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COMPLEXES ARE SPACES
WITH A σ-ALMOST LOCALLY FINITE BASE

TAKUO MIWA

In this paper, we introduce the notion of Z)-complexes which are
defined by replacing metric spaces with Nagami's D-spaces in the
definition of Hyman's M-spaces, and prove a main theorem that every
D-complex is a space with a σ-almost locally finite base (this notion was
introduced by Ito and Tamano). This theorem sharpens a theorem of
Nagata. Furthermore, we deal with the adjunction spaces of two spaces
with a σ-almost locally finite base.

1. Introduction. In [8], M. Itδ and K. Tamano introduced the
notion of almost local finiteness and the class of all spaces with a
σ-almost locally finite base. This class is countably productive, hereditary
and the closed image of a space in the class is Mx (see [8]). Furthermore,
this class is an intermediate class between that of free L-spaces and that of
Mλ -spaces. Indeed, there exists a space with a σ-almost locally finite base
which is not a free L-space (see [8]). But it is not known whether there
exists an Mx -space which is not a space with a σ-almost locally finite base.
If Mλ -spaces are spaces with a σ-almost locally finite base, Ceder's
long-standing unsolved question will be affirmatively answered; that is,
every stratifiable space is Mv

In §2, we introduce the notion of D-complexes which generalizes that
of Hyman's M-spaces ([6]). Note that, in [1], C. J. R. Borges used the
words paracomplex or Az-paracomplex instead of Hyman's M-space or his
MΛ-space, respectively. Furthermore, we give some results for D-com-
plexes which obtained in [10]. In §3, we give some preliminary lemmas. In
§4, we prove main results.

Throughout this paper, all spaces are assumed to be regular Tλ and all
maps to be continuous. N denotes the set of all natural numbers. For the
definitions of uniformly approaching anti-cover and Z)-sρace, see K.
Nagami [12]. For Λfrspaces and free L-space, see J. G. Ceder [2] and K.
Nagami [13], respectively. In each monotonically normal space X, we
assume that X has a monotone normality operator G satisfying the
properties [5, Lemma 2.2].

2. D-complexes and some results. In this section, we define D-com-
plexes, and study some properties of Z>-complexes.
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DEFINITION 2.1. A D(0)-comρlex is a £>-space. Assume that D(n - 1)-
complexes have been defined for an n E N. Then a space Z is a D(n)-
complex if it is homeomorphic to the adjunction space X Uy Y, where X is
a D-space, A a closed set of X, Y a D(n — l)-complex and/a map from A
into Y. Let X = U {A",: / e N}, where {Jfz: / E N} is a closed cover of
the space X such that X{ C l ( + 1 and each X is a /^(/i^-complex for some
Πi&NU {0}. If Zis dominated by {X(: i E TV} (namely, F C XΊs closed
in X if and only if F Π X is closed in A) for every i E N\ then X is said
to be a D-complex.

REMARK 2.2. Since a metric space is a Z)-space and the closed image
of a D-space is a Z)-space by [12, Remark 4.5], each Lasnev space is a
Z)-space. Furthermore there exist a Z)-space which is not a Lasnev space
(see [12, Example 2.1]), and a Lasnev space which is not a paracomplex
(see [3, Example 2]). Therefore the class of all Z>-complexes properly
contains those of all Lasnev spaces and all paracomplexes.

The following two theorems was established in [10] and those are
generalizations of Theorems 1 and 2 in [16].

THEOREM 2.3. Every D-complex is an Mx-space.

THEOREM 2.4. Let X be a D-complex. Then dim X<nif and only if X
has a σ-closure preserving base % such that dim B(U) < n — 1 for every
U E %, where dim X is the covering dimension of X and B{U) is the
boundary of U.

Outline of proofs of Theorems 2.3 and 2.4. The property ECP was
defined in [16]. We consider ECP in monotonically normal spaces. Then,
first, we prove that every D-space X has ECP. Outline of this proof is the
following: Let Xr be a monotonically normal space and X' — F U X,
where F and X are closed in X\ and G a monotone normality operator in
X'. Suppose % = [Ua\ a E A} is a closure preserving open family in JF,
and Ύ ^ {Fλ: λ E Λ} a uniformly approaching anti-cover of X Π F in X
such that Ύ is locally finite in X - F. For each Ua e %, let Lζ =
U {G(x, F - Ua): x E Ua). Then Lζ is open in X'. For the fixed element
<xE A, let 5 α = {γ(α) C Λ: t/γ'(α) is open in l£}, where ί/γ'(α) = C/β U
(U {Fλ: λ E γ(o)}). Let 5 = U (5 α : α E Λ}, <?!/ - {l£: 0 E 5}. Then
%/ satisfies the conditions (1), (2), (3) of Definition 2 in [16]. Next, by the
methods of the above proof and [16, Lemma 2] we can prove that every
D(w)-complex has ECP. Last, Theorem 2.3 is proved by the same way as
proof of [16, Theorem 1]. If we use the results of K. Nagami [12], [13], [14]
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and the method of the above proof, Theorem 2.4 can be shown by the
same way as proof of [16, Theorem 2].

For adjunction spaces, we proved the following theorem in [10]. Since
a Z>-space is a free L-space, the subsequent corollary is a direct conse-
quence.

THEOREM 2.5. Let X and Y be free L-spaces, A a closed set of X which
has a uniformly approaching anti-cover, and f a map from A into Y. Then
the adjunction space X UfY is a free L-space.

Proof. In [7], M. Itδ proved that weak L-spaces are free L-spaces.
Therefore this theorem can be proved by some slight modifications of the
proof in [9, Theorem 3.1].

COROLLARY 2.6 (cf. Theorem 2.3). Every D{n)-complex is a free
L-space.

3. Preliminary lemmas. In this section, we define a property EP-
ALF — this is an abbreviation of "extension property of an almost locally
finite family" —, and give some preliminary lemmas. We begin with the
definition of almost local finiteness.

DEFINITION 3.1 ([8]). Let X be a space, x a point of X and % a family
of subsets of X. % is said to be almost locally finite at x if there exists a
neighborhood V of x and a finite subset {Kv...,Kn} of X such that

%\v= {un V: UE%}

C {Kj ΓΊ W\ i — 1,...,« and Wis a neighborhood of x).

% is said to be almost locally finite in X if % is almost locally finite at
every point of X.

DEFINITION 3.2. By EP-ALF we mean the following property of a
monotonically normal space X: If X is a closed set of a monotonically
normal space X' such that X' = F U X, F and X closed in X\ and if
% = {Ua: a E A} is an almost locally finite open family in F, then for
each a EL A there is a family {U£: β E Ba) of open sets in X' satisfying

(Cl) %' = {Uβ\ βEBa,aEA} is almost locally finite in X\
(C2) for each β E Ba, Uβ Π F= Ua9 and for every open set V in Xr

with VΠF= Ua there is β E Ba such that UaCU£C V, and
(C3) for every open set W in JF, there is an open set W of X' such

that W n F = W and such that W Π U'β = 0 whenever β E Ba and

wn ua= 0.
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LEMMA 3.3. Every D-space has EP-ALF.

Proof. Let X be a D-space, X' a monotonically normal space and
Xf — F \J X, where F and X are closed in X\ Furthermore let G be a
monotone normality operator of X'. Suppose G(L = {Ua: a G A] is an
almost locally finite open family of F. Let Ύ= {Fλ: λ E Λ} be a
uniformly approaching anti-cover of X Π F in X In particular, since X is
hereditarily paracompact, we may assume that Ύis locally finite in X — F.
For each ί/α E %, let Ua = U{G(x, F - t / α ) : x 6 ί / J , Then ££ is
obviously open in X'. For the fixed element a E Λ, let # α = (γ(α) C Λ:
C/;(α) is open in ί/α'}, where ί/γ'(α) =UaU (U{F λ : λ E γ(α)}). Let B =
U {#α: a E Λ}, %/ = {Uβi β E 5}. Then condition (C2) of Definition 3.2
is obviously satisfied by <%,', because for each open set V with V Π F — Ua

there is a set tg = I/β U (U {Kλ E°ί : F λ C F Π ££}) for some 8̂ E 5 α

such that C/α C Lg C F. To prove (C3), let W be open in F. Then it is easy
to see that W = U {G(x, F - JF): Λ: E W) is an open set in X' satisfy-
ing (C3).

Finally to prove (Cl), first we consider the case x E F. There exist an
open neighborhood F of x in F and open finite subsets {Jffj,... 9Hn) of F
such that

9l| F C {//,. Π IF: i = 1,...,« and Wis a neighborhood of x in F} .

Without loss of generality, we assume that

Ht D U {£/« e %: ί/β n K = #,. Π ΪFfor some neighborhood PFof x}.

F - V): y(Ξ K } a n d # / = U {G(j, F - 7 / y ) : j E//,}
for each / E {1,...,«}. Then it is easy to see that

%'| F' C {HI Π W: i = l,...9n and ίFis a neighborhood of x in X},

and F' is a neighborhood of x in Λ"'. Thus %' is almost locally finite at x.
Next, we consider the case x E X — F. Since Ύis locally finite in X — F,
there is a neighborhood F of x such that

{ λ E Λ : F Π F λ ^ 0 , x E F λ , F λ

Let

( U {Fλ/: λ,-E γ}: γ is a non-empty subset of {λ1,...,λπ}}
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Then it is clear that

%'\VC {Kt ΠW:i= l , . . . , m a n d W is a neighborhood of x in X'}.

Thus % ' is almost locally finite at x. This completes the proof.

LEMMA 3.4. Every D(n)-complex has EPΆLF.

Proof. We use induction on n. Since by Lemma 3.3 the present
assertion is true for n = 0, we assume that every D(n — l)-complex has
EP-ALF. Let Xo be a Z)-space, Yo a D(n — l)-complex and/a map from a
closed set E of Xo into Yo. Then it suffices to prove that the adjunction
space Z = Xo Uf Yo has EP-ALF. Let p be the projection from the free
union Xo U Yo onto Z. Note that p is a topological map from Yo onto a
closed subset Y of Z. Now, let Z ' ^ F U Z , where Z' is monotonically
normal and F and Z are closed in Z'. Suppose % = [Ua\ a E A) is an
almost locally finite open family in F. Let T — Y U F. Then JF and Y are
obviously closed in the monotonically normal space Y\ Since by the
induction hypothesis Y has EP-ALF, each Ua can be extended to open sets
{Uβ\ β E BJ in r satisfying (Cl), (C2), (C3). Let us denote by q the
restriction of p to XQ. Define a closed set K of JSΓ0 by K — q~\Y'). Since
XQ is a P-space, Z o has a monotone normality operator (J. Let Ύ= {Vλ:
λ E Λ) be a uniformly approaching anti-cover of K in Xo and locally
finite in Xo — K. For each β G Ba(a E A) and each γ C Λ, let

Vβ= U

For the fixed element a E A and /? e Ba, let

Q(/3) = {γ C Λ: ^ γ is open in Vβ), Ca = U {Cα(i8): j8 e Ba}.

Let C/; - p(V£7) U lg and ^ = {I/;': γ E C J . Then <&;' are extensions
of Ua into Z r satisfying (Cl), (C2), (C3).

First, we can easily show that each U" E %^ is open in Z'. (C2) is
obviously satisfied by %£ (α E ̂ 4), because {Lg: )8 E 5α} satisfies (C2).
Next, to prove (C3), let Wbe an open set in F. Since {Lg: β E Ba, a E A}
satisfies (C3), there exists an open set Wf in Y' such that W Γ) F= W
and such that UaΠW=0 implies W Π U£ = 0 for all β E 5α. Since
ήΓ ](FT') is open in K, let

U {G{x9K-q-ι(W)):xeq-ι(W)}).
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Then W" is obviously open in Z'. Furthermore, W Π Ua = 0 implies

that W (Ί Uβ= 0 for every β e Ba, so that W" Π C/γ" = 0 for every

γ S Ca(β). This proves (C3).

Finally, we shall prove that % " = U { ^ ' : « £ ^ ) is almost locally

finite in Z'. Let x e T. Since % ' = {Lg: j β e 5 α , α e ^ } is almost locally

finite in Y7, there exist an open neighborhood V of x in 7' and open finite

subsets {Hι,...,Hm} oίY' such that

^l'\VC{HιnW:i=l,...,n and Wis a neighborhood of c in Y'}.

Without loss of generality, we assume that for each i

H,D \J {Uβ E%': Uβ Π V = H, Γ\ Wtor some neighborhood

Woixm T).

Let F = F U ; ( U {G(y, K - q~\V))\ y E q~\V)}) and for each i

Then it is easy to see that

% / r | F C {HI ΠW:i= l , . . . , m a n d Ŵ  is a neighborhood of JC in Z r } ,

and F r is a neighborhood of x in Z'. Thus % r / is almost locally finite at x.

Let x E Z ' — y . Then by the same method as last part in the proof of

Lemma 3.3, it is easily seen that % " is almost locally finite at x. This

completes the proof.

4. Main theorems. We begin with the proof of the following main

theorem which sharpens Theorem 2.3 in this paper (therefore Nagata's

Theorem [16, Theorem 1]).

THEOREM 4.1. Every D-complex is a space with a σ-almost locally finite

base.

Proof. Suppose that X— U {X^. i G N], Xι C Xi+ι, where each Xι is

a Z>(λ2z)-complex and closed in X, and Xis dominated by [Xt\ i E Λf}. By

Corollary 2.6 and [8, Theorem 3.3], each Xt has a σ-almost locally finite

base {%ji j EN). For each; E TV, let % l y = (ί/(α 1 ) :
 OLXELA). Since X2

is a Z)(«2)-complex, Xλ C X2 and Â  is closed in X (therefore in X2), by

Lemma 3.4 X2 has EP-ALF. Therefore every U(ax) can be extended to

open sets {U(al9 a2): a2 E A(ax)} in X2 in such a way that the family

{U(al9 a2): α, E v4, α 2 E ^ ( α ^ } satisfies (Cί), (C2), (C3). (In particular,

we assume that the method of extensions is the same one of Lemma 3.4.)
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Repeating this process we get for each k an almost locally finite open
family

{U(aX9...9ak):ax EA,a2 EA(ax)9...9ak EA(aX9...9ak_x)}

in Xk. Let

Σ = {(al9a29a39...): ax EA,a2 EA(ax)9a3 EA(al9a2)9...}.

For each (aX9 α 2,. . .) E Σ, let

U(al9a29...)= U {U(al9...9ak):kEN}.

Then U(al9a29...) is an open set of X, because for each k E N9

U(ax, α 2,. . .) Π Xk — [/(«!,...,ak) is o p e n i n g . Let

% . = {U(al9a29...):(al9a29...)eΣ}.

Now we claim that {%'ly : j E N) is a σ-almost locally finite local base at
each point x E Xx. First, it is easily seen by (C2) that {%Ίy: y E N} is a
local base at x. Next, to prove that each 9l/ly is almost locally finite, let
y E Xx. Since ^l,. is almost locally finite at y in X{9 there exist an open
neighborhood V(l) oίy in Xx and finite open subsets {Hx(ΐ)9... ,ΛΓn(l)} of
Xx such that

υ C {#,(1) Π W: 1 = 1,... ,Λ and ί^is a neighborhood

ofj^in Xx).

S i n c e t h e e x t e n s i o n {U(al9 a 2 ) : otx EA,a2E A(ax)} of 6llXj is t h e s a m e
one of Lemma 3.4, there exist an open neighborhood F(l,2) of y in ^ 2

and finite open subsets {i/,(l, 2),... 9Hn{\9 2)} of ^ 2 such that

C {77,(1,2) Π ^ : i = 1,...,« and Wis a neighborhood of y in X,},

and F(l,2) ΠXX = F(l), #,(1,2) n ^ = i/,(l) for each i. Repeating this
process we get for each k E N an open neighborhood K(l,... ,A:) of y in
Λ^ and finite open subsets {^(1,...,/:),... ,#n(l,...,&)} of ^ such that

C {^(1,...,/:) Π W\ i — 1,...,Λ and ϊF is a neighborhood ofy in Xk}9

and F(l,. . . ,^) n f H = V(l9...9k- 1), for each /, HXl9...9k) n Xk_x

= Ht(l9...9k- I). L e t V= U{V(l9...9k): k E N} a n d 7 f , =
U {#)(!,...,/:): A: E TV} for each /. Then it is easily verified that V is an
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open neighborhood of y in X and, for each /, Hi is open in X such that

%j V C {//, Π W\ i = 1,... ,n and Wis a neighborhood of y in X).

Thus %' ly is almost locally finite at j> in X. Furthermore, we can prove the
same results even if y E Xk for k φ 1. Therefore % j y is almost locally
finite in X.

Finally, we can prove the same results even if i φ 1, namely for ^ .
(i Φ \) we can construct % y such that U {% :̂ y E TV} is a σ-almost
locally finite local base at each point x E Xr Thus U ί ^ : /, 7 E iV} is a
σ-almost locally finite base of X. This completes the proof.

EXAMPLE 4.2. By this theorem, we can give a space with a σ-almost
locally finite base which is not a free L-space. In [15], K. Nagami and K.
Tsuda proved that an infinite dimensional full complex with weak topol-
ogy of Whitehead is not free L. This example is a different one from [8,
Example 3.9].

COROLLARY 4.3. Every paracomplex has a o-almost locally finite base.

COROLLARY 4.4. Every CW-complex has a o-almost locally finite base.

In [16, Problem 1], J. Nagata proposed whether every closed image of
a paracomplex is an Mx -space or not. This problem was affirmatively
solved by G. Gruenhage [4] and T. Mizokami [11], independently. Now
we can this problem as a corollary of Theorem 4.1 in a slightly generalized
form.

COROLLARY 4.5. Every closed image of a D-complex is Mv

Proof. This follows immediately by Theorem 4.1 and [8, Theorem 3.6].

Finally, we consider the adjunction space of two spaces with a
σ-almost locally finite base. We begin with the following theorem.

THEOREM 4.6. Every D-complex has EPΆLF.

Proof. Let I b e a D-complex. Suppose that X= U {Xt: i G iV},
Xt C Xi+ι, where each Xi is a Z)(«z)-complex and closed in X, and X is
dominated by {Xt: i E N}. Let X' — F U X be a monotonically normal
space, where F and X are closed sets of X'. Suppose % = {U(a0):
a0 E A} is an almost locally finite open family in F. Let X[ = F U Xx.
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Since X[ is monotonically normal, F and Xx closed in X[ and Xλ a
D(n^-complex, by Lemma 3.4 every U(a0) can be extend to open sets
{U(a09 ax): ax E A(a0)} inFU Xx satisfying (Cl), (C2), (C3). (In particu-
lar, we assume that the method of extensions is the same one of Lemma
3.4.) Repeating this process we get for each k an almost locally finite open
family

{ U ( a θ 9 a l 9 . . . 9 a k ) : <x0 <ΞA,aλ E A ( a o ) 9 . . . 9 a k E A ( a θ 9 a l 9 . . . 9 a k _ λ ) }

inFU A*. Let

Σ = {(aO9al9a2,...):ao EA9ax EA(ao)9a2 (Ξ A(a0, ax),...}.

For each ( α 0 , al9 a2,...) E Σ, let

U(aO9al9a29...) = U {U(aO9ctl9...9ak):keN}.

Then it is easily verified by the same method of Theorem 4.1 that

< ϊ l / = {U(a09al9a29...):(a09al9a29...)eΣ}

is an almost locally finite open family satisfying (Cl), (C2), (C3). Thus X
has EP-ALF.

THEOREM 4.7. Let X be a D-complex, Y a space with a σ-almost locally
finite base, F a closed set of X and f a map from F into Y. Then the
adjunction space X U , Y has a σ-almost locally finite base.

Proof. Let Z — XΌfY,p the projection from the free union XU Y
onto Z and q the restriction of/? to X. Suppose {%: i E N) is a σ-almost
locally finite base ofp{Y). Now, for the fixed element i E N9 let 6lli = {Ua:
CLE: A). Since q~\%) = {q~\U): UE%} is obviously an almost
locally finite open family in F, by Theorem 4.6 there exists an almost
locally finite open family % = {Vβ: β E B = U {Ba: a E A}} in X satis-
fying (Cl), (C2), (C3). For β E £ β, let Iβ = ί/α U />(*£) and %; = { φ
β E JB}. Then it can be easily verified that U{ is an almost locally finite
open family in Z and U {%': ι E N) is a σ-almost locally finite local base
at each point z E /?(7). Let {%: i E iV} be a σ-almost locally finite base
in * - F and % = {/?(H )̂: PF E %}. Then {%;, %': ι E iV} is obvi-
ously a σ-almost locally finite base of Z. This completes the proof.

COROLLARY 4.8. The adjunction space of two D-complexes has a
σ-almost locally finite base.



416 TAKUO M1WA

REFERENCES

[I] C. J. R. Borges, Metrizability of adjunction spaces, Proc. Amer. Math. Soc, 24 (1970),
446-451.

[2] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961),
105-126.

[3] B. Fitzpatrick Jr., Some topologically complete spaces, General Topology Appl., 1

(1971), 101-103.

[4] G. Gruenhage, On the M3 => Mλ question, Topology Proc, 5 (1980), 77-104.
[5] R. W. Heath, D. J. Lutzer and P. L. Zenor, Monotonically normal spaces, Trans.

Amer. Math. Soc, 178 (1973), 481-493.
[6] D. M. Hyman, A category slightly larger than the metric and CW-categories, Michigan

Math.J., 15(1968), 193-214.
[7] M. Ito, Weak L-spaces are free L-spaces, J. Math. Soc Japan, 34 (1982), 507-514.
[8] M. Itδ and K. Tamano, Spaces whose closed images are Mx, Proc. Amer. Math. Soc,

87(1983), 159-163.

[9] T. Miwa, Adjunction spaces of weak L-spaces, Math. Japonica, 25 (1980), 661-664.
[ 10] , Extension properties for D-spaces and adjunction spaces, preprint.
[II] T. Mizokami, On the closed image of paracomplexes, Pacific J. Math., 97 (1981),

183-195.
[12] K. Nagami, The equality of dimensions, Fund. Math., 106 (1980), 239-246.
[13] , Dimension of free L-spaces, Fund. Math., 108 (1980), 211 -224.
[14] , Weak L-structures and dimension, Fund. Math., 112 (1981), 231-240.
[15] K. Nagami and K. Tsuda, Complexes and L-structures, J. Math. Soc Japan, 33

(1981), 639-648.
[16] J. Nagata, On Hyman's M-spaces, Topology Conference (Virginia Polytechnic

Institute and State Univ., 1973); Lecture Notes in Mathematics, No. 375, Springer-
Verlag, Berlin, (1974), 198-208.

Received December 14, 1982.

SHIMANE UNIVERSITY

MATSUE, SHIMANE, JAPAN




