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COMPLETENESS IN SEMIMETRIC SPACES

FRED GALVIN AND S. D. SHORE

We establish interrelationships between Cauchy completeness,
McAuley's notions of strong and weak completeness, and Moore com-
pleteness in semimetrizable spaces as well as developable, 1-continu-
ously, or continuously semimetrizable spaces.

Our main result shows that a semimetrizable space may admit one
semimetric which is Cauchy complete and a second semimetric which is
developable, and yet will not admit a semimetric which is simultaneously
Cauchy complete and developable.

A distance function for a set Xis a symmetric, nonnegative real-valued
function d: X X X -» R such that d(x, y) — 0 iff x — y. We are interested
in the following "continuity properties" often associated with distance
functions. A distance function is developable [PC] iff, for any sequences
(xn) and (yn) in X and any p E X, lim d(xn, p) — lim d(yn9 p) — 0
implies that lim d{xn, yn) — 0; it is \-continuous iff, for any ^ 1 ,
lim d(xtV p) = 0 implies that lim d(xn, q) = d(p, q)\ it is continuous iff
lim d(xn, p) — lim d(yn, q) — 0 implies that d(xn9 yn) = d{p9 q)\ and it
is a metric iff it satisfies the triangle inequality. Obviously, any metric is
continuous, and any continuous distance function is both 1-continuous
and developable; no other implications hold [B].

A topological space (X, ?Γ) is semimetrizable iff there is a distance
function d for X such that, for any nonempty subset A of X, the closure of
A in(X,5Γ) is {> GX\d(x9A] = 0}, where

d(x,A] = i n f {d(x,a)\a E A).

In this case we say that d is an admissible semimetric for (X,^); if, in
addition, d is developable, then we say that d is an admissible developable
semimetric for (X,^) and that (X,^) is developable semimetrizable. We
treat the notions of \-continuously semimetrizable and continuously semi-
metrizable similarly.

It is natural to raise the question of whether or not the set of all
spheres, Sd(x9 e) = {y E X\ d(x9 y) < ε), determined by a distance func-
tion d is a base for a topology and whether or not this is equivalent to
being an admissible semimetric. It is obvious that d is an admissible
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semimetric if and only if, for eachp E X, the set {Sd(p, έ)\ε> 0} of all
spheres centered at p is a neighborhood base for p. Hence, if d is an
admissible semimetric for (X,^) whose spheres are open, then the set of
all spheres is a base for ?Γ; the converse may fail. Moreover, when d is an
admissible semimetric for a topological space (X, <ίΓ), there may be
spheres that are not open (see, for example, Lemma 2.2); indeed, Heath
[HJ has a well-known example of a semimetrizable space in which, for
any admissible semimetric, its set of spheres is not a base for the topology.

On the other hand, the situation is much simpler if the distance
function satisfies a "continuity" condition. For example, if d is a 1-con-
tinuous distance function for X, then there is a topology ?Γ such that d is
an admissible semimetric for (X9^) and the set of all spheres is a base for
5. Also, a topological space is developable semimetrizable if and only if
there is an admissible developable semimetric for the space whose set of
spheres is a base for the topology.

Our study focuses on appropriate completeness conditions for semi-
metrizable spaces and how these interact with the continuity properties.

1. Cauchy completeness versus McAuley completeness. A semi-

metrizable space (X9

<3) is Cauchy complete iff it admits a semimetric d
such that every d-Cauchy sequence converges (where, of course, a se-
quence (xn) is d-Cauchy when, for each ε > 0, there is k such that
d{xn, xm) < ε for any n9m>k)\ in this case we say that d is an
admissible, Cauchy complete semimetric for (X9

(5) and that (X9

(3) is
d-Cauchy complete.

This is the first of the completeness concepts that we wish to consider.
The study of completeness in semimetric spaces essentially began with two
other notions introduced by McAuley in 1956 (see [Me]).

A semimetrizable space (X9

(3) is strongly complete iff it admits a
semimetric d such that every decreasing sequence (Fn) of nonempty
closed sets with Fn C Sd(xn, 2~n) for some xn E ^has nonempty intersec-
tion; in this case we say that d is an admissible, strongly complete
semimetric for (X9^) and that (X, ?Γ) is d-strongly complete.

Similarly, (X9^i) is weakly complete when it admits a semimetric d
such that every decreasing sequence (Fn) of nonempty closed sets with
Fn C Sd(xn, 2~n) for some xn E Fn has nonempty intersection.

The relationships between Cauchy completeness and McAuley's no-
tions of completeness are immediately established, for the most general
case, in the following theorem. Our focus is on what more can be said if
the distance function has a stronger form of continuity.
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1.1. THEOREM. // d is an admissible semimetric for (X, <JΓ), then the
following are equivalent:

(1) (X, 5~) is d-weakly complete;
(2) each d-Cauchy filterbase of closed sets converges;
(3) any decreasing sequence (Fn) of nonempty closed sets has nonempty

intersection, when the diameter of Fn — sup{d(.x, y) \x9 y E Fn) < 2~n for
each n;

(4) each d-Cauchy sequence in X has a convergent subsequence.

Proof. The equivalence of (1) and (4) was essentially noted by
McAuley [Me], whereas the other equivalences follow easily from the
definitions. Our proof makes use of the well-known fact that d is admissi-
ble for (X, ?Γ) if and only if ?Γ is first countable and a sequence (xn)
converges to p iff d(xn, p) -> 0.

1.2. REMARK. It is now obvious that, if (X, ?Γ) is d-strongly complete
or d-Cauchy complete, then (X, ?Γ) is d-weakly complete. The following
remarks show that the converse fails.

1.3. REMARK. A Cauchy complete space need not be strongly com-
plete.

Consider the Niemytzki space Γ (see [GJ; 3K]). If the distance
between points is the diameter of the smallest closed disc in the upper half
plane that contains the two points (with 1 as the maximum distance
between any two points), then this is an admissible continuous semimetric
for Γ such that every Cauchy sequence converges (see [K]).

On the other hand, Heath [H3] has shown that any regular, separable,
strongly complete semimetrizable space is metrizable. Since Γ is not
metrizable, it follows that Γ is not strongly complete.

Notice that this example also shows that a continuously semimetriz-
able, weakly complete space need not be strongly complete.

1.4. REMARK. A topological space may admit a strongly complete
developable semimetric that is not Cauchy complete.

First, note that, if (X, ?Γ) is countably compact, then every admissible
semimetric for (X, <ST) is strongly complete. Moveover, if (X, ?Γ) is develo-
pable semimetrizable and (xn) is any sequence of distinct points in X9

then there is an admissible, developable semimetric d for (X, ?Γ) such that
(xn) is a d-Cauchy sequence; hence, if (X, ?Γ) is a developable semi-
metrizable space with a divergent sequence of distinct points, then (X, 9~)
admits a developable semimetric that is not Cauchy complete.
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Now, let (X, ^) be any compact metrizable topological space with at
least two non-isolated points. Then, (X9$) does admit a developable
semimetric (and, therefore, a strongly complete one) that is not Cauchy
complete. For example, let X be the subspace^ U B U {0,1} of the space
of real numbers with the usual topology, where A is the set of all numbers
2~n and B is the set of all numbers 1 + 3~n for any positive integer n.
There is an admissible developable semimetric for (X9

<5) such that
d(x, y) =\x — y + l\9 iί x EA and y E J5, and, otherwise, d(x, y) —

I x — y I however, there is a d-Cauchy sequence that fails to converge
(e.g., x2n = 2"2n and, otherwise, xn = 1 + 3"").

Finally, stronger continuity assumptions can produce stronger com-
pleteness interrelationships.

1.5. THEOREM. For any l-continuous semimetric d, (X9^) is d-Cauchy
complete if and only if it is d-weakly complete.

Proof. Let d be an admissible 1-continuous semimetric for (X9

(5) and
(xn) be a d-Cauchy sequence that has a subsequence (JC ° kn) which
converges to/?; it follows that

limd(xrt, p) = lim limd(xn, x ° km) — 0.
n n m

That is, if d is 1-continuous, then any J-Cauchy sequence with a conver-
gent subsequence is convergent. Therefore, if (X, ?Γ) is d-weakly complete,
then (X, ?Γ) is c/-Cauchy complete; the converse always holds.

2. Cauchy complete and developable semimetrics. Our results of the
preceding section were obtained in answer to questions of how Cauchy,
strong, and weak completeness interrelate and of what more can be said in
the presence of stronger continuity properties. A question that follows
easily in this context is this: Suppose that a semimetrizable space admits
two semimetrics, one that has a strong continuity property and another
that has a nice completeness property. Is there an admissible semimetric
for the space that has both the continuity property and the completeness
property?

We have solved this problem (in the negative) for the case of Cauchy
complete and developable semimetrics with the following theorem.

2.1. THEOREM. A semimetrizable space may be Cauchy complete and
developable and yet admit no semimetric which is {simultaneously) Cauchy
complete and developable.



COMPLETENESS IN SEMIMETRIC SPACES 71

We claim that the Isbell-Mrόwka spaces ψ^ provide such an example.
Recall that, for any family 61 of infinite, almost disjoint subsets of N

(the set of natural numbers), there is a topology for N U 31 such that each
« 6 N i s isolated and each A E 6t has a countable local base, consisting
of sets of the form {̂ 1} U (m E A \ m > ή) for each n E.N. (In this case a
family is almost disjoint if the intersection of any two distinct members is
finite.) Following [GJ; 51], we denote this space by ψ a.

It is well known that these spaces are completely regular, Hausdorff,
but not normal (and, therefore, not metrizable), when the family 61 is
infinite and maximal. For more information concerning these spaces, we
refer the reader to [GJ].

2.2. LEMMA. For any family 61, there is an admissible Cauchy complete
semίmetric for ψ a.

Proof. There is a distance function dλ for N U 61 such that, for

, otherwise.

dx is an admissible, Cauchy complete semimetric for ψa.

2.3. LEMMA. For any infinite\ maximal family 61, there is an admissible
developable weakly complete semimetric for ψ^ that is not Cauchy complete.

Proof. There is a distance function d2 for N U 61 such that, for x Φy,

IV 1, if* Gy e 6 l ;

d2(x,y) = d2(y9x) = j ^ - i -y~ι\, ifχ9y E N ;

[l , otherwise.

d2 is an admissible, developable semimetric for ψ^ such that any d2-Cauchy
sequence has a convergent subsequence (i.e., d2 is weakly complete). But,
not every d2-Cauchy sequence converges; in particular, (n) is a d2-Cauchy
sequence that does not converge.

2.4. REMARK. By using an argument similar to that in Remark 1.3, it
follows that ψa is not strongly complete when 61 is an infinite, maximal
almost disjoint family. From this and Lemma 2.3 we conclude that the
converse of Remark 1.2 may fail; that is, even for developable distance
functions d, (X,^) may be d-weakly complete without being either
<i-Cauchy complete or d-strongly complete.
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2.5. REMARK. We intend to show that, for any maximal almost
disjoint family 91, ψa does not admit a developable, Cauchy complete
semimetric. But first, we give an easy cardinality argument which shows
that, for most choices of 91, there is no admissible, developable, Cauchy
complete semimetric for ψ^.

Let us call two subsets of N equivalent if their symmetric difference is
finite, and two maximal almost disjoint families 91 and 91* equivalent if
91* may be obtained from 91 by replacing each A E 91 by a set A* that is
equivalent to A. Note that, if d is an admissible developable semimetric
for (X, ?Γ), then each convergent sequence is d-Cauchy. Hence, if d is a
developable and Cauchy complete semimetric for ψ^, then the family 91 is
determined (up to equivalence) by the values d takes on N X N. Now,
there are only 2S° such semimetrics on N, while there are 22*0 inequivalent
maximal almost disjoint families of subsets of N. Consequently, most of
the spaces ψ^ do not admit Cauchy complete developable semimetrics.

2.6. LEMMA. For any infinite, maximal family 91, there is no admissible
semimetric for ψ a which is both Cauchy complete and developable.

Proof. Suppose, on the contrary, that d is an admissible Cauchy
complete and devlopable semimetric for ψ a where 91 is maximal and
infinite.

We may assume that the range of d is contained in {0} U [n'λ\n E
N} otherwise, replace d by an equivalent semimetric d* with, for x ¥= y,

Therefore, if (xn) is not a d-Cauchy sequence, then there is a subsequence
(xk ) such that d(xk ,xk ) — d(xk , x k ) for all m.

Now, for each / E N, choose distinct Ax, E 91 and define A* =
Aέ\ ^lj~=\ Aj. Thus, we obtain the pairwise disjoint family {̂ 4* |ί E N}.
Let {atJ \j E N} be an enumeration of A* without repetition.

For any set 5, [S]8 is the set of all 8-element subsets of S.
Define a partition of [N]8 into two sets / and K as follows: X E / iff

d(aiι*2> ah0 = d(ai5ie> ah0> w h e r e X = {*\> *2> h> *4> '5> h> h> h) i s a n

increasing listing of X.
It follows from Ramsey's Theorem [Ra; Theorem A] that there is an

infinite set M C N such that [M]8 C / or [M]8 C K. We intend to show
that neither alternative is possible and, thereby, arrive at a contradiction
which will establish Lemma 2.6.



COMPLETENESS IN SEMIMETRIC SPACES 73

First, [ M ] 8 C / is impossible. Otherwise, let {in\n E N} be an in-

creasing enumeration of M. The maximality of 61 insures that any

sequence of distinct elements in N has a convergent subsequence. How-

ever, the sequence (ai2 _χii ) has no d-Cauchy subsequences and, there-

fore, no convergent subsequences (since d is developable).

But also, [ M ] 8 C K is impossible. Otherwise, for any increasing

sequence (in) in M, the sequence (fl, 2 l I_ l l2π) is d-Cauchy and, therefore,

convergent. We shall refer to sequences of this form as M-sequences.

Now, note that all M-sequences converge to the same point in 91. (To

see this, observe that, for any two M-sequences, there is a third M-se-

quence which has a subsequence in common with each of the first two.)

Let B denote the (common) limit of all M-sequences; since no M-sequence

can converge to any of the points An we conclude that B φ Ai for each

/ G N .

Since <3l is almost disjoint, for each / E N we have atj & B for all

sufficently large j . Hence, we can find an increasing sequence ( i n ) in M

such that at _ t <ί B for all n. Since {aι _ ι ) is an M-sequence and

does not converge to 5, we have a contradiction.

Lemmas 2.2, 2.3 and 2.6 establish a proof for Theorem 2.1.

2.7. REMARK. J. Roitman has pointed out that a proof of Lemma 2.6

also follows from some results of A. R. D. Mathias.

Let 5 be the ideal in ^P(N), the Boolean algebra of subsets of N, that is

generated by the maximal almost disjoint family 91 along with the finite

subsets of N. According to Mathias [M; 0.7, 4.6], ^ ( N ) \ ί cannot be

analytic.

However, if d is an admissible Cauchy complete developable semimet-

ric for ψ a , we have that X E (^P(N)\ί) if and only if there are infinitely

many d-Cauchy sequences of distinct points in X such that the " union" of

no two of them is d-Cauchy.

Now, let B be the set of all points ( x j ) E 2 N X N N X N such that, for

U j , m, « 6 N , (1) {ytJ\i9 E N ) Q{n\xn= 1); (2) If m Φ n, then

Vim ̂ y^ (3) (ytn) is a d-Cauchy sequence', and (4) if i φj\ then (yιl9 yβ9

yι2, yJ2,- -) is not a d-Cauchy sequence. Note that B is a Borel set (in fact,

an Fσδσδ). If we identify ^(N) with 2N in the usual way, then 2 N \ ί is

precisely the projection of B (in the first coordinate). Thus, ίP(N)\ί is the

projection of a Borel set (i.e., analytic) which, of course, contradicts the

results of Mathias.

3. Concerning developments. A topological space (X, 5") is develo-

pable in the sense of R. L. Moore iff it is a Γ rspace for which there is a
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sequence (§n) of open covers of X (called a development) such that
®n+\ C §n for each n and, for each p E X, {st(p, g j \n E N} is a local
base for/?, where st(/?, §n) = U{G|/? E G E βn} in this case we say that

, ?Γ) admits the development (%n) or that (§n) w α development for
). (The previous use of developable semimetrizable is, of course,

intentional; see Theorem 3.1 below.)
A Moore space is a regular Hausdorff space that admits a develop-

ment.
A development for a topological space (X, ?Γ) is complete when any

decreasing sequence (Fn) of nonempty closed sets such that FnQ Gn for
some Gn E Sπ has nonempty intersection. We address the question of how
this notion of completeness relates to the (distance function) notions of
completeness that we have considered previously.

Again, our results center around developable semimetrics. In this case
the useful known results are these. A distance function for X is developa-
ble if and only if there are spheres of arbitrarily small diameter centered
at each point of X. Hence, if d is an admissible developable semimetric for
(X, ?Γ), then the set Sn of all open sets of diameter less than or equal to
2~n is an open cover of Xso that (§M) is a development for {X,$).

On the other hand, if (§n) is a development for (X, ?Γ), then there is
a distance function d for X such that d(x, y) = 2~n, where n is the first
integer such that x £ st(j>, §n). It follows that d is an admissible develop-
able semimetric for (X,$) with Sd(p,2'n) = st(/?, §n).

These standard techniques (see, for example, [Me], [Re], [S], and
references therein) for relating distance functions and developments lead
directly to proofs for each of the following theorems.

3.1. THEOREM. A topological space (X9^) is developable semimetriz-
able if and only if it is developable in the sense of R. L. Moore.

3.2. THEOREM. If (X,^) admits a weakly complete, developable semi-
metric, then there is a complete development for (X, ?Γ).

3.3. THEOREM. (X, ?Γ) admits a strongly complete, developable semimet-
ric if and only if (X,§) is sequentially complete (i.e., it is a Tx-space for
which there is a development (§n) such that every decreasing sequence (Fn)
of nonempty closed sets with Fn C st(xn, §n) for some xn E X has nonempty
intersection).

3.4. REMARK. Our Theorem 3.3 clarifies and generalizes several results
in [Re; see Lemmas 1 and 2 in particular], where sequentially complete is
defined and attributed to D. R. Traylor.
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There is, of course, an analogous theorem to 3.3 for spaces that admit
weakly complete, developable semimetrics.

REFERENCES

[B] Carlos J. R. Borges, On continuously semimetrizable and stratifiable spaces, Proc.
Amer. Math. Soc, 24 (1970), 193-196.

[GJ] L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nostrand &
Co., Princeton, N.J., 1960.

[H,] Robert W. Heath, A regular semi-metric space for which there is no semi-metric
under which all spheres are open, Proc. Amer. Math. Soc, 12 (1961), 810-811.

[H2] , Arc-wise connectedness in semi-metric spaces, Pacific J. Math., 12 (1962),
1301-1319.

[H3] , Separability and#x-compactness, Colloq. Math., 12 (1964), 11-14.
[K] Steven A. Kenton, Neometric Spaces, Dissertation, University of New Hampshire,

1971.
[M] A. R. D. Mathias, Happy families, Ann. Math. Logic, 12(1977), 59-111.
[Me] Louis F. McAuley, A relation between perfect separability, completeness, and

normality in semi-metric spaces, Pacific J. Math., 6 (1956), 315-326.
[PC] A. D. Pitcher and E. W. Chittenden, On the foundations of the calcul fonctionnel of

Frechet, Trans. Amer. Math. Soc, 19 (1918), 66-78.
[Ra] Frank P. Ramsey, On a problem of formal logic, Proc. London Math. Soc, (2) 30

(1930), 264-286.
[Re] G. M. Reed, On metrizability of complete Moore spaces, Pacific J. Math., 50 (1974),

595-599.
[S] S. D. Shore, Coherent distance functions, Topology Proceedings, 6 (1981), 405-422.

Received April 12, 1982 and in revised form May 12, 1983. The first author received
support from NSF grant MCS 77-02046 AOL

UNIVERSITY OF KANSAS

LAWRENCE, KS 66045

AND

UNIVERSITY OF N E W HAMPSHIRE

DURHAM, NH 03824






