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THE MULTIPLICITY FUNCTIONS OF
INVARIANT SUBSPACES FOR

NON SELFADJOINT CROSSED PRODUCTS

BARUCH SOLEL

Let £ be the von Neumann algebra crossed product determined by a
maximal abelian self adjoint algebra U°(X) and an ergodic automor-
phism of L°°(X). The algebra £ is generated by a bilateral shift L and an
abelian algebra 91tL isomorphic to L°°( X). The non self adjoint subalge-
bra £ + of £ is the weakly closed algebra generated by L and 91tL. The
invariant subspaces of £ + are studied. The notion of multiplicity function
is analysed and it is shown that every function m with nonnegative
integral values and whose integral, over X, is not greater than the
measure of X9 is a multiplicity function. The condition is also a necessary
one. We also discuss the notion of canonical models in this setting.

1. Introduction. The invariant subspaces of non selfadjoint crossed
products were studied by M. McAsey, P. Muhly and S. K. Saito in [4].
They let £ be the von Neumann crossed product determined by a finite
von Neumann algebra M and a trace preserving automorphism, and
investigated the invariant subspace structure of the subalgebra £+ , of £,
consisting of those operators whose spectrum, with respect to the dual
automorphism group on £, is non-negative. The subalgebra £ + stands,
roughly, in the same relation to the von Neumann algebra £ as H°°(T), the
space of boundary values of bounded analytic functions on the unit disc
stands in relation to L°°(T).

Among other results, it is shown, in [4], that M is a factor if and only
if a version of the Beurling, Lax. Halmos theorem (analysing the invariant
subspaces of the bilateral shift) is valid for £ + ([4, Theorem 4.1]).

In [3], M. McAsey continued this investigation for the case where M
is a maximal abelian selfadjoint algebra. He found conditions for two full,
pure invariant subspaces for £ + to be unitarily equivalent by a unitary
operator in <3t, the commutant of £ ([3, Theorem 3.5]). To accomplish this,
the concept of a multiplicity function was introduced and studied.

In this paper we will study further properties of multiplicity functions
in the case where M is L°°(X, μ), μ is a non atomic finite measure and the
automorphism is ergodic. We show, in Theorems 3.6 and 3.7, what
functions can appear as a multiplicity function of some invariant sub-
space.
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We will also show (Theorem 4.1) what are the multiplicity functions
of the two-sided invariant subspaces (to be defined later) and we shall see
that the situation here is somewhat different than in the case when X is a
finite set (see [2]). We conclude with remarks about canonical models for
the set of the pure invariant subspaces.

2. Definitions and preliminaries. Let X be a standard Borel space
with a finite, non atomic measure μ. Let τ be an invertible measure-pre-
serving ergodic transformation on X. Using the product of the counting
measure on the integers, Z, and the measure μ and X, we can realize
Z X X as a measure space. The space L2(Z X X), of all (equivalence
classes of) functions on Z X X satisfying

f J\f(n,x)\2 dμ(x)<oo,
n= —oo X

is a Hubert space with inner product

) (f,g<ΞL2(ZXX)).

We shall write % for this Hubert space.
Define the following linear, bounded, operators on %:

(Lf)(n9x)=f(n-l9τ-ιx)9

(Rf)(n9x)=f(n-9x)9

(Lφf)(n, x) = φ(x)f(n9 x)9 φ E L»(X)9

{R9f)(n9 x) = φ(τ-*x)f(n,x), φ E L°(X).

Note that L and R are unitary operators.
Let (U\iL (respectively 9ItΛ) denote the algebra generated by {Lφ:

φ E L°°(X)} (resp. {Rφ: φ E L°°(X)}). Clearly 91tL and 9HΛ are abeUan
von Neumann algebras. The fe/ί (resp. right) von Neumann algebra crossed
product of U°(X) with τ is defined to be the von Neumann algebra t
(resp. 31) generated by 9HL and L (resp. 9HΛ and R). Define the left (resp.
right) non self adjoint crossed product to be the weakly closed algebra £ +

(resp. 3l+) generated by 91tL and L (resp. 91LΛ and i?).
In this paper we will be interested in subspaces of % that are invariant

under the algebra t+ . Corresponding results hold for 31+ -invariant
subspaces.

It is known that £ and 31 are finite factors satisfying £' = 31 and
3l' = £(see[l]).
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It can be easily seen that, for each integer n and each φ E L°°(X)9

LnLφ = Lφ o τ_nZΛ Hence Ln(ΰtLL~n = 91tL for each n in Z, and £ (resp.
£ + ) is the closure, in the weak operator topology, of the set of operators
of the form 2k

n=_kLφL
n (resp. 2k

n=0LφL
n).

DEFINITIONS. A (closed) subspace 911 of % is invariant (or £ + -
inυariant) if £ + 911 C 911. It will be £ + -reducing if £911 C 9H; jpwre if 911
is invariant and contains no (non zero) £ + -reducing subspace; and full if
the smallest £+ -reducing subspace containing 911 is %.

The following proposition can be found in [3] or [4].

PROPOSITION 2.1. Let 911 be an invariant subspace in %. Then
(1)91 reduces <ΰlL;
(2) 91L reduces £ //<md only if 9ϊt reώ/cej L;
(3) 9H ιj ^wre //and only if Πn>0 LnG)l= {0} and
(4) 9H w /w// // oΛrf only if V π < 0 L"9H = X

For each closed subspace 9H C % we write P ^ for the orthogonal
projection whose range is 9ΐt. If 9H is an invariant subspace, then 9H
reduces 9HL, hence Z^ lies in 9H^ (the commutant of 9HL). The subspace
L91t is also invariant (since 9HLL = L91lL) and, if we let % be 911 θ L91L,
then P^ lies in 91t^.

Every invariant subspace is an orthogonal sum of an £ + -reducing
subspace and a pure subspace, and each £ + -reducing subspace is the
range of a projection in <5l (see [3, Proposition 3.3 and the remark
preceding it]). Therefore, we will be concerned mainly with pure invariant
subspaces.

An important tool for dealing with invariant subspaces is the mul-
tiplicity function introduced in [2]. To define it, note that the
space % (=L2(ZXX)) may be identified with the direct integral
jx /2(Z) dμ{x), and the algebra 91L̂ , acting on it, may be identified with
/® B(12(Z)) dμ(x) where B(12(Z)) is the algebra of all linear and bounded
operators on /2(Z). (For details, see [3]).

Let 911 be an invariant subspace, then P9 the orthogonal projection on
91L θ L91L, lies in 9H^ and may be written, using the identification above,
as a direct integral j® P(x) dμ(x), where P(x) is a projection in B(12(Z))
for almost every x in X. We define the multiplicity function, m, by letting
m(x) be the dimension of the range of P(x).
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The following result is Theorem 3.4 of [3].

THEOREM 2.2. For i — 1,2 let 9H, be a pure invariant subspace. Let 91 •

be GJtι θ L91L- and mi be the multiplicity function of 9H . The following

statements are equivalent:

(1) P % = TPe&T* for a partial isometry Γ e 91, Λ? that ΰJ\Lι = Γ91t2.

(2) mx(x) < m 2 (x) α.e.

(3) />gli =< P 9 l 2 /« 9H^ (z.e. ^Λere w α partial isometry W, in 9H^, such

that WW* = Λ J W*W<P%2).

Using the arguments that appear in the proof of the theorem above

(in [3]) we can also prove the following proposition.

PROPOSITION 2.3. With the notations and assumptions of the preceding

theorem, the following statements are equivalent:

(1) 911 j = Tσ]t2 for a partial isometry Γ e 91, with initial space that

contains 9It2.

(2) mλ(x) — m2(x) a.e.

Proof. (1) implies (2): since the initial space of T contains 9H2, T

maps 91t2 isometrically onto (ΰtx and Γ* maps G3\LX isometrically onto

9H2. Hence P ^ = TP^ = T*P^T and T*^tx = 91t2. Applying Theo-

rem 2.2 we see that mλ(x) < m 2 (x) a.e. and also m2(x) < m^x) a.e.

(since 91t2 = Γ -* 9Itj and P ^ = VP^T).

Thus m^x) = m2(x) a.e..

(2) implies (3): Obvious from Theorem 2.2.

(2) implies (1): Suppose P9 L i = WW* and P % 2 = W*W (W e 9H^).

Then, by Theorem 2.2, there is a partial isometry Γ, in 91, such that

P ^ = TPβ&T*. It follows from the proof of Theorem 2.2 (see [3; Theo-

rem 3.4]) that the initial space of T is !"=-„ Θ Ln(W*W%2) and the

final space is Σ^L-^ Θ Ln(%v Since here W*W — P% , the initial space

of T is Σ^-oo θ LM9l 2. But 9ϊl 2 is pure (hence n ^ 0 L w i 3 1 l 2 = {0})

therefore
(n-\

= Σ Q β

and 9Tl2 is contained in the initial space of T. D

REMARK. From the proof of the last implication in the theorem, one

can see that if 9IL, (or 9ϊt 2) is full, then ΓΓ* = / (or, respectively,
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T*T = I). Since the algebra SI is finite, we conclude, in this case, that Γis
a unitary operator and both 91L, and 91t2 are full.

3. Invariant subspaces and the multiplicity function. In this section

we will show what are the functions that are multiplicity functions of
some pure invariant subspace. This is shown in Theorems 3.6 and 3.7.
Before we proceed to prove them we need some lemmas, the most
important of which is Lemma 3.5, which enables us to construct an
invariant subspace, with a specific multiplicity function, contained in a
specific invariant subspace.

LEMMA 3.1. Let {911J be a finite or countable collection of pure
invariant subspaces such that 911! is orthogonal to 9H-, whenever i φj. Let
m^x) be the multiplicity function o/9Hz . Then the space 911 = Σ Θ 9ϊtz is a
pure invariant subspace with multiplicity function m(x) = Σmi(x)a.e.

Proof. 9H is clearly invariant. To prove that 9H is pure we show that
Λ n>0 L"9ϊt = {0}. For this, let x be in 911, then x = Σ Θ xi9 xt G 911,.. If
xφO, then one of the xt — s, say xl9 is different from zero, hence there is
some n > 0 such that xx £ Lnζ$tv thus x & L"9H. Therefore 911 is pure.
For the multiplicity function, let % be the subspace 9H θ L9H and %t be
the subspace 9IL. θ L91t7, so that 91 = Σ Φ %and P% = Σ Φ P%. For
almost every x9 in X, [P%.(x)} is an orthogonal set of projections in
B(12(Z)) and P%(x) = Σ ® P%(x). Therefore m(x) = Σ mt(x). D

We say that an invariant sμbspace 9H is generated by some function
/ e % if 911 is the closed linear span of {LnLφf: φ e L°°(X)9 n > 0); i.e.
91L is the smallest (closed) invariant subspace containing /.

LEMMA 3.2. Let e0G%be defined as follows: eo(n, x) = 0 ifn Φ 0 and
eo(0, x) = χE(x) (the characteristic function of a measurable set E in X).
Then the invariant subspace 911, generated by e0, is pure and its multiplicity
function is χE. We will denote this subspace by 91t(i?).

Proof. For a subset B of Z X X, let L2(B) be the subspace of all the
functions in L2(Z X X) whose support is contained in B. Define Bo —
{{k9 x) e Z X X; k > 0, x G τk(E)}. Clearly e lies in L2(B0). For g e %9

«>0,andφ G

{LψL"g)(k9 x) = ψ(x)g(k - n9
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Therefore if g lies in L2(B0), so does LφLng, and the subspace L2(B0) is
an invariant subspace containing e0. Thus 9It(2?) C L2(B0). Let g be in
L2(B0) Π L°°(Z X X) and define functions gn E L*(X)9 for /i > 0, by
gn(x) — g(«, x). Then the functions (LgwLwe0}π>0 are pairwise orthogo-
nal and their sum is g. Thus g lies in 9H(is), and by the density of
L 2 (£ 0 ) Π L°°(Z X X) in L2(£0)> L2(B0) = 9ΐt(£).

Now Let 5j be the subset {(fc,x)Gί 0 ; t > l ) , then L(L2(B0)) =
L\BX) (by (*)) and

911 θ L9R, = L 2 (£ 0 ) θ L2{BX) = L2{B0\BY).

But 5 0 \ 5 i = {0} X £, thus the projection onto 91L θ L9H is
JχP(x) dμ(x) where P(x) = 0 if Λ: g £ and, for x E £, P(x) is the
projection onto the subspace Cδ0, in /2(Z), where 50(Λ) = 0 if n Φ 0 and
δo(O) = 1. Thus m(x) = rank P(x) = χE(x).

As noted above, L(L2(B0)) = L2{Bλ) and, similarly, if we let Bn be
the set {(k9 x) e ί o : f c > π}, then

and

Λ L"(M) - Λ L 2(5 n) = L2( Π BΛ) = {0}.
n>0 π>0 v «>0

Thus 9!t is pure.

LEMMA 3.3. Let E, F be measurable subsets of X with μ(E) — μ(F).
Then there are measurable subsets {En}™=0 and {-Fn}~=0 satisfying:

(1) En QEandFn C Fandeach n > 0;
(2) En Π Em = 0 am/ Fn Π Fm = 0 /or eacΛ n Φ m;
(3) μ ( £ \ U»= 0 JEn) = 0 = μ(F\ U~=0Fn); and
(4) Fn = τ " ( £ J /or έ>βc/z « > 0.

Proof. Define the sets {£n}*=0 and {Fn}™=0 inductively. For n = 0 let
E0 = F0 = EΠF. For π = 1 let F, = τ(E\E0) Π ( F \ F 0 ) and £, =
T-'ίi7,). When { ^ J ^ Q and {FΛ}*=0 are defined we let Fk+ι be
τk(E\ Uk

n=0En)Π(F\ Uk

n=QFn)<mdEk+l=T-k-\Fk+l).Thesetswe
get in this manner clearly satisfy (1), (2) and (4). For each k > 0,

Fk+ι = n ΛUF,
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and

0 =τklE\\jEn) n ( \

\ n=0 ' \ n=0 I

Hence, let E' be E\ U™=0En and F be F\ U~ = 0 F n , then τk(E') Π F
= 0 for each k > 0. It follows, from the ergodicity of T, that either
μ(£') = 0 o r μ ( F ) = 0. But

μ(E') = μ(E) - f ,»(£„) = μ(F) - 1 μ(Fj = μ(F).
n=0 n=0

Hence μ(£') = μ(F) = 0. D

LEMMA 3.4. // ̂ , Z1 αwrf {^}^=0' {^}*=o α r < ? ^ ^ ^ preceding
lemma, then:

(1) 7%e operator U= Σf=0LχFL
k is a partial isometry in £ + with

initial projection Lχε and final projection Lχf\ and

(2) the operator V'= Σf=0RχERk is a partial isometry in <3l+ with

initial projection RχF and final projection Rχ£.

Proof. It can be easily checked that, for each n E Z and k > 0,

Therefore Lχ / r L
Λ is a partial isometry with initial projection LXτ_k(Fk) and

final projection L ^ . Since LX T_Λ ( F Λ ) = L χ ^ and { L X F }, {Lχ^} are orthog-

onal families of projections, U is a partial isometry with initial projection

Σf=0LχE — LXE and final projection Σf=0LχF — Lχp. It is in £ + because

the sum is in the sense of convergence in the strong operator topology and

each of the operators L Lk is in £ + .

The statement for Fi s proved similarly. D

LEMMA 3.5. Let 9IL be a pure invariant subspace with multiplicity

function m(x) = χE(x), for some measurable subset E, in X. Let F C X be

a measurable set with μ(F) = μ(E). Then there is a pure invariant subspace

91, contained in 9IL, with multiplicity function χF.

Proof. Let 9It(Zs) be the pure invariant subspace given by Lemma 3.2.

Since m(x) = χE(x), Proposition 2.3 applies to give a partial isometry Γ,

in <3l, whose initial space contains 91t(/s), i t s fina^ space contains 9IL, and



208 BARUCH SOLEL

9IL = Γ91t(£). Since 9H(£) is the closed linear span of the set {LnLφe0:
φ G L°°(X), n > 0), and Γ commutes with £, 911 is generated by Te0

(recall that eQ(n9 x) — 0 if n Φ 0 and eo(O, x) = χ£(x)).
We assumed that μ(E) — μ(F), hence we can use Lemma 3.4 to

define the partial isometries

00 00

U= ILL* and V= ΣRXtR
k,

where {Ek}™=0 and {Fk}f=0 are given by Lemma 3.3.
Let /0 e % be defined by: fo(n, x) = 0 if n φ 0 and /0(0, x) = χ F .

Then, using properties of { £ X = 0 and

(Ueo)(k, x)=Σ XFn(x)(L"e0)(k, x) = χFk(x)χE{τ-k(x))

and

00

(VfQ)(k, x)=Σ XEn(r-k(x))(Rnfo(k, n)) = X k

If we now define/(π, x) = χFn(x), we have that/ = Ue0 = P%.
Let 9L1 be the invariant subspace generated by/. The initial projec-

tion of Fis rγ and we have
Λ-F

(RXFfo)(n, x) = XF(τ-n(*))fo("> *) =fo(n, x).

Thus the initial space of V (which is an invariant subspace, since V e 61
= Θr) contains /0, and hence contains ^\i(F) (the invariant subspace
generated by / 0 ). Therefore V maps ?ί\L(F) isometrically onto %x and,
since V lies in 61, it also maps / / ^ ( i 7 ) isometrically onto Ln%v for
each n > 0. The subspace 9ll(F) is pure (i.e. Λn> 0Lπ9IL(F) = {0}),
hence so is 91 v

Applying Proposition 2.3, for 9H(JF) and 911? we find that the
multiplicity function, nx{x), of %{ equals χF(x) almost everywhere.

Now, let 91 be the subspace T%x. Since %x is generated b y / ( = Ue0)
and t/ lies in £ + , we see that 91 x C 9!t(2?) and, therefore, Γ maps %x

isometrically onto 91. It also maps Ln%λ (n > 0) isometrically onto Ln%
and consequently 91 is pure (since 91 { is). Applying Proposition 2.3, we
find that the multiplicity function of 91 equals χF almost everywhere.

Since %x c 9IL(£), 91 = T%λ C Γ9H(£) = 9Hand we are done. D
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REMARK. With the notations of the lemma, e0 = £/*/ and / = Ue0.
Since Ulies in &(=£,%

V{LnGJ\L(E): nEZ}=£eo = £f= V{Ln%x: n E Z}.

The initial space of T is a range of a projection in % and contains 9IL(2?),
hence contains £e0. It follows that

F{L"91L: /ι G Z} = V{TLn<9l(E): n E Z} = Γ£e0 = Γβ/

= V{TLn%{:n 6 Z } = F{Ln9l: * e Z}.

THEOREM 3.6. Ifm(x) is a measurable function on Xwith values in Z +

{the non-negative integers) and Jxm(x) dμ(x) < μ(X)9 then there is a pure
invariant subspace 9H with multiplicity function m(x). Moreover, if
fxm(x) dμ(x) = μ(X) then we can find such a subspace 9ϊt that is also full.

Proof. We can write m(x) = Σ™=ιχEn, where {En}™=x are measurable
sets (not necessarily pairwise disjoint) and Σ™=λμ(En) < μ(X). Since μ is
non atomic, we can find subsets {Fn}™=ι of X, pairwise disjoint, such that
μ(En) = μ(F) for each n > 1. Let 5 n be the set {(A:, x) E Z X X; k > 0,
x E τ*(FJ}. Then it follows from the proof of Lemma 3.2 that ^t(Fn) =
L2(Bn) n>\. Since the sets {/̂ }~=1 are pairwise disjoint, so are {Bn}™=ι

and the subspaces 9H(i^)~=i are pairwise orthogonal. By Lemma 3.1, the
subspace 91 = Σ θ ^)t(Fn) is a pure invariant subspace with multiphcity
function that equals Σ^= 1 χFn almost everywhere.

Applying Lemma 3.5, we find, for each n > 1, a pure invariant
subspace 9R/Λ, contained in 91L(/^), with multiplicity function that equals
χE almost everywhere. By Lemma 3.1, the subspace 9H = Σ θ c3rίLn is a
pure invariant subspace with multiplicity function m(x) (= ΣχE).

For the last assertion, note that, when jxm(x) dμ(x) — μ(X),
U* = 1 Fn = Xand therefore U* = 1 Bn = Z + XX and 91 - L 2(Z+ XX).

But, for each n > 1, V{L^9HW: k(ΞZ} = V{LkG)l(Fn): keZ]
(see the remark following Lemma 3.5) and then,

V {LkGJ\L: kEZ} = V {LkGJtn: k<ΞZ,n>\)

= V {LkG$L{Fn)\ k E Z, n > 1} = V {L^9L: A: E Z).

Since 91 = L 2(Z+ XX)9 Lk% = L2({(«, JC): x € l , n > Λ}) and
V {Lk%: k<ΞZ}= L\Z X X). Hence 91, and also 911, is full. D

We shall show now that the condition Jxm(x) dμ(x) < μ(X) is
necessary, in order to find a pure invariant subspace with multiplicity
function m(x).
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THEOREM 3.7. Let 911 be a pure invariant subspace with multiplicity
function m(x). Then fxm(x) dμ(x) < μ(X) and equality holds if and only
if ^ is full

Proof. Suppose fxm(x) dμ(x) >: μ(X). Then, since the measure μ is
non atomic, we can find another measurable function mλ{x), with non-
negative integral values, such that mx(x) < m(x) and jxmx{x) dμ(x) =
μ(X) (and if fxm(x) dμ(x) — μ(X), then mλ(x) = m(x)). Applying the
preceding theorem we can find a pure and full invariant subspace 91^
with multiplicity function mx(x).

Since mx(x) < m(x) we can use Theorem 2.2 to obtain a partial
isometry Γ, in <&, such that 911 j = Γ91t. The final space of T is the
range of a projection in (Sί9 and, since it contains 91^, it contains
V f Z / 1 ^ : w E Z}. But 911! is full, hence the final space of T is % and,
by finiteness of the algebra 91, T is a unitary operator. Applying Prop-
osition 2.3 we have m(x) = mx(x) a.e. and, therefore, jxm(x) dμ(x) =
μ(X).

If fxm(x) dμ(x) = μ(X) then, as we have seen above, 9H = 7*911!
where 91Lj is the subspace constructed in Theorem 3.6 (for the function
m(x)). Therefore 9Hj is full and

V {Z/*9H: neZ} = V [T*Ln($Lx:n E Z}

= Γ* V { £ " % : / ! 6 Z } =9C.

Hence 91L is full.
On the other hand, suppose 91L is full. Since jxm{x) dμ(x) < μ(^) ?

we can find a measurable function mx(x), with values in Z + , such that
mx(x) > m(x) and fxmx(x) dμ(x) — μ(X). Using Theorem 3.6 and The-
orem 2.2 we can find a pure and full invariant subspace 9Hl9 with
multiplicity function mx(x), and a partial isometry Γ, in 31, such that
91L = Γ9ILlβ The final space of T contains 911, a full invariant subspace,
hence Γis a unitary operator and, by Proposition 2.3, m(x) — mx(x) a.e.
and jxm{x) dμ(x) = μ(X). D

4. Two-sided invariant subspaces and canonical models. Define a

subspace 911 of % to be two-sided invariant if it is an invariant subspace
for the algebra £ + V9l+ , the weak-operator closed algebra generated by
£ + and &+ .

In [2] M. McAsey introduced the notion of canonical models for
invariant subspaces. A complete set canonical models was defined to be a
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family of full, pure invariant subspaces {9ILJ/e/ with:

(a) for no two distinct indices / and j is P ^ unitarily equivalent to P ^

by a unitary operator in 31; and

(b) for every pure invariant subspace (D1L, there is an i in / and a

partial isometry Γin <3isuch that TP^T* = P ^ (in particular 9H = Γ9ϊlz).

In the setting of [2], the space X is a finite set, X = {x, : 0 < z < w — 1}

(with the counting measure μ) and τ(xz) = x ί + 1 (/ Φ n — 1), τ(xn_ι) — x0.

The definitions of the algebras £ and <3l and the notions of in variance and

multiplicity function are analogous to the ones in our setting.

It is shown there ([2, Theorem 4.1]) that a finite set of two-sided

invariant subspaces can be used as a set of canonical models for the pure

invariant subspaces. In order to establish this result one has to show that

for each measurable function m on X having values in Z+ and satisfying

jxm(x) dμ(x) = μ(X) (when X is a finite set Σ = 1 m ( ^ ) = n) there is a

two-sided invariant subspace with multiplicity function m. This is proved

in Theorem 3.4 of [2].

In the setting of our study this cannot always be done and, as we shall

soon see, the existence of such a subspace, for m(x), is related to whether

1 — m(x) is a coboundary or not.

THEOREM 4.1. Let m(x) be a measurable function with values in Z + and

satisfying fxm{x) dμ(x) — μ(X). Then there is a two-sided invariant sub-

space 9lt, with multiplicity function m(x), if and only if there is a measura-

ble function d, on X, with values in Z, such that

(*) d(x) - d(τ-ι(x)) = 1 - m(x) a.e.

Proof. Suppose, first, that such a subspace 911 exists. It is shown in [3,

Theorem 4.3] that there is a subset B, in Z X X, satisfying λ(B) Q B and

p(B) c B where λ(k9 x) = (k + 1, τ(x)), p(k9 x) = (k + 1, JC), and 9H

= L\B) (={fe%: f(k9 x) = 0 for (k9 x) £ B}). Define d(x) =

inf{k: (k, x) E B) where inf 0 = oo and inf Z = — oo.

Let Cx be the set {x G X: (k9 x ) E f i for each fc e Z} and C2 be the

set (x E X: (k9 x) E 5 for some fc E Z}. Since λ(B) c 5, we have that if

(A;, x) lies in B then (A: + 1, τ(x)) is in 5. Therefore τ(Cf) C Cz, / = 1,2.

It follows from the ergodicity of r that, for each / = 1,2, either ^(Q) = 0

or μ(X\Ct) = 0. If μ( Jf\C!) = 0 then (/c, x) lies in B, for every k E Z

and almost every x G X Hence 9H = L2(B) — % in this case and the

multiplicity function would be zero almost everywhere. As jxm(x) dμ(x)

= μ(X), this cannot occur and, so, μ{Cλ) = 0 and d(x) > — oo a.e.
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If μ(C2) = 0, then 911= L\B) = {0}. This also contradicts the as-
sumption about m and we have that μ(X\C2) = 0 and d(x) < oo a.e.

It follows that we can, by changing d on a set of measure zero, assume
that d is finite everywhere. To see that (*) holds we let A be the set
B\λ(B) and Aχ9 for x e X, be the set {& e Z: (fc, x)GΛ}. Since
9H = L 2(£), we have L9H = LL\B) = L2(λ(B)) and

9Hθ L9H = L2(B\λ(B)) = L2(Λ) = Γl2(Ax) dμ(x).
Jx

Therefore m(x) = number of elements in Ax (to be denoted by #(^4^)).
Note that, from the definition of d(x)9 if (k, x) lies in B then

d(x) < /c. Also, if J(x) < /c, then (d(x), x) lies in 5 and

(k, x) = pk-d{x\d{x), x) G pk-

Hence ΰ = {(ik, x): d(x) < fc) and λ(5) = {(fc, x): ^ T " ^ ) ) < k - 1}.
Thus

Ax= {kEZ:d(x)<k<

Thus m(x) = 1 + rf(τ"ι(x)) - rf(x).
To prove the converse, suppose that d satisfies (*). Let B be the set

{(k9x): d(x) < k}9 then

x):d(x) + m ( x ) - 1 < f c - 1},

and λ(5) is contained in B since m(λ ) > 0. We also have p(B) C B
because p(5) = {(fc, x): d(x) < A: - 1} C A

Hence the subspace 911= L2(B) is a two-sided invariant subspace
(see Theorem 4.3 of [3]) and 9H θ 9IL = L\B\λ(B)) (= L2(^)). Again,

4 = { i t G Z: </(x) < Λ < 1 + ^ ( T - ^ X ) ) }

- { i t e Z : rf(x) < Λ < flf(x) + m(x)}

and the multiplicity function of 91L is m(x). •

We cannot, therefore, find a complete set of canonical models among
the two-sided invariant subspaces. We can, however, find a complete set
of canonical models among the pure and full invariant subspaces.
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For each measurable function m(x), with values in Z + , satisfying
jxm(x) dμ(x) = μ(X), we can, using Theorem 3.6, construct a pure, full,
invariant subspace 911 with multiplicity function m(x). The set obtained
in this manner, to be denoted by φ, can serve as a complete set of
canonical models. Indeed, for each pure invariant subspace 911, with
multiplicity function m, there is some measurable function mx(x)9 with
values in Z + and such that mx(x) > m(x) almost everywhere and
jxmλ{x) dμ(x) = μ(X). Using Theorem 2.2 we can find a partial isome-
try T E 91 such that P ^ = TP^T* where 911! is the subspace in Shaving
multiplicity function mx(x) almost everywhere.

We conclude by pointing out that the ergodicity of r (assumed
throughout the paper) is necessary for Theorem 3.6 to hold.

PROPOSITION 4.2. If τ(E) = E for a subset E, of X, with μ(E) > 0,
μ(X\E) > 0, then there is no pure invariant subspace 911 with multiplicity
function m(x) — χE(x) + χF(x) where F C E is a subset of positive mea-
sure {even if fxm(x) dμ(x) < μ(X)).

Proof. Let Q be the set X\E. Then L2(Z X X) = L2(Z X E) Θ
L2(Z X β). Denote L2(Z X E) by %x and L2(Z X Q) by X,. Then
%i is invariant for both £ and 31 and we can write £ = £ , θ £ 2 (where
e,. = β| %t) and t ^ ^ θ ^ (where % = 3l| 9C,.).

If 911 C 5C is a pure invariant subspace, then 9H = 911! θ 91t2 where
911,. is a pure invariant subspace in %. (invariant with respect to £+1 %t)
because each %. is the range of a central projection. If m(x) is the
multiplicity function of 9H then, as one can easily see, mx(x) — χE(x)m(x)
and m2(x) — χQ(x)m(x) are the multiplicity of 911 j and 91L2.

If we assume that m(x) = χE{x) + χF(x), F C E9 and μ(F) > 0
then mx(x) = χE{x) + χF(x) and, hence, restricting our attention to %v

we see that 9ΐtj is a pure invariant subspace with multiplicity function
greater than one. Since the multiplicity function of L 2(Z+ XE) (as a
subspace of %x) is identically one, Theorem 2.2 implies that there is a
partial isometry Γ, in 91,, that maps 9Hj onto L2(Z+ XE) (note that
Theorem 2.2 and Proposition 2.3 do not use ergodicity and, hence, might
be used here). The range subspace of T contains L 2(Z+ XE) and the
corresponding projection lies in 91, hence the range of T is %x and, since
91 is finite, T is a unitary operator. This shows that mx = 1 (using
Proposition 2.3 for 9ltj and L2(Z+ X£)) a n d, thus, contradicts our
assumption. D
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