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ON THE REVERSE WEAK TYPE INEQUALITY

FOR THE HARDY MAXIMAL FUNCTION

AND THE WEIGHTED CLASSES L(log L)k

KENNETH F. ANDERSEN AND WO-SANG YOUNG

Muckenhoupt has given a necessary and sufficient condition to be
satisfied by the weight functions U and V in order that the Hardy-
Littlewood maximal function Mf should satisfy a weighted weak type
(1,1) inequality. In this note, conditions on the weight functions U and
V are given in order that the sense of this inequality may be reversed.
This is then applied to give conditions which ensure that the integrability
of Mf with respect to a weight implies that / belongs to a weighted
Zygmund class Llog L, thus extending a result of Stein. Analogous re-
sults related to the strong maximal function and the classes L(log L)k

are also given. These extend certain results of Favo, Gatto and Gutierrez.

If/is locally integrable on Rn, the Hardy-Littlewood maximal func-
tion Mf is defined by

where the supremum is taken over all cubes Q containing x. Here and
henceforth, by "cube" we shall always mean "cube with sides parallel to
the co-ordinate axis". As usual, | E | denotes the Lebesgue measure of the
measurable set E, and more generally if U(x) > 0 is defined on E we
write \E\U = jEU(x)dx. If Q is a given cube, RQ denotes the cube
concentric with Q but with side R times as long. Qo will denote a fixed but
arbitrary cube in Rn. Our first result is the following theorem.

THEOREM 1. Suppose the non-negative weight functions U and V are
defined on Qo. // there is a constant C depending only on U and V such that

0 ) ΊT7Γ - C e s s S UP V(x) for all cubes QCQ0,
\y\ x(ΞQ

then

(2) |{xeρo:(M/)(x)>λ}|(/>C2-"λ-1/ f(x)V(x)dx
J{x:f(x)>λ}
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holds for all non-negative f supported on Qo with jQof< co and all λ > λ 0

— \Qo\~lfQof' Conversely, if (2) holds for some constant C independent of all

f which are characteristic functions of measurable sets E C Qo with \E\> 0

and for α// λ > λ 0 = \Q0\~ι \E\, then

( 3 ) \(2Q)ΠQO\U ^ C4-" ess sup V{x)

for all cubes Q C QQ.

COROLLARY 1. Let U(x) > 0, F(x) > 0 be defined on R". If there is a
constant C depending only on [/, V such that

(4) y ^ f > C ess sup V(x) for all cubes Q C Rn

(5) |{χeΛ"

holds for all non-negative f and all λ > 0. Conversely, if (5) holds for all f
which are characteristic functions of measurable sets E C Rn with 0 < | £ " | <
oo and all λ > 0, then

\2Q\rj

(6) , ̂ , ^ C4 n ess sup V(x) for all cubes Q C Rn.
\Q\ xGQ

If U satisfies the doubling condition

12(21^ < C|β|t/ for all cubes Q

then (6) shows that (4) is both necessary and sufficient for (5). Observe
that the example U{x) ~ 1 on Rn — Qo, U{x) = oc otherwise, satisfies
(4) with U ~ V but does not satisfy the doubling condition. On the other
hand, if U is locally integrable and satisfies (4) with U= V then U

necessarily satisfies the doubling condition. To see this, note that (4) is
equivalent to

\E\v

for all measurable E C Q with j£| > 0

so that with U = V it follows that U satisfies the ,4^ condition of

Muckenhoupt [2] and hence also the doubling condition.
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The inequality (5) may be viewed as a reverse of the weak type (1,1)
inequality

\{x G R": (Mf)(x) > λ}^ < Cλ'1 ί f(x)V(x) dx
J{x:f(x)>λ/2}

which holds if and only if U9 V satisfy the Ax condition of Muckenhoupt
[3], namely, | (? l ί// |β |^ Cessinfx e e V(x) for all cubes Q. Restricting to
the case U = V9 the Ax condition implies that U satisfies the doubling
condition, and hence the weak type inequality and its reverse both hold in
this case if and only if there are positive constants c, and c2 such that
c, < U(x) < c2 for almost all x E Rn.

If U(x)~ι satisfies the Ax condition, Holder's inequality shows that
(4) holds with U = V. The functions U(x) = V(x) =\x Γ, a > 0, provide
further examples that satisfy (4).

Theorem 1 may be used to prove the following result.

THEOREM 2. Suppose f(x) > 0 is supported on Qo and that there is a
constant C > 0 such that the weight functions U(x) > 0, V(x) > 0 satisfy

101,,
(7) \n\ ~ ^ e s s s u p v(χ> fora^cubes Q c Qo

Then

implies

ί (Mf)(x)U(x) dx < oo
JQo

ί [f(x)log+f(x)]V(x)dx<ao.

Corollary 1 and Theorem 2 generalize some results of Stein [4] who
considered the unweighted case, U(x) = V(x) = I.

Let 1 < / < n and let Mι denote the Hardy-Littlewood maximal
function in the ith variable, that is

(Mtf)(x) = e s s s u p (a + b)~λ ί \f(xu...9xt-ι, x , + t9xι+ι,...,xn)\dt
a,b>0 J-a

where x — (xλ9...9xn). The following generalize certain results of Favo,
Gatto and Gutierrez [1] who considered the unweighted case, U(x) = 1.
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THEOREM 3. Let U(x)>0 be defined on Rn and let k be a fixed integer,
1 </:</?.// there is a constant C depending only on U and k such that for
each i, 1 < / < / : ,

~] ί(8) (a + b)~] ί

> C esssup U(xl9...,xi-l9xi + t9xi+l9...9xn)
~a<t<b

for all a,b>0 and almost all x G Rn

9 then

(9) \{xeR":(Mk MJ)(x)>λ}\a

holds for allλ>0 and allf> 0.

COROLLARY 2. With the same hypothesis as Theorem 3 and C > 0, //
(Mk -MJ)(x)^0 as |JC|-> oo and JE(Mk •• MJ)(x)U(x) dx < oo
for every bounded set E C Rn, then

Proof of Theorem 1. First we will prove that (1) implies (2). Since
λ > λ 0 and/is supported on QQ, λ >| Qo \~ ιfRn /so the Calderόn-Zygmund
decomposition [5, Theorem 4, p. 17] shows that there are pairwise disjoint
cubes {Qj} satisfying

(10) UβyCβo,

(11)

and

(12) f(x)<λ ifxG U Qj.

The definition of M/and (11) shows that (Mf)(x) > λ if x e Q} and then
(10) yields U β, C {x e β 0

: {Mf){x) > λ} so that

(13) lί^efio
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Now from (11) and hypothesis (1) it follows that

> 2""λ-'c2 (ess sup V(x)\lf f(x) dx

>2~"λ-'c2 f f(x)V(x)dx = 2-"\-]c[ f(x)V(x)dx,

while from (12) U Q} D {x E Rn: f(x) > λ} so that

ί f(x)V(x)dx2>f f(x)V(x)dx.
VQj J{x:f(x)>λ}

Thus (1) implies (2).
Conversely, let Q C Qo be given. Let ε > 0 and select Eε C Q with

0 <\Eε\< 2~n\Q\ so that V(x) > esssup/ e ρ V{t) - ε for x E Ee. Then
with f(x) = 1 if xEEB9 f(x) = 0 otherwise, and λ = 2" | Eε |/| β | , ele-
mentary geometry shows that (Mf)(x) < λ if x & 2Q. Thus (2) yields

ί K*)^^C4-* |ρ | (es s supF(0 - ε ) .
JE \ t<ΞQ j

|(2β) Π βolc^Kx e Qo: (Mf)(x)>λ}\u

~nTΈl ί K*)^^C4|ρ|(e
J \ t<ΞQ

Since ε is arbitrary we obtain (3). This proves Theorem 1.

Proof of Corollary 1. The proof that (5) implies (6) is similar to that
used to prove that (2) implies (3) and is therefore omitted. Now if (4)
holds and/(x) > 0, let Qo be a fixed cube and let ft{x) = f(x) iίf(x) < t
and x E tQ0,ft(x) — 0 otherwise. For λ > 0, Theorem 1 yields

(14) \{xE:RQ,:{Mft){x)>λ}\v>C2-»\-Ί ft(x)V(x) dx
J{x:ft(x)>λ}

provided R satisfies \RQ0\'1JR" ft ̂  λ a n d R - *. Note that ft{x)
and (Mft)(x) T (Af/)j» as t -> oo. Hence (5) follows from (14) by the
monotone convergence theorem, letting R -> oo first, then t -^ oo. This
proves the Corollary.

#/ Theorem 2. Assume that F(x) > 0 on a set of positive
measure in Qo for otherwise there is nothing to prove. Then (7) shows that
\Qo\υ>O. Hence, if / ( x ) 2 θ a.e. then (M/)(x) >\Q0\-ιJQJ> 0 for
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x E Qo and the hypothesis jQo(Mf)(x)U(x) dx < oc implies that/and U
are integrable on Qo, and in view of (7), Kis also. Thus it suffices to show
that

(15)
J{x:f(x)>λ0}

whereλo=|ρor'/βo/.
Fubini's Theorem shows that the left side of (15) is equal to

Γyί f(x)V(x)dx

and Theorem 1 shows that this is bounded above by

c-ι2»f"\{x ε ρ0: (Mf)(x) > λJl^λ.

This integral is bounded by

f\{x G Qo: (Mf)(x)>λ}\udλ=ί (Mf)(x)U(x) dx
J0 JQ0

so we obtain (15) and the theorem is proved.

Proof of Theorem 3. Observe first that for any fixed /, 1 < / < A:,
Corollary 1 and (8) show that

f(x)U(x)dxr
{xlGRι:(MJ)(x)>λ} Λ J{xι:f(x)>λ)

Integrating this inequality over the remaining variables yields

(16) |{jc6Λ-:(M//)W>λ}|ι/>^/ f(x)U(«)dx.

Now the proof proceeds by induction. As we have just proved, (9)
holds with k = 1. Assume that (9) holds for some k, k < n — 1. Then (16)
yields

\{xeR":(Mk+r--MJ)(x)>λ}\u

(Mk---MJ)(x)U(x)dx
{x:(Mk---Mλf){x)>\)

(Mk" Mιg)(x)U(x)dx
{x:{Mk---M[g)(x)>\]
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where we have set g(x) — f{x)/λ if f{x) > λ and g(x) = 0 otherwise.
Now

ί (Mk Mιg)(x)U(x)dx
J{x'.(Mk--Mxg)(x)>\)

' \{x: (Mk- - M]g)(x) > max(l, a)
0

>j"\{x:{Mk - Mχg){x)>a}\udaj

so that the inductive hypothesis shows this is bounded below by

x:g{x)>a} [ \ a

g(x)[logg(x)]kU(x)dx
{x:g(x)>\}

Thus we have (9) for k + 1 and the proof is complete.

Proof of Corollary 2. Since (Mk Mλf)(x) -» 0 as \x |-> oo the set
£ = (x: (Λf̂  Mxf)(x) > 1} is bounded. Thus, Theorem 3 shows

π>j{Mk- -MJ){x)U{x)dx>Γ\{x:{Mk---MJ)(x)>λ}\ud\
JE J\

-7T—TvΓ / ΊΓ/ ft*

where we have used Fubini's Theorem to obtain the last equality. This
proves the Corollary.
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