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CONTINUITY OF SPECTRAL FUNCTIONS
AND THE LAKES OF WADA

DOMINGO A. HERRERO

The functions σ, mapping a Hilbert space operator T into its
spectrum σ(Γ), or σe (defined by oe(T) = essential spectrum of Γ), or
Ps-F(T) mapping T into the set of complex numbers λ such that λ — T
is semi-Fredholm of index Λ, etc, have a very erratic behavior. They are
continuous on a dense set of operators and discontinuous on another
dense set of operators. It is not completely apparent, however, that all of
them are simultaneously continuous on a certain dense subset and
simultaneously discontinuous on another dense subset.

In order to prove these two assertions, we shall need some notation.
In what follows, £(%) will denote the algebra of all (bounded linear)
operators acting on the complex, separable, infinite dimensional Hubert
space %. By a "spectral function" we shall mean a function mapping an
operator T in £(%) to a certain "natural" subset of its spectrum σ(Γ);
more specifically, any of the following functions:

σ (spectrum), oι (left spectrum), σr (right spectrum), σlr

(σlr(T)= σ7(Γ) Π σr(Γ)), σe (essential spectrum, i.e., the
spectrum of T + %(%) in the quotient Calkin algebra
&(%) = £(%)/%(%), where %(%) denotes the ideal of
all compact operators), σle (left essential spectrum), σre

(right essential spectrum), olre (Wolf spectrum; olre{T) —
σle(T) Π σre(Γ)), op (closure of the point spectrum of Γ),
σ0 (closure of the set of all normal eigenvalues), oB

(Browder spectrum; σB(T) = σ(Γ)\σo(Γ)), σ^(Weyl spec-
trum; σw(T)= Γ){σ(T+K): KG %(%)}), ph

s-F (de-
fined by ph

s-F(T) = { λ E C ; λ - Γ i s a semi-Fredholm
operator of index h}~ , — oo < y < oo, h ^ 0), or, more
generally, pf_F (defined by pf-F(T) = {λ e C; λ - T is a
semi-Fredholm operator and ind(λ — T) G 2} ~ , for each
nonempty subset Σ of ΊJ = Z*\{0}, where Z* = Z U

All these functions naturally appear in many problems in Operator
Theory. The reader is referred to [3], [4], [5], [6] or [8] for their precise
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definition and to [11] for the definition and properties of the semi-Fred-
holm operators. It is well-known that

ow(T) = σ(Γ)\{λ E C: λ - Γis semi-Fredholm of index 0}

= σe(T) U pfL

[8], [11].
A spectral function T maps £(%) into β(C), the family of all compact

subsets of C, the complex plane. As usual, we make β(C) a complete
metric space by defining the (modified) Hausdorff distance dH between
two elements of β(C) by:

(l)IfX, 7 e e ( C ) \ { 0 } , t h e n

d / f(A r,y) = min{l,min{β>O:Λ rC Ye9 YCXe}}9

where X= {λeC: dist[λ, X] < e}, and
(2) dH(X90) = l for all nonempty X in β(C).
The continuity points of the spectral function r are then defined in

terms of the norm topology of t{%) and the above mentioned metric
structure of β(C).

In a sequence of remarkable papers, J. B. Conway and B. B. Morrel
completely characterized those operators that are points of continuity for
each of the functions listed above, except for σ0, σB and pf_F (see [3], [4],
[5]). On the other hand, it is not difficult to check, by using the results of
these papers, that σB is continuous at T if and only if σw is continuous at
T and oB(T) = σw(T). Furthermore, by using the same kinds of argu-
ments, it is possible to prove the following.

THEOREM 1. (i) σ0 is continuous at A Et(%) if and only if σ(A) =
lfζLF(A) U σo(A)Γ andσo(A) = dσ(A).

(ii) If Σ is a nonempty subset of Z', then pf_F is continuous at
A E t(%) if and only ifσlre(A) C p?_

In each case the sufficiency of the given condition follows from
standard arguments based only on the upper semicontinuity of separate
parts of the spectrum [8, Chapter 1], [11, Chapter IV] and the stability
properties of the semi-Fredholm operators (same references), so that these
conditions are actually sufficient in any Banach space (not necessarily a
Hubert space!). The necessity is much more difficult to check and depends
on results of approximation of operators developed strictly for the Hubert
space case, as the Apostol-Morrel simple models [2] (see also [1]).
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It was observed in [3] that both, σ and ow, are continuous on a dense

subset and discontinuous on a dense subset (this last result depending on

the proof of Theorem 4 in [7]).

This note is devoted to the proof of the following (much stronger)

results:

THEOREM 2. £(%) contains a dense subset Tc such that all the spectral

functions mentioned above are continuous at each point of Γc.

THEOREM 3. £(%) contains a dense subset Td such that all the spectral

functions mentioned above are discontinuous at each point Td.

1. The lakes of Wada. The name of the title is a classical construc-

tion of Point Set Topology, producing an indecomposable continuum.

More precisely, the construction produces three nonempty disjoint open

subsets, Ωo, Ωj and Ω2, of C with the property that the three of them have

the same boundary, and this common boundary X{— 3Ω0 = 9Ω1 = 3Ω2)

is a compact set. The details of the construction can be found, for

example, in [12] [10, pp. 143-145]. The case of denumerably many open

sets (instead of just three) follows by exactly the same argument and

yields the following result:

LEMMA 4. Let Δbe a nonempty compact connected subset of C such that

Δ = (interior Δ)~. Then there exists a denumerble family {ΩΛ}ΛeZ* of

pairwise disjoint simply connected open subsets of Δ such that U Λ G Z * ΩΛ is

dense in Δ and 3ΩΛ = 3Ω0/or all h.

COROLLARY 5. Let Δ and {ΩΛ}ΛeZ* be as in Lemma 4. There exists LΔ

in £(%) such that σ(LΔ) is the disjoint union of Δ\Ω 0 and a sequence

{λj}™=\ contained in Ωo such that

{λjΓ = {λ,} U ΘΩ0, σe(LΔ) = (Ω^ U O . J " ,

each λj is a normal eigenvalue of LΔ of multiplicity 1 and for each Λ 6 Z '

and each λ in ΩΛ, λ — LΔ is a semi-Fredholm operator such that

ind(Λ — L Δ ) = h and min{dimker(λ — L Δ ) , dimker(λ — LΔ)*} = 0.

Proof. Decompose % = Θ Λ e Z * %h (orthogonal direct sum), where %h

is an infinite dimensional subspace. Let {λj}JLx be a denumerable subset

of Ωo such that dist[λy, 3Ω0] -> 0 (j -* oo) and {λ,}~ = {A,} U 3Ω0 and

define No E £(%0) by the equations Noej = λ ye y (j^l) with respect to

some orthonormal basis {ej}JLx of %0.
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If Ω is a nonempty bounded open set such that Ω = interior(Ω~),
then we define M(Ω) ="multiplication by λ" on the space L2(Ω, dx dy)
and M+(Ω) = M(Ω)|£2(Ω), where 52(Ω) is the L2-closure of the ra-
tional functions in λ with poles outside Ω~. For each h < 0, we define
Nh = M + ( Ω Λ ) W (= direct sum of \h\ copies of M+(ΩΛ)), acting in the
usual fashion on the orthogonal direct sum B2(tih)

m of \h | copies of the
Hubert space B2(Ώh). Similarly, for each j > 0, we define Nh —
[M+(Ω*)*] ( Λ ), where Ω* = {λ: λ E Ω}.

Clearly, B2(tih)
m is isometrically isomorphic to %h for each h < 0,

and 52(Ω£) ( Λ ) is isometrically isomorphic to %h for each h > 0. Thus, we
can directly assume that Nh E t{%h) for all Λ E Z*. Now it is easy to
check (by using, for instance, the results of [8, Chapter IV]) that equation

hez*

actually defines an operator acting on % with the desired properties. D

The semi-Fredholm domain of T E £(%) is the open set ρs-F(T) =
{λ E C: λ - Γis semi-Fredholm} ( = C\σ/re(Γ)). Assume that

σ(Γ) = ( Γ 1 U Γ 2 U . UΓΓ)U {μ 1 ,μ 2 , . . . ,μj U {^^2,...,^}

(disjoint union), where
(1) Γr is the closure of the bounded open set interior Γ, C ρ^_F(Γ);

ind(λ - T) φ 0 and min{dimker(λ - Γ), dimker(λ - Γ)*} = 0 for all
λ E interior Γ, (/ = 1,2,... ,r; r < oo);

(2) θ( U^=1 Tt) is the union of finitely many pairwise disjoint smooth
Jordan curves γ 1,γ 2,.. .,γm;

(3) {μ,, μ2,... ,μn] is a finite set of isolated points of oe{T)\ and
(4){^,^2,...,^} =σ o (Γ).
Let η > 0 be small enough to guarantee that σ(Γ)η has exactly the

same number of components as o(T) and let Δy = (γy )η\(interior σ(Γ))
for y = l,2,...,m, and Δ, = {λ: | λ - μ y _ w | < τ j } for j = m + 1, m +
2,...,m + /!. For each j9j=l929...9m + n, we choose an operator LΔ

defined exactly as in Corollary 5 (with Δ replaced by Δy,y = 1,2,... ,m +
π) and define Lη = Θ ^ Λ L Δ /

Combining the "easy part" of the results of [3], [4], [5] with Theorem
1, we conclude that

PROPOSITION 6. Let T and Lη be as above; then all the spectral
functions considered here are continuous at T θ Lη.
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2. Simultaneous continuity. Let A E £(%) and let ε > 0 be given.
The main result of [2] says that there exists an operator Aε E £(%) such
that \\A - Aε\\ < ε and

s+0

0

*
M

0

where — denotes unitary equivalence, σ(5+), o(M) and σ(S_) are
pairwise disjoint, Aε is similar t o 5 ' + Θ M Θ S ' _ , M i s a normal operator
with finite spectrum, σ(S+) = {λ E ρ s _ F (S + ) : ind(λ - S+) < 0} ~ ,
ρs-F(S+) Π σ(5 + ) = interior σ(5 + ) and dimker(λ — S+) = 0 for all
λ E p s _ F (S + ), σ(S_) = {λ E p s_F(S_): ind(λ - S_) > 0}" , p5_F(S_)
Π σ(S_) = interior σίS^) and dimker(λ - 5_) = 0 for all λ E
ps-F(S-)> and 3[σ(5+) U σ(ιS_)] consists of finitely many pairwise
disjoint smooth Jordan curves.

Thus, S+ΘM @ S_ has exactly the same form as the operator T of
Proposition 6. For eachη > 0 small enough, we define ( S + Θ M Θ S _ ) Θ
Lη as in Proposition 6. It readily follows that S + ®M θ 5_ ®Lη is a
point of continuity for all spectral functions,. A fortiori, so is every
operator similar to S+ ΘM θ 5_ ΘLη.

Following [1], let us write R -» 2? to indicate that the operator 5 is the
sim

norm limit of operators similar to R. According to the same reference,
there is a normal operator M such that o(Mη) = σ(Lη) and Lη -* Mη.

sim

It follows that S + ΘM θ S_ ΘL_ -* S+ ΘAf θ SL ΦΛί-; moreover,
sim

S + Θ M Θ S _ can be uniformly approximated by operators similar to
S + Θ M Θ S _ Φ M r (Consider a sequence of such operators correspond-
ing to a decreasing sequence {fηn}^=\ s u c h ^ a t ^ > 0, as « -> oo.)

Hence, 5 + Θ M Θ . S _ is the limit of a sequence of points of continu-
ity. Therefore, so is the operator Aε (similar to S+®M®S_).

Since ε can be chosen arbitrarily small we conclude that A can be
uniformly approximated by a sequence {An}™={ such that all the spectral
functions considered in the Introduction are simultaneously continuous at
An9 for each/? > 1.

The proof of Theorem 2 is now complete. D
REMARKS, (i) The spectral radius and the essential spectral radius are

also continuous at each point of the set Tc described by Theorem 2 (see
[3]).

(ii) It is tempting to think that any "natural" spectral function is
necessarily continuous at the points of Γc. However, this is not true at all.
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Namely, the spectral function defined by

σe(τ) = U M : ( M i s acomponent of σe(T)}~

(that is, the closure of the union of those components of σe(T) which
consist of a single point), which plays a very important role in the work of
Conway and Morrel, is continuous nowhere \ (This can be deduced, for
example, from the main result of [1].)

3. Simultaneous discontinuity.

LEMMA 7. Let R be a normal operator such that α(i?) = {λ: | λ | < 1}

and op(R) = 0 .All the spectral functions considered in the Introduction are
discontinuous at R.

Proof. Let Q be a quasinilpotent operator such that Qk is compact for
no value of k > 1, and let No be defined as in the proof of Corollary 5
with λ. = 2"-', j= 1,2.... According to [1], Q®N0-*R, whence it

sim

readily follows that all "σ-functions" (that is, σ, σβ, σ,, σe, etc.) are
discontinuous at R because every neighborhood of R contains an operator
similar to Q θ No.

Similarly, if S is a semi-Fredholm operator such that σ(5) = σ(R)

and ind S = h E Z', then S 7* R, whence we conclude that ρf_F is dis-

continuous at R for all possible sets Σ. D

According to [7] (Theorem 4 and its proof), given A in £(%), a point
λ G σ ^ ) Π 3σ(,4),ε>0and/? ε β(ϋC), ||A|| < 1, there exists Λ(λ, ε, R)
unitarily equivalent to

+ 8R *

0 A'

such that σe(A') = σe(A% 0 < dist[μ, σ(A')] < ε, | λ - μ | < ε , 0 < δ < ε
and \\A — A(λ9 ε, R)\\ < ε; furthermore, A(λ, ε, it) is similar to (μ + δR)
θ ^4r, so that if the spectral function r is discontinuous at if, then T is also
discontinuous at^4(λ, ε, R).

By Lemma 7, R can be chosen so that all the spectral functions are
discontinuous. The proof of Theorem 3 is now complete. D

REMARKS, (i) If λ is chosen so that | λ | = max{ | | | : £ E σe(A)} (= the
essential spectral radius of A), then we obtain a bonus result: The set Γ̂  of
Theorem 3 can be chosen so that the essential spectral radius is also
discontinuous at each point of Γ̂ .
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Can we choose Γ̂  so that the spectral radius, sp(A) — max{|λ|:
λ E σ(A), is also discontinuous at the points of Γ̂ ? Definitely: NO.
Indeed, if μ E σo(A), \μ\ = sp(A) and ε > 0, then the upper semicontinu-
ity of separate parts of the spectrum and the continuity properties of the
Riesz-Dunford functional calculus (see, for example, [8, Corollary 1.6])
imply that σo(B) Π (λ E C: \λ - μ\< ε} =£ 0 and therefore sp(J?) >
sp(A) — ε for all B close enough to A. Since the spectral radius is an
upper semicontinuous function of its argument, we conclude that sp is
continuous at A.

Combining this observation with the main result of [9], we obtain the
following

PROPOSITION 8. For each complex Banach space 90, £(90) contains an

open dense subset Φ such that sp is continuous at every point of Φ.
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