DEFICIENCES OF IMMERSIONS

Uri Srebro

Dedicated to Steve Warschawski

Let X and Y be manifolds of the same dimension $n \ge 2$ and let $f: X \to Y$ be an immersion with $p = \sup\{n(y): y \in Y\} < \infty$ where $n(y) = \text{cardinality } f^{-1}(y)$. If Y is compact and X is not, then n(y) < p for some $y \in Y$, see §2. If Y is compact and simply connected and $p \ge 2$, then Y contains a compact set E such that Y - E is not simply connected and $n(y) \le p - 2$ for all $y \in E$, see §5.

1. THEOREM. Let X be a non-compact n-manifold, Y a compact n-manifold and $f: X \to Y$ an immersion. If $p = \max_{y \in Y} n(y) < \infty$, then n(y) < p for some points $y \in Y$. In particular, if $y = \lim_{k \to \infty} f(x_k)$ for an infinite sequence of distinct points $x_k \in X$ which does not accumulate in X, then n(y) < p.

Proof. Suppose that n(y) = p with $f^{-1}(y) = \{a_1, \dots, a_p\}$. Choose disjoint closed cells U_i in X such that $a_i \in \text{int } U_i$ and such that $f \mid U_i$ is injective for $1 \le i \le p$. Then $x_k \notin \bigcup U_i$ for almost all k. Now choose a neighborhood V of y such that $V \subset \bigcap_{i=1}^p f(U_i)$ and let V_i denote the a_i component of $f^{-1}(V)$. Then f maps each V_i homeomorphically onto V and hence n(y') = p for all $y' \in V_0$. It thus follows that $f(x_k) \notin V$ for all x_k in $X_0 = X - \bigcup V_i$, that is for almost all x_k . Hence $f(y_k) \nrightarrow y$, contradicting the assumption $f(x_k) \to y$, and thus n(y) < p.

- 2. REMARK. For compact manifolds X with boundary Theorem 1 says that n(y) < p for every y in the cluster set of f on ∂X . This contains a result of Brannan and Kirwan [1, Theorem 1] as a special case.
- 3. Suppose that X is non-compact, that Y is compact and that 1 . We say that <math>f has a deficiency at a point $y \in Y$ if $n(y) \le p 2$. The set $A = \{y \in Y: n(y) \le p 2\}$ will be called the deficiency set of f. It is not hard to construct immersions, for instance of $S^1 \times R$ into $S^1 \times S^1$ with empty deficiency set. The purpose of this note is to show that if Y is simply connected, then the deficiency set A is non-empty and, in fact, it is quite large.

494

- 4. THEOREM. Let X be an n-manifold and Y a simply connected compact n-manifold, $n \ge 2$, and let $f: X \to Y$ be an immersion with 1 . Then the deficiency set A contains a compact subset E such that <math>Y E is not simply connected.
- 5. Remark and notation. The proof is based on two elementary lemmas and on application of the monodromy theorem to a certain extension of f. The extension of f is essentially the same as in Lyzzaik and Styer [2, §2]. The following notation will be used: For r > 0 and $a \in R^n$, $B^n(a, r) = \{x \in R^n: |x a| < r\}$, $B^n(r) = B^n(0, r)$, $B^n = B^n(1)$ and in particular $B^2 = \{z \in \mathbb{C}: |z| < 1\}$. We say that a compact set E in a simply connected space Y is π_1 -negligible if Y E is simply connected. In this notation, Theorem 4 asserts that the deficiency set A has compact subsets which are not π_1 -negligible in Y.
- 6. LEMMA. Let $H: \overline{B}^2 \to R^n$ be a continuous function with $H(-1) \in B^n$ and $H(1) \notin \overline{B}^n$. Then $H^{-1}(\partial B^n)$ contains a continuum C which meets both components of $\partial B^2 \{-1, 1\}$.

Proof. By the Jordan separation theorem $F = H^{-1}(\partial B^n)$ separates the points -1 and 1 in \overline{B}^2 . Let B_1 denote the connected component of $\overline{B}^2 - F$, which contains the point -1, and let B_2 be the connected component of $\mathbf{C} - B_1$, which contains the point 1. Then $C = \partial B_2 \cap \overline{B}^2$ is the desired continuum.

- 7. Lemma. Let A be a closed set in \mathbb{R}^n . If every compact subset E of A such that $\mathbb{R}^n E$ is connected is π_1 -negligible then
 - (i) int $A = \emptyset$.
 - (ii) $U = R^n A$ is connected.

Proof. (i) is trivial.

(ii) Suppose that U is not connected. Choose points a_1 and a_2 which belong to different connected components of U. Since A is closed there is r > 0 such that $B^n(a_i, 2r) \subset U$, i = 1, 2. Let

$$G = \bigcup_{0 \le t \le 1} B^{n} (ta_{1} + (1 - t)a_{2}, r)$$

and $E = A \cap \partial G$. Now choose points $b_i \in \partial B(a_i, 2r)$, i = 1, 2, so that a_1 , a_2 , b_1 , b_2 are vertices of a rectangle R. Since $R^n - E$ is simply connected,

there is a continuous function $H: \overline{B}^2 \to R^n - E$ mapping ∂B^2 homeomorphically onto R. We may assume that $H(-1) = a_1$, $H(1) = b_1$, $H(i) \in \partial B^n(a_1, r)$ and $H(-i) \in \partial B^n(a_2, r)$. By Lemma 6 there exists a continuum C in $H^{-1}(\partial G)$ joining the components of $\partial B^2 - \{-1, 1\}$. Hence C' = H(C) is a continuum in ∂G joining $\partial^n B(a_1, r)$ and $\partial^n B(a_2, r)$. Hence a_1 and a_2 can be joined by a continuum in U, contradicting the assumption that U is not connected.

8. Proof of Theorem 4.. Let $A_k = \{y \in Y: n(y) = k\}$. Then A_p and $A_p \cup A_{p-1}$ are open and hence the deficiency set $A = Y - (A_p \cup A_{p-1})$ is compact. Consider the disjoint union $\tilde{X} = X \cup A_{p-1}$ with the topology containing the topology of X and the topology of int A_{p-1} , which makes the extension $\tilde{f} \colon \tilde{X} \to Y$ of f, $\tilde{f}(x) = f(x)$ for $x \in X$ and $\tilde{f}(x) = x$ for $x \in A_{p-1}$, a local homeomorphism. Obviously, \tilde{f} is a local homeomorphism in $X \cup \text{int } A_{p-1}$. For $y \in \overline{A_p} \cap A_{p-1}$ with $f^{-1}(y) = \{x_1, \dots, x_{p-1}\}$ choose disjoint cells U_i in X with $x_i \in \text{int } U_i$ and such that each $f \mid U_i$ is injective, $1 \le i < p$. Now let V be an open set in $\bigcap f(U_i)$ containing y. Then \tilde{f} maps $U_0 = f^{-1}(V) - \bigcup U_i$ homeomorphically onto $V \cap A_p$ and \tilde{f} maps $U = U_0 \cup (V \cap A_{p-1})$ injectively onto V. Such sets U form a base of neighborhoods of $y \in \overline{A_p} \cap A_{p-1}$.

Suppose now that Theorem 4 is false, i.e., all compact subsets E of A such that Y - E is connected are π_1 -negligible in Y. Then obviously int $A = \phi$. Also, if D is an open cell in Y, then, by Lemma 7, D - A is connected. Since every two points a and b in Y can abe connected by a chain of open cells D_1, \ldots, D_k such that $a \in D_1$, $b \in D_k$ and $D_i \cap D_{i+1} \neq \emptyset$ for $1 \le i < k$, it follows that Y - A is connected and hence so is $X_0 = \tilde{X} - f^{-1}(A)$. Now X_0 is a manifold and $f_0 = \tilde{f} | X_0$ is a p to 1 covering map of X_0 onto Y - A. The assumption that Y - A is simply connected implies, by the monodromy theorem, that f_0 is injective and hence that p = 1. This contradiction completes the proof.

- 9. REMARK. For n = 2 Theorem 4 says that the deficiency set of an immersion of a non-compact surface into S^2 has at least two points. This contains a reuslt of Brannan and Kirwan [1, Theorem 2] as a particular case.
- 10. Acknowledgement. I wish to thank Mike Freedman, Brit Kirwin and Joe Wolf for helpful discussions.

REFERENCES

- [1] D. A. Brannan and W. E. Kirwan, Some covering theorems for analytic functions, J. London Math. Soc., (2) 19 (1979), 93-101.
- [2] A. Lyzzaik and D. Styer, A covering surface conjecture of Brannan and Kirwan, Bull. London Math. Soc., 14 (1982), 39-42.

Received May 21, 1982.

TECHNION HAIFA TECHNION CITY, 32000 HAIFA, ISRAEL AND UNIVERSITY OF CALIFORNIA, SAN DIEGO LA JOLLA, CA 92093