C°°(Ω). Then since A is holomoφhic

where £ is a tangential derivative. Hence the lemma follows by the
preceding remark.
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