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THE MODULUS OF A DOUBLY CONNECTED
REGION AND THE GEODESIC
CURVATURE-AREA METHOD

DAVID MINDA

It is well known that the modulus of a doubly connected Riemann
surface can be determined by the length-area method, that is, the method
of extremal length, and that the extremal metric can be expressed in
terms of a quadratic differential. Ahlfors introduced a related method
based on the comparison of geodesic curvature and area. We show that
the modulus of a doubly connected Riemann surface can be obtained by
means of this geodesic curvature-area method. In the important special
case in which there is a restriction on the curvature of the metrics, we
identify all extremal metrics; they have constant curvature.

1. Introduction. A comparison of length and area has led to many
important results in complex analysis. This method is based upon the fact
that length and area are invariant under a conformal mapping when the
metric undergoes a corresponding transformation. Ahlfors [2] considered a
third conformally invariant quantity: geodesic curvature. He initiated a
program based on the comparison of geodesic curvature and area. He
presented the basic principles of the method and applied it to one simple
case — the problem of estimating the conformal radius of a simply
connected region. This is equivalent to estimating the hyperbolic metric
on a simply connected region. He obtained explicit, sharp upper and
lower bounds. The method is limited to smooth metrics. By making use of
other methods, Minda [5] extended the upper bound to the class of SK(k)
metrics.

The work of Ahlfors indicates that the method has a wider range of
applicability. But it is not clear that it will lead to equally explicit results
in other situations. We apply the geodesic curvature-area method to the
next simplest problem — estimation of the modulus of a doubly con-
nected surface — and obtain an explicit, sharp upper bound.

2. Conformal metrics. In this section we gather together some basic
facts concerning conformal metrics on Riemann surfaces. We adopt the
convention, to be in effect for the remainder of the paper, that all metrics
are positive and of class C2. Let X be a Riemann surface and p(z) \ dz \ a.
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metric on X. The (Gaussian) curvature of this metric is defined to be

Let D = { z : | z | < l ) . The Poincare hyperbolic metric on D is

2\dz\

it has constant curvature — 1.
The pull-back of a metric via an analytic mapping is an important

concept. Suppose /: Y -* X is a locally schlicht analytic function and
p(z) I dz I is a metric on X. The pull-back to Y via/of p(z) \ dz | is a metric
on y denoted by /*(p(z)|rfz|). In case X and y are plane regions,
/*(p(z)|dz|) = ρ(/(z)) |/ '(z) | |dz | . For Riemann surfaces an analogous
formula holds, but it is necessary to work with local coordinates. It is
elementary to verify that

κ(/(z),p) = κ(z,/*(p)).

In particular, curvature is a conformal invariant. If γ is a path on y, then

ff*{p(z)\dz\)=f p(z)\dz\.
Jy Jf oγ

Thus, length is a conformal invariant. Now, set σ(z)\dz\= f*(p(z)\dz\).
If Ω is a Borel measurable subset of y, then

ffσ2(z)dxdy= jf p2(z)dxdy,
Ω /(Ω)

provided/is injective. Hence, area is a conformal invariant.
We are interested in another geometric quantity which is also a

conformal invariant. Let γ: [a, b] -> X be an arc on X. The total geodesic
curvature of the oriented arc relative to the metric ρ(z)|rfz| can be
computed from the formula

= (</(arg</z) + ( * dlogp(z)
Jy Jy

where the normal derivative is taken in the direction of the right-hand
normal. Direct calculation gives
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if/: Y -> X is a conformal mapping and γ is a path on Y. A few examples
might be helpful. If γ is a subarc of a hyperbolic line in D, then
(jλD(γ) = 0. If λc(z)\dz\=\dz\ is the euclidean metric on C and γ is a
straight line segment, then Gλc(γ) = 0. The Gauss-Bonnet Theorem re-
lates the curvature and total geodesic curvature. Suppose p(z)\dz\ is a
metric on X. Let Ω be a regularly embedded subregion and 9Ω the
positively oriented boundary of Ω. Then

-f </(aig<fe).

Finally, we introduce the hyperbolic metric. Let X be a hyperbolic
Riemann surface; that is, the unit disk D is the universal covering surface
of X. The hyperbolic metric λx(z) | dz | on X is the unique metric with the
following property: if m\ D -» X is any analytic universal covering projec-
tion, then π*(λx(z)\dz\) = λΌ(z)\dz\. Thus, λjr(z)|dz| has constant
curvature - 1 . Let Ω(r) = {z: \/r < | z | < r}, where 1 < r < oo. The hy-
perbolic metric onΩ(r) is

2 log r l z I cos((iw log | z |)/log r) "

3. Standard metric for a doubly connected surface. Let A be a

proper doubly connected Riemann surface. That is, X is conformally
equivalent to Ω(r) for some r E (1, oo). The modulus of Jί is defined to be
mod( X) = (l/2ττ)log r2 and it is a conformal invariant. We shall specify
a standard metric of constant curvature 0 on X. Let γ0 be any generator of
the fundamental group of X and % the family of all closed curves γ on X
which are freely homotopic to γ0. Fix a positive number a. A metric
σ( z) I dz I on X is called admissible if

(1)

for all locally rectifiable y &%. This is equivalent to asserting that (1)
holds for any locally rectifiable path γ which generates the fundamental
group of X. Let

Aσ(X) = Jjσ2(z)dxdy
x

denote the area of X relative to the metric σ(z)\dz\ and

) = m£Ao(X)9
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where the infimum is taken over all admissible metrics. A very special case
of a result of Jenkins [4] implies that there is a unique real-analytic
extremal metric σa(z) | dz | for this problem. It has the form | Qa(z) | 1 / 21 dz | ,
where Qa(z) dz2 is a holomorphic quadratic differential on X. Moreover,
Aσ£X) <Aσ(X) for any admissible metric σ(z)\dz\ with strict inequal-
ity unless σ(z)\dz\= σa(z)\dz\. It is straightforward to verify that
σa(z) I dz | = aox(z) \ dz \ . We define σx(z) \ dz | = ox(z) \dz\ . Since
σx(z)\dz\ = \Qx(z)\ι/2\dz\, where Qx(z) dz2 is a holomorphic quadratic
differential, the metric σx(z)\dz\ is locally euclidean and has constant
curvature zero. It is not difficult to show that σx(z)\dz\ is independent
of the choice of generator of the fundamental group of X. Also, this
standard metric is a conformal invariant; that is, if/: X -> Yis a confor-
mal mapping of proper doubly connected surfaces, then /*(σy(z) \dz\) =
σx(z)\dz\. In particular, σx(z)\dz\ is invariant under the group Aut(A')
of conformal automorphisms of X.

It is known that

1 \dz\

recall that \dz\/\z\ is the logarithmic metric on the punctured plane
C\{0}.Then

(2) AσjΏ(r)) = jj σ2

{r) dxdy = ± log r2 = mod β(r).
Ω(r)

Now, assume that Xis a proper doubly connected surface and/: X -> Ω(r)
is a conformal mapping. Then σx(z)\dz\ = /*(σΩ(r)(z)|ί/z|). Due to the
conformal invariance of the quantities involved, we conclude that mod( X)
— Aσ (X) from (2). Thus, mod(X) <Aσ(X) for any metric σ(z)\dz\
admissible for a — 1 with equality only if σ(z) | dz \= σx(z) \dz\.

There is a simple relationship between σx(z)\dz\ and the hyperbolic
metric.

LEMMA. Let X be a proper doubly connected Riemann surface and
λx(z)\dz\the hyperbolic metric on X. Then

(3) o x { ^

and this inequality is sharp.

Proof. Because of the conformally invariant character of the quanti-
ties involved in inequality (3), it is sufficient to establish (3) in the special



GEODESIC CURVATURE-AREA METHOD 399

case X = Ω(r). Now,

21ogr |z|cos((i7rlog|z|)/logr)

- 2 1 ^ 7 ]7f = modQ(r)σ°W(

which establishes (3) in this special case. Note that equality holds if and
only if | z | = 1.

4. Main result. First, we introduce some terminology and notation.
Let X be a doubly connected Riemann surface. A regularly embedded
doubly connected region Ω C X is called admissible if it separates the two
boundary components of X. If ρ{z)\dz\ is a metric on X and Ω is an
admissible region, then the total geodesic curvature of 3Ω with respect to
ρ(z)\dz\is

•'ΘΩ

since /8Q </ (arg dz) = 0. A closed path γ on I is admissible if it is a
generator of the fundamental group of X Given a positive number α, we
say that a metric ρ{z) \ dz | on Xis admissible if

for all admissible paths γ. In this case we write ρ(z)\dz\E Γ(a). We note
that this condition is invariant under conformal mappings. Roughly
speaking, this condition asserts that ρ(z) | dz | is not too small compared to
ox{z)\dz\.

THEOREM 1. Let X be a proper doubly connected Riemann surface.
Suppose Φ: [0, oo) -> [0, oo) is either strictly increasing and Φ(0) = 0 or
else Φ = 0. Set A(x) = {j$Φ(t)dt and Ψ(x) = tfdt/(A(t) + a2). If
p(z)\dz\<Ξ T(a) and Gp(3Ω) > Φ(i4p(Q)) for all admissible regions Ω, then
mod(X)<Ψ(Ap(X)).

Proof. In view of the conformal invariance of the quantities involved,
we may assume from the outset that X = Ω(r) for some r e (1, oo). The
condition that p(z)\dz\E T(a) becomes

(4) logβ
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for all admissible paths γ. We slit Ω(r) along the negative real axis to
obtain a simply connected region Ω(r). Then z{w) — exp(w) is a confor-
mal mapping of the rectangle Q(r) — [w — u + iv: \u\< logr, \v\< π)
ontoΩ(r). Letσ(w)|d>v| = exp*(p(z)|dz|). Explicitly, ρ(z(w)) — e~uσ(w).
The path y(v) = exp(a ), — π < v < π9 is admissible and inequality (4)
becomes

< £jog{2πp(e>°)) j t

(0, v) dv + log(27r).

For ί 6 [ 0 , log r) the region Ω(e') is admissible. The area of Ω(e') is

2(z)dxdy= f f σ2(u,υ)dudv.
Ω(e) J-'J-«

Also, the total geodesic curvature of the positively oriented boundary

G(t) = Gp{dQ(e')) = f *d\ogp(z)

/

w 9 ίw 9

ĝ  logσ(ί,t?)έfo- J τfi\ogσ(-t9v)dv.

Therefore,

f G(t)dt = / logσ(w, ϋ)efo

0 J—n

( — u,υ)dv — 2] log σ(0, v) dv,

or

- ί - fUG(t) dt+-f log σ(0, ϋ ) do

log(σ(w, v)σ( — u, v)) dv

1 c
< log -z— / σ(κ, i?)σ( —M, ϋ)

< log
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This gives

4- (UG(t)dt+ - Γ log σ(0, !>)*>)
2π Jo π J-π )

By making use of the assumption G(t)> Φ(A{t)), we obtain

A\u) > expί ^- fUφ{A(t)) dt+ - Γ log σ(0, v) dυ + log(4ττ))
\2π Jo π J-π I

where B(u) is an abbreviation for the preceding expression in parentheses.
Observe that

(6) 5(0) = - f log σ(0, υ) + log(4τr) > logί — )

by inequality (5).
We now treat the case Φ = 0. In this situation Λ = 0 and Ψ(x) =

x/a2. Also, B(u) = B(0) for all u since Φ = 0. Thus,

The choice u = log r gives

modΩ(r) = ^ <*(Λ(logr)) = ψ{Ap(Ώ(r))).

This establishes Theorem 1 in case Φ = 0.
Next, we consider the case in which Φ is strictly increasing and

Φ(0) = 0. The definition of B gives

B'(t) = 2^ ^

Thus,

and integration over the interval [0, u] results in

u) - exp£(0),

or

(7)
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Now, integrate the identity 1/ττ = B\t)/K\A{t)) over the interval [ε, u],
where 0 < ε < u.

= B(u) _ B(e) f«B(t)A"(A(t))A'(t)

Λ'(A(u)) A'{A(*)) Λ 2

A'(A(u))

_ B(u) - \og{A{A(u))/π

A'(A(u))

^ Iog(A(i4(e))/ir + eB<°>

+ r ^^L Λ

K A(A(u))/π + eβ<°> '

By making use of inequalities (6) and (7) we find that
λί \ - f" ^ ( 0 * i *og(Λ(Λ(ε))A + eB^) - B(ε)

[U e ) J A(A(u)) + a2 A'(A(e))

Assume that

(8)

Then we obtain

and the choice u = log r establishes Theorem 1 in this case.
In order to complete the proof of Theorem 1 we demonstrate (8). For

x andy positive we have the elementary inequality
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Thus

- B(ε)

Since A'(t) >: e β ( / ) >: e5 ( 0 ), the second factor in the integrand is nonnega-
tive. The generalized mean value theorem for integrals yields η E (0, ε)
such that

fφ(A(t))[e-B<®A'(t) ~ l] dt - \]fφ(A(ή) dt

Because Λ'(^ί(ε)) =
ceding work.

), the limit (8) follows easily from the pre-

5. Sharpness. We now demonstrate that the upper bound given in
Theorem 1 is sharp in the important case when there is a restriction on the
curvature of the metric. We begin by reformulating Theorem 1 in this
situation. Suppose p(z)\dz\ is a metric on X and /c(z, p) < —k9 where
k > 0. If Ω is any admissible doubly connected subregion, then the
Gauss-Bonnet Theorem gives

Gp(3Ω) = / / - κ(z9 P)p2(z) dx dy > k jjP

2(z) dx dy = kAp(Q).
Ω Ω

Thus, if Φk(x) — kx, then (?P(9Ω) > Φk(Ap(Ώ)) for any admissible region
Ω. Set

and

Jo

dt

if k = 0,

{ka
arctan la
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Observe that *k(x) < %{x) for x > 0 and k > 0 and that % -> %
pointwise as k -> 0. We restate Theorem 1 in this context.

THEOREM 2. Let X be a proper doubly connected Riemann surface. If
p(z)\dz\E T(a) and κ(z, p) < -A:, where A; > 0, then

We shall demonstrate that this upper bound is sharp for any a > 0
and k > 0. It is sufficient to consider the special case X — Ω(r) due to the
conformally invariant nature of the theorem. First, we treat the case
in which k = 0. For any a > 0 define pa(z)\dz\= aoQι{r)(z)\dz\. Then
ρa(z)\dz\ has curvature zero and belongs to T(a). Also,

APa(Ώ(r)) = a2AσJti(r)) = α2modΩ(r),

or

modΩ(r) =APa(Ώ(r))/a2 = %(A^Q(r))).

Thus, pa(z) I dz I is an extremal metric for k = 0.
Now, we turn to the case in which k > 0. We begin by demonstrating

that if ρ(z) I dz | e Γ(α) and κ(z, p) < -fc, then

(9) a*
/fc mod(Ω(r))'

Let γ denote the positively oriented unit circle. Then for z E γ

p{z) _ p{z) v
< W * ) K(r)(z) mod(Ω(r)) '

Now, yfkp has curvature at most —1, so Ahlfors' extension of Schwarz'
lemma [1] implies that \/& p < λΩ(r). Therefore, for z 6 y ,

Since γ has length 1 relative to σa(r)(z)\dz\ and p(z)\dz\E Γ(α), we
obtain the desired result.

Fix k > 0. Then inequality (9) implies that we may select R E [ r, oo)
so that

77 7Γ2

modΩ(Λ)
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Now, ρa(z)\dz\= (\/ ]fk)λR(z)\dz\ is defined on Ω(r) and has constant
curvature — k. Also,

) {k log R cos((^7r log I z |)/log R)

π

a.{klogR

This imphes that pa(z)\dz\E: T(a) since any path in Ω(r) having index
± 1 with respect to the origin has length at least 1 relative to σΩ ( r )(z) \dz\.
Direct calculation gives

so that

mod(Ω(r))

Thus, ρα(z) I rfz I is an extremal metric.
The preceding work also implies that the extremal metric ρa(z)\dz\

for any k >: 0 has an extremal area property analogous to that of σa(z)\dz\
mentioned in §3. If ρ(z) \ dz |E Γ(α) and κ(z, p) < — fc, then we have

Because Ψk is increasing, we obtain

(10) A^X)<

A careful analysis of the proof of Theorem 1 in the special case Φ = Φ^
reveals that pa(z)\dz\ is the unique extremal metric, so we actually have
strict inequality in (10) unless p{z)\dz\— pa(z)\dz\. This is an exact
analog of the result for oa(z)\dz\.

6. Open question. At the end of section 5 we tried to stress the
analogy between the extremal metrics oa(z)\dz\ and pa(z)\dz\. Precisely,
let X be a proper doubly connected Riemann surface. If σ(z)\dz\ is a
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metric on X and Jγσ(z)\dz\>:a for any generator γ of the fundamen-
tal group of X, then Aσ£X) <Aa(X) with equality only if σ(z)\dz\ =
σa(z) I dz I. On the other hand, if ρ(z) \ dz | is a metric on X with κ(z, p) <
-Λ ^Oand

(11) logα< flog
°x(z)

for any generator γ of the fundamental group of X, then A^X) < Ap(X)
with equality only if p(z)\dz\ — pa(z)\dz\. Does this same conclusion
follow if we replace inequality (11) by jyp(z)\dz\> a for any admissible
path γ? Observe that if γ has length 1 relative to σx(z)\dz\9 then
inequality (11) implies this inequality. Of course, an affirmative answer to
this question would yield an even closer analogy between the extremal
metr ics oa(z)\dz| a n d pa{z)\dz\.

Added in proof. The question raised in section 6 has been answered
affirmatively for the wider class of SK(k) metrics by using the length-area
method in conjugation with an isoperimetric inequality (D. Minda, The
modulus of a doubly connected region and negatively curved metrics, Com-
plex Variables Theory AppL, to appear).

REFERENCES

[1] L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc, 43 (1938),
359-364.

[2] , Geodesic Curvature and Area, Studies in Mathematical Analysis and Related
Topics, ed. by Gilbarg, Solomon and others, Stanford Univ. Press, Stanford, Calif.,
1962, pp. 1-7.

[3] M. Heins, On a class of conformal metrics, Nagoya Math. J., 21 (1962), 1-60.
[4] J. A. Jenkins, On the existence of certain general extremal metrics, Ann. of Math., 66

(1957), 440-453.
[5] C. D. Minda, A refinement of Ahlfors' lemma, Complex Variables: Theory and

Application, 1 (1983), 167-179.

Received November 1, 1982. The author received support under NSF Grant No. MCS-
8201131.

UNIVERSITY OF CINCINNATI

CINCINNATI, OH 45221




