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DEFICIENCES OF IMMERSIONS

URI SREBRO

Dedicated to Steve Warschawski

Let X and Y be manifolds of the same dimension n = 2 and let f:
X — Y be an immersion with p = sup{n(y): y € Y} < oo where n(y)
= cardinality /'(y). If Y is compact and X is not, then n(y) < p for
some y € Y, see §2. If Y is compact and simply connected and p = 2,
then Y contains a compact set E such that Y — E is not simply
connected and n(y) <p — 2 for all y € E, see §5.

1. THEOREM. Let X be a non-compact n-manifold, Y a compact n-mani-
fold and f- X — Y an immersion. If p = max ,cyn(y) < oo, then n(y) <p
for some points y € Y. In particular, if y = lim,_, , f(x,) for an infinite
sequence of distinct points x, € X which does not accumulate in X, then
n(y) <p.

Proof. Suppose that n(y) =p with f~'(y) = {a,,...,a,}. Choose
disjoint closed cells U, in X such that a; € int U, and such that f| U is
injective for 1 <i <p. Then x, € U U for almost all k. Now choose a
neighborhood ¥V of y such that ¥ C M7~ f(U;) and let V; denote the a;
component of f~!(¥V). Then f maps each ¥, homeomorphically onto ¥ and
hence n(y”) = p for all y* € V. It thus follows that f(x,) & V for all x,
in X, = X — UV, that is for almost all x,. Hence f(y,) » y, contradict-
ing the assumption f(x,) — y, and thus n(y) <p.

2. REMARK. For compact manifolds X with boundary Theorem 1 says
that n(y) <p for every y in the cluster set of f on dX. This contains a
result of Brannan and Kirwan [1, Theorem 1] as a special case.

3. Suppose that X is non-compact, that Y is compact and that
1 <p = max n(y) < co. We say that f has a deficiency at a point y € Y if
n(y)<p—2. The set A={y € Y: n(y)<p— 2} will be called the
deficiency set of f. It is not hard to construct immersions, for instance of
S!' X R into S' X S' with empty deficiency set. The purpose of this note
is to show that if Y is simply connected, then the deficiency set A is
non-empty and, in fact, it is quite large.
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4. THEOREM. Let X be an n-manifold and Y a simply connected compact
n-manifold, n =2, and let f: X - Y be an immersion with 1 <p =
max n(y) < oo. Then the deficiency set A contains a compact subset E such
that Y — E is not simply connected.

5. REMARK AND NOTATION. The proof is based on two elementary
lemmas and on application of the monodromy theorem to a certain
extension of f. The extension of f is essentially the same as in Lyzzaik and
Styer [2, §2]. The following notation will be used: For r > 0 and @ € R",
B"(a,r)={x €R" |x —a|<r}, B*(r) =B"(0,r), B"= B"(1) and in
particular B2 = {z € C: |z|< 1}. We say that a compact set E in a simply
connected space Y is m-negligible if Y — E is simply connected. In this
notation, Theorem 4 asserts that the deficiency set 4 has compact subsets
which are not «,-negligible in Y.

6. LEMMA. Let H: B* - R” be a continuous function with H(—1) € B"
and H(1) & B". Then H (3B") contains a continuum C which meets both
components of 3B* — {—1,1}.

Proof. By the Jordan separation theorem F = H ™ '(3B") separates the
points —1 and 1 in B2 Let B, denote the connected component of
B? — F, which contains the point —1, and let B, be the connected
component of C — B,, which contains the point 1. Then C = 8B, N B? is
the desired continuum.

7. LEMMA. Let A be a closed set in R". If every compact subset E of A
such that R" — E is connected is m,-negligible then

()int4 = @.

(ii) U = R" — A is connected.

Proof. (i) is trivial.

(i1) Suppose that U is not connected. Choose points @, and a, which
belong to different connected components of U. Since 4 is closed there is
r > 0 such that B"(a,,2r) C U,i = 1,2. Let

G= U B"(ta,+ (1 —1t)a,,r)
0=r=1

and E = 4 N 0G. Now choose points b, € dB(a,,2r), i = 1,2, so that a,,
a,, by, b, are vertices of a rectangle R. Since R" — E is simply connected,
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there is a continuous function H: B> - R" — E mapping B2 homeomor-
phically onto R. We may assume that H(—1) = a,, H(1) = b,, H(i) €
0B"(a,,r) and H(—i) € 0B"(a,,r). By Lemma 6 there exists a con-
tinuum C in H~'(3G) joining the components of dB> — { —1,1}. Hence
C’ = H(C) is a continuum in 9G joining 0”B(a,,r) and 3"B(a,, r).
Hence a, and a, can be joined by a continuum in U, contradicting the
assumption that U is not connected.

8. Proof of Theorem 4.. Let A, = {y € Y: n(y) = k}. Then 4, and
A, U A4,_, are open and hence the deficif:ncy setA =Y —(4,UA4,_))is
compact. Consider the disjoint union X = X U 4,_; with the topology
containing the topology of X and the topology of int 4, _,, which makes
the extension f: X > Y of f, f(x) = f(x) for x € X and f(x) = x for
x €A, ,, a local homeomorphism. Obviously, f is a local homeomor-
phism in X Uint 4,_,. Fory € 4, N 4,_, with f'(y) = {x,...,x,_,}
choose disjoint cells U; in X with x; € int U, and such that each f| U, is
injective, 1 <i <p. Now let V be an open set in M f(U;) containing y.
Then f maps U, = f~'(¥) — U U, homeomorphically onto ¥ N A, and f
maps U= U, U (VN 4,_,) injectively onto V. Such sets U form a base
of neighborhoodsofy € 4, N 4,,_,.

Suppose now that Theorem 4 is false, i.e., all compact subsets E of 4
such that Y — E is connected are m,-negligible in Y. Then obviously
int A = ¢. Also, if D is an open cell in Y, then, by Lemma 7, D — A4 is
connected. Since every two points a and b in Y can abe connected by a
chain of open cells D,,...,D, such that a € D,beD,and D,N D, | #
@ for 1 <i<k, it follows that Y — A is connected and hence so is
X, =X —f!(4). Now X, is a manifold and f,=f| X, is a p to 1
covering map of X, onto Y — A. The assumption that ¥ — A4 is simply
connected implies, by the monodromy theorem, that f is injective and
hence that p = 1. This contradiction completes the proof.

9. REMARK. For n = 2 Theorem 4 says that the deficiency set of an
immersion of a non-compact surface into S? has at least two points. This
contains a reuslt of Brannan and Kirwan [1, Theorem 2] as a particular
case.
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