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ORDINARY AND SUPERSINGULAR COVERS
IN CHARACTERISTIC p

DAVID HARBATER

This paper studies Galois wildly ramified covers of the projective
line in characteristic/?. It is shown that for/?-covers of tamely ramified
covers, the monodromy is "generated by the branch cycles." But exam-
ples are given to show that this condition fails in general for towers taken
in the opposite order and for other covers as well—even in the case of
covers branched only over infinity. It is also shown that/?-covers branched
at a single point are supersingular and more generally that for any curve
which arises as a/?-cover, there is a bound on the/?-rank which in general
is less than the genus.

In 1957, S. Abhyankar observed [Ab] that while the monodromy
group of a branched covering of the Riemann sphere is generated by loops
around the branch points, the analogous condition fails to hold in
characteristic /?. He conjectured that the condition at least holds for
tamely ramified covers. This is indeed the case, as A. Grothendieck
showed by the technique of specialization (XIII, Cor. 2.12 of [Gr]). In §1
of this paper, we show that it also holds for Galois covers which are the
"opposite" of tame—viz. those whose Galois group is a /?-group. More
generally, we show that Galois covers which arise as p-covers of tamely
ramified covers are "ordinary" (i.e. satisfy the above condition). But as §1
shows, towers taken in the opposite order need not satisfy this condition,
nor does every "extraordinary" cover arise in this manner. We also discuss
the connection to the problem of groups occurring as Galois groups over
the affine line. Section 2 relates these ideas to supersingularity, and more
generally to the phenomenon of a curve having fewer etale /^-covers than
"expected" for its genus. It is shown that an ordinary cover of the
projective line which is branched over a single point must be supersingu-
lar. More generally, a bound is given on the number of etale Z/p-covers
of a curve which arises as a branched ̂ -cover of another curve, in terms of
the degree and the ramification groups.

We fix our terminology: All curves are assumed to be smooth, and
defined over an algebraically closed field k. If X is a connected curve, then
a (branched) cover Z -> X is a morphism of curves which is finite and
generically separable. The branch locus is thus finite, and Z -> X is etale if
the branch locus is empty. A cover Z -> X is called Galois with group G if
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Z is connected and if the Galois group G (of automoφhisms of Z over X)

acts simply transitively on the generic fibre. A Galois cover whose group

is a/?-group is called dip-cover, A group G is said to "occur (as a Galois

group) over X" if there is a Galois etale cover Z -> X with group G. Given

a finite group G, a G-cover consists of a cover Z ^ X (Z not necessarily

connected) together with an inclusion of G into the Galois group, such

that G acts simply transitively on generic fibres. If in addition Z -» X is

etale, it is called a principal G-cover.

I wish to thank M. Artin, M. Fried, and V. Srinivas for helpful

conversations about material in this paper.

1. Ordinary covers. Let π: Z -> X be a Galois covering of curves,

having branch locus {*,,... 9xn). Following Abhyankar [Ab], we say that

the monodromy of the cover is generated by loops around the branch points

if there exist points zl9... 9zn E Z with xt — ̂ (z,.), such that the stabilizers

of z 1 ? . . . ,zπ together generate the Galois group. If X — P 1 , we will also call

such a cover ordinary. (Any other Galois cover of P 1 is extraordinary.) If

the characteristic of the ground field k is 0, then every Galois cover of P 1

is ordinary (e.g. Theorem T in §7 of [Ab]); in general, tamely ramified

Galois coverings of P ι are ordinary (XIII, Cor. 2.12 of [Gr]). Assume now

(and for the rest of the paper) that k is of finite characteristic/?. Below we

show (Theorem 1.5) that a Galois cover of P 1 must be ordinary if it arises

as a /?-cover of a tamely ramified cover of P 1 .

1.1. PROPOSITION. Let G be a p-group and let Z -^ X be a G-cover of

curves. Let H C G and let Y -» X be the subcover corresponding to H. Say

{x1?... ,xn) is the branch locus of Z -> X, let zl9... 9zn E Z be points lying

over x 1 ? . . . 9xn respectively, and let Pt C G be the stabilizer of zt in G. If

Pu... ,/*„, H generate G, then Y is connected.

Proof. Let Yf be a connected component of 7, and let z' be a

connected component of Z lying over Y'. Let z[9...9z'n G Z ' be points

lying over xl9...9xn respectively, and let P[9... ,PΠ' be their stabilizers in

G. Let K C G consist of the elements σ G G such that 77 © σ(Z') = F ,

where π: Z -> Y is the canonical moφhism. Then ^ is a subgroup

containing P[9.. .,P
r

n,H.\ίKΦ G then Â  is contained in a proper normal

subgroup N <3 G, since G is a /?-group [HI, 4.3.2]. Thus TV contains the

stabilizer of every ramification point of Z -> X. So JV contains P, , . . . ,Pn,

H, and hence equals G. This is a contradiction. So actually K—G. Thus

τr(Z) = F . So Y = r , i.e., 7 is connected. D
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Taking H to be the trivial group, we obtain

1.2. COROLLARY. Let G be a p-group and let Z -* X be a G-cover of
curves whose monodromy is generated by loops around the branch points.
Then Z is connected.

Call a curve X supersingular if X has no nontrivial principal Z/p-
covers, or equivalently if no Galois etale cover of X has group Z/p. (In
this terminology, the projective line is supersingular.) Since every maximal
subgroup of a /?-group is normal and of index p [HI, 4.3.2], such a curve
has no non-trivial etale /^-covers.

1.3. PROPOSITION. Let X be a supersingular curve, let G be a p-group,
and let Z -* Xbea G-cover. The following are equivalent:

(i) Z is connected;
(ii) The monodromy of Z -* X is generated by loops around the branch

points;
(iii) //{z,,... ,zn) is any lift of the branch locus of X, then the stabilizers

of the points zt together generate G.

Proof. Since (iii) =>(ii) is trivial, and (ii) =>(i) by 1.2, it suffices to
show (i) => (iii). Let H C G be the subgroup generated by the stabilizers of
Zj,... ,zπ. If H is a proper subgroup of G, then H is contained in a proper
normal subgroup N of G. Let Y -> X be the subcover of Z -* X corre-
sponding to N. Then Y -> X is an etale /?-cover. This contradicts the
supersingularity of X. D

1.4. COROLLARY. Every p-cover ofP1 is ordinary.

More generally, we have

1.5. THEOREM. A Galois cover of P1 is ordinary, provided that it is a
p-cover of a tamely ramified cover ofP1.

Proof. Let Z -> P1 be a Galois cover which is a /?-cover of a tame
cover Y -> P1. We may assume that 7 is maximal among tame subcovers
of Z -> P1. Let G, P be the Galois groups of Z -> P1, Z -> 7. Then P < G,
since the Galois closure of Y -* P1 is a subcover of Z, and is also tame
(e.g. by Prop. 7 of [Ab]). Since Y -> P 1 is tame, it is ordinary. So over the
branch points xl9... 9xn of Z -> X there exist j 1 ? . . . 9yn E 7 whose stabi-
lizers in G/P generate G/P. Choose zt E Z over yi9 for 1 < / < n. Let //,
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be the stabilizer of z{ in <?, and let H C G be the group generated by the

subgroups Hr Then H and P generate G.

Observe that if y E Y lies over a branch point xi9 then some point of

Z lying over y has its stabilizer lying in H. Namely, since H and P

generate G, there exists h EH such that h(zj lies over y. Since the

stabilizer of h(zι) is equal to that of zi conjugated by /z, it follows that the

stabilizer of Λ(z7) lies in H.

Since 7/ and P generate G, it suffices to show P C # ; for then

H ~ G. Suppose otherwise. Then H Π P is a proper subgroup of P, and

so is contained in a proper normal subgroup N < P. Since N contains

H ΓΊ P, by the previous paragraph it follows that for each j E 7 over JC7

there is a z E Z over y whose stabilizer in P is contained in N. Since N is

normal in P, the stabilizer of every ramification point of Z -> Y is

contained in JV. Let Γ -> 7 be the subcover of Z -> F corresponding to JV.

Then 7-» F is unramified and of degree greater than 1. So Γ-* P 1 is

tamely ramified. This contradicts the maximility of 7. •

The proof of 1.5 actually shows more: Let 7 ^ I be a tame Galois

cover of curves branched at xl9...,xn9 and let yλ,...,yn be points over

xl9...,xn whose stabilizers generate the Galois group. If Z is a/?-cover of

Y which is Galois over X, and zl9...9zn E Z lie respectively over yl9. ..9yn9

then the stabilizers of z 1 ? . . . 9zn generate the Galois group of Z -* X.

Since every p'-cover (i.e. Galois cover whose group has order prime to

p) is tamely ramified, we have

1.6. COROLLARY. // G is a group with a normal {equiυalently, unique)

Sylow p-subgroup, then every Galois cover of P 1 with group G is ordinary.

In the case of Galois covers of P 1 branched at a single point, an

ordinary cover is simply one which is totally ramified there. Since there

are no tame covers of P 1 branched at only one point, such a cover must be

a/?-cover.

While Galois covers arising as /?-covers of tame covers are ordinary,

covers taken in the opposite order need not be. For example, let Z -* P 1

be a Galois cover with group Z//?, branched only at oo. Such a cover may

uniquely be written
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where p \ n and ci = 0 for p 11. The genus of Z is (/? — l)(π — l)/2 [Mi],
and in particular is positive whenever n > 2. Thus Z has unramified
Galois covers of degree d, for all J prime to p. Given such a cover F -* Z,
let V -» P 1 be the Galois closure of 7 -> P1. Then F is branched only at
oo, but is not totally ramified there. Hence F-* P1, which arises as an
etale cover of a /?-cover, is extraordinary.

1.7. EXAMPLE. In characteristic 3, let Z -> P 1 be the cyclic cover given
(in affine coordinates) by

Then Z is of genus 1. Consider the etale cover Y -> Z, cyclic of degree 2,
which is the normalization of

The Galois closure of Y -» P 1 is a degree 2 cyclic cover of 7, and is the
normalization of

y* = z(z+l)9 yϊ = {z-\){z+\), yyxy2 = z(z - l)(z + 1).

The group of this Galois closure is the alternating group 4 4 . The Galois
closure is branched only at oo, and the fibre there consists of four points,
each with ramification index 3. D

As remarked above, only / -groups may occur as Galois groups of
ordinary covers of P1 branched precisely at oo. The existence of extraor-
dinary covers, however, complicates the study of the fundamental group
of the affine line, since other groups may thus occur over A1. Example 1.7
may lead one to suspect, though, that extraordinary covers must dominate
/?-covers, and thus that the corresponding groups must have a normal
subgroup of index /?. But this is not the case, as we show below (Prop.
1.11). First some lemmas are needed.

The following lemma was observed by V. Srinivas and A. Wasser-
mann, and appears in [KS].

1.8. LEMMA. Let Y -> X be a connected degree p cover, and Z -» X its

Galois closure. If Z dominates ap-cyclic cover of X, then Y is Galois over X.

This follows from the fact that the Galois group of Z is contained in
the symmetric group Sp9 which has no subgroup of index/?2. Namely, if Y
were unequal to the given /?-cyclic cover of X, the smallest subcover of Z
dominating both would have degree/?2, a contradiction.
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1.9. LEMMA. Let Y -> X be a cover whose branch locus contains a point

x E X. Suppose that for each y E Y over x9 the extension Gx^x C Θ y ̂  is of

degree p but is not Galois. Then the Galois closure of Y -* X does not

dominate any p-cyclic Galois cover of X which is branched at x.

Proof. Let Z -» X be the Galois closure of Y -> X9 and let z E Z lie

over x. We may regard 0 Z z as containing &Yy, and thus also containing

the Galois closure 6 y of 0 γ over Θx x. In fact 0 Z z is the compositum of

its subrings 0y , as y E y ranges over the points lying over x (Lemma 1

of §5 of [Ab]). The Galois group of each Θ I x c Θ y ^ i s a subgroup of Sp

with no Z//?-quotient (by 1.8), and it is a quotient of the Galois group G

of QXx C 0 Z z . To prove the lemma, it is enough to show that G has no

normal subgroup of index p. Since all stabilizers in characteristic p are

cyclic-by-/? (i.e. have normal Sylow /?-subgroup with cyclic quotient), it

suffices to show

Claim. Let G be a cyclic-by-/? group and Nl9...9Nn<G such that

Π,JV, = {1}. Suppose that each G/Ήi has no Z//?-quotient and its Sylow

/^-subgroup has order p. Then G has no normal subgroup of index/?.

Here G is a semi-direct product of its unique Sylow /^-subgroup

P < G with a cyclic group C C G o f order m, wherep\m. Each G/Λ^ is a

semi-direct product of a (normal) cyclic subgroup of order p with a cyclic

group of order mi9 where m, |m, and it has no quotient of order p.

Replacing Nt by Nt Π P, we may assume that N( C P and mt — m. Each Λf

is then normal and of index /? in P, and Π Nt — {1}, so P has trivial

Frattini subgroup. Thus P is an elementary/?-grouρ [HI, 12.2.1]. Since

Γ\"Nt: = {1}, the rank of P is at most n. By eliminating some of the

groups Nι9 we may assume that no proper subset of {Nl9...9Nn} has trivial

intersection, and thus that n equals the rank of P. Let Qt = Π _̂  Λ̂  < G.

Then # ( ) , =p9 and βf. ΠJVt = {1}. Also, Π Qi = {1} since Q{ Π Q2 C

Π 7^ = {1}. Since #(? f = /?, and β 1 ? . . . , Qn he in an elementary /?-group

P of rank n, it follows that Ql9..., Qn generate P. Let q{ be a generator of

β f . Then ^ E iVy for7 ^ fc. Since Π.Λ/;. = {1}, it follows that for all fc,

4k ί Λ^. Thus the image of qk in G/Λ^ has order p9 and thus is a

generator of the Sylow/?-subgroup of G/Nk. Since β z < G, the subgroup

Pf C G generated by Qi and C is of order pm. So Pz ̂  G/iV under

G -» G/Λ^ . Thus P, has no normal subgroup of index /?. Also, Pv...,Pn

generate G, since β i , . . . , β π generate P. Now suppose G had a normal

subgroup 77 of index/?. Then for each /, (P,: H Π Pz) = 1 or/?. The latter
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case is impossible since P, has no normal subgroup of index p. So Pt d H
for all i. Since Pλ,...,Pn generate G, it follows that H = G. This is a
contradiction, proving the claim, and the lemma. D

1.10. LEMMA. Let Y = Spec k[[t]] and Z -» Y a Galois cover of degree
pn. Then the length of the k[[t]]-module ΩZ//y of relative differential forms is
an even integer, and is at least 2pn — 2.

Proof. Regarding k[[t]] as the completion of the local ring of P 1 at oo,
we obtain a morphism φ: Y -> P1. Let G be the Galois group of Z -> Y.
By Corollary 2.4 of [Ha], there is a Galois covering F ^ P 1 with group G,
branched only at oo (where it is totally ramified), such that Z -» Y is the
pullback of TΓ by φ. Applying the Hurwitz formula to V -> P 1 yields

where g(F) is the genus of F. Since g(V) is a nonnegative integer, the
conclusion follows. •

We can now show

1.11. PROPOSITION. // the characteristic of k is an odd prime p, then
there exist Galois covers ofP\ branched only at oo, which do not dominate
any p-cyclic cover o/P1. Such covers are extraordinary.

Proof. Since (as observed after Corollary 1.6) every ordinary Galois
cover of P1, branched only at oo, is a/?-cover, and since every /?-grouρ has
Z/p as a quotient, the second sentence is immediate.

We now give examples of such covers in each odd characteristic. Let
a E k be non-zero, and let a E k be the unique /?th root of a. Let π:
Z -> P 1 be the cover of the projective c-line given in affine coordinates by

z2p• - z- x(zp - α) = 0.

Thus Z is the projective z-line, and π is of degree 2ρ. The only branching
is at JC = oo. The fibre there consists of the two points z = α, oo, with
ramification index/? at each of these points. Let nl9 n2 be the lengths of
the θpi ^-modules of relative differentials at these two points. Then by the
Hurwitz formula,

i.e. nx + n2 = 4/? — 2.
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Passing to the complete local ring at x = oo, z = oo, and using local
coordinates 3c = x~ \ z = z~ \ we have

x = J*(l - αz*)(l - i " 2 ^ " 1 ) " 1 = z* - az2p + z3p~ι +

So «2 = 3/7 — 2, hence «j = /j. Thus nx and «2

 a r e °dd So by Lemma
1.10, the complete localization of Z at either point is not Galois over ©Pif

(but is of degree p). By Lemma 1.9, the Galois closure of Z -> P 1

dominates no/7-cyclic cover branched at Λ: = oo. Since Z is etale elsewhere,
and P 1 is simply connected, the Galois closure is as desired. •

00

By Lemma 1.8, a connected degree/? etale cover of A1 must be Galois,
provided that its Galois closure dominates a/7-cyclic cover of A1. But by
Proposition 1.11, not every Galois etale cover of A1 need dominate such a
/7-cyclic cover. Still, T. Kambayashi asks [Ka] whether every connected
degree p etale of A1 is Galois. Equivalently, for G to occur as a Galois
group over A1, is it necessary that every subgroup of index p be normal?
This is trivial for p = 2. Kambayashi and V. Srinivas here observed [KS]
that this is also true for/7 = 3, since otherwise the Galois closure would be
an etale cover of A1 with group S3—an impossibility in characteristic 3.

But for p > 5, a negative answer to Kambayashi's question would be
implied by a conjecture of Abhyankar. Namely, Abhyankar conjectured
[Ab, §4] that for an af fine curve X, a group G occurs over X if and only if
the /7r-group G/N does, where N is the (normal) subgroup generated by
the Sylow /7-subgroups of G. In the case of the affine line, this may be
rephrased as follows. Call a finite group G a quasi-p-group if G is
generated by its Sylow /7-subgroups, or equivalently if G has no quotients
of order prime to p other than the trivial group. Then Abhyankar's
conjecture says that the groups which occur over A1 are precisely the
quasi-p-groups. For/7 >: 5, this would imply that the alternating group Ap

occurs as the Galois group of a Galois cover Z -» P 1 in characteristic /?.
Regard Ap_λ C Ap9 and let 7-*P* be the subcover corresponding to
Ap_x. Then Y -> P 1 is of degree p and is etale over A1, yet is not Galois.
Thus for/? > 5, an affirmative answer to Kambayashi's question is incom-
patible with Abhyankar's conjecture.

2. Supersingular covers. This section relates the previous ideas to
supersingularity. Proposition 2.3 shows that the smooth completion of
every etale /7-cover of the affine line is supersingular. More generally, 2.5
and 2.6 give a bound on the number of principal Z//7-covers which a
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/7-cover X -» Y may have. This bound is generically less than the expected
number p8, where g is the genus of X. First we need

2.1. LEMMA. Let G be a finite group, and H < K< G such that the
index (K: H) is a power of p. Then H contains a subgroup N which is
normal in G, such that (K: N) is a power of p.

Proof Let i/ = i/1? # 2 , . ..,//„ be the conjugates of H in G. Thus all
Hi <K.LetJi = Hιn- ΠHi for / = 1,...,n. It suffices to prove that
the index of each Jt in K is a power of/?; for then we may take N = Jn. We
proceed by induction on /. By assumption, /, = H has /?-ρower index in
K. Suppose the same holds for Jim Since Hi+ι is normal in K of /j-power
index, it follows that JiΛ.λ = Ht+X Π ̂  is normal in Jt of/?-power index. So
the index of Jx <Λ_ x in K is a power of/?. D

2.2. COROLLARY. If X-*Y and Y'-* Z are p-coυers, then so is the
Galois closure of X -> Z.

2.3. PROPOSITION. Every p-coυer of the projective line which is branched
at a single point is supersingular.

Proof Let Z -> P 1 be such a cover branched only at oo. Suppose
Y -* Z is a Galois etale cover with group Z//?. Then the fibre of Y -* P 1

consists of /? points. Now by Corollary 2.2, the Galois closure Ϋ -» P 1 of
7 -» P 1 is a/?-cover. By the remark after Corollary 1.6, Ϋ -> P 1 is totally
ramified over oo. Hence so is F -* P1, which is a contradiction. D

2.4. EXAMPLE. By [Mi], the genus 1 Z/3-covers of P 1 in characteristic
3, branched only at oo, are precisely those given by

where c, d lie in the ground field. By Proposition 2.3, all such covers are
supersingular. But up to isomorphism, there is a unique supersingular
elliptic curve in characteristic 3, viz. the curve t>3 — v = u2. And indeed,
the change of variables

u = {ex — d/{c,

υ = z + ζ (where £3 - | = rf2A)

transforms the curve (*) into this form. (Question: In general, to what
extent are supersingular curves "accounted for" in this manner?) D
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Proposition 2.3 does not hold if more than one branch point is
allowed. For example, let Yλ -> P1 and Y2 -> P1 be /?-cyclic Galois covers
branched respectively at 0 and oo. Let Y — Yx XPi72. Thus Γ ^ P 1 is
Galois with group Z/p X Z/p. Let Z -̂  P1 be the quotient of Y by the
diagonal subgroup. Then Y -» Z is etale and cyclic of degree/?, so Z is not
supersingular.

Still, under quite general hypotheses, a weaker version of 2.3 holds.
We consider an invariant which measures how far a curve is from being
supersingular. For a curve Xin characteristic/?, define σ = σ(X) to be the
rank of the elementary /?-group consisting of the /Morsion points on the
Jacobian of X. Then

and σ = g for a generic curve of genus g. There are exactly pσ principal
Z/p-covers of X, and so a curve X is supersingular if and only if
σ( X) — 0. (Since Z/p is abelian,/?σ is also the number of pointed principal
Z/p-covers of X9 if a base point of X is chosen.) Moreover the pn-torsion
points on the Jacobian form the group (Z/pn)σ, so there are exactly/?™
principal Z/p "-covers of X. The integer σ can also be described as the
rank of the Nth iterate (for N » 0) of the ^-linear Frobenius map F:
H\X9Q) -» H\X9Q). In the case of elliptic curves, σ is the Hasse
invariant. See [Se] for details.

For any p-group G, let rG be the minimum possible length of the
/c[[ί]]-module of relative differentials Ω z / r , where Z ranges over all Galois
covers of Y = Spec[[ί]] having group G. By Lemma 1.10, rG > 2 #G — 2.
Applying the Hurwitz formula to the genus 0 cover zp — z = x of the line,
we see that rG = 2p — 2 if G is cyclic of order p. (Is rG — 2 #G — 2 in
general?)

The following result gives an upper bound on σ(Z) and a lower
bound on g(Z), where Z -* X is a/7-cover. It relies on results of [Ha].

2.5. THEOREM. Le/ Z ^> Xbe ap-coυer with group G. Let xl9...9xn be

the branch points, let zέ E Z be a point over xi9 and let Pt C G be the

stabilizer of zr Then

2σ(Z) - 2 < # G J 2 g ( X ) - 2 + 2 />/#/>,) < 2g(Z) - 2.

Proof, The second inequality follows immediately from the Hurwitz
formula and the definition of rG.
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For the first inequality, we begin by reducing to the case that the
monodromy of Z -> X is generated by loops around the branch points. To
do this, let Y -> X be a maximal unramified subcover of Z -» X Then y is
unique, and the Galois group of Z -» 7 is a normal subgroup // < G,
since any two unramified subcovers are dominated by a third. So F ^ X is
Galois, with group G/H9 say of order m. Lety i l 9 . . . ,j>/m 6 7be the points
over xi9 and choose a point ztj E Z over j ^ . The stabilizer Ptj of zίy in H is
the same as the stabilizer of z/y in G, since y -» X is unramified; so
P l 7 « Pz.

We claim that {P/7}ίy generates 7f, and thus that the monodromy of
Z -» y is generated by loops around the branch points. If not, the
subgroups PtJ generate a proper subgroup of H which, since H is a
/7-group, lies in a proper normal subgroup N < H [HI, 4.3.2]. The stabi-
lizer in H of every point in Z must lie in N9 since N < H and TV already
contains the stabilizer of some point in each fibre of Z -» Y. The subcover
of Z -> y corresponding to iV is thus unramified over y, and hence over
X. The maximality of Y implies N — H, which is a contradiction. This
proves the claim.

It suffices to verify the theorem with X replaced by Y. For then,

2 σ ( Z ) - 2 < # # 2 g ( y ) - 2 + Σ Σ •/>,/ — u
\ ι=lj=\ υ

But

So

2σ(Z) - 2 < #H\ #(G/H)(2g(X) - 2)
i = l

/ = 1

as desired. So we are reduced to the case that the monodromy of Z -+ X is

generated by loops around the branch points.

For any /?-group A9 let M\°° be the moduli space of pointed A -covers

of Spec &[[*]], and let MA

loc be the subspace corresponding to connected

A -covers (cf. §2 of [Ha]). Pick a base point of X other than xλ9...9xn9 and

pick a base point for Z over that. Let MA be the moduli space of pointed

principal ^4-covers of X — {xl9...9xn}. For 1 < i < «, let fz E Λfploc

correspond to the extension 6^ C θ Z z , and let ξ( be a point of Mploc
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such that the module of relative differentials of the corresponding finite
extension of k[[x]] is of minimal length (viz. rP). As in the proof of
Corollary 2.10 of [Ha], the inclusion P^G induces a morphism φ7:
M^c «• Mι™. Let f, ξ E (Mg°)n be the respective images of (ξl9... ,{„)
and (£,,. . . ,£>nder φ = ( φ 1 ? . . . , φ j . Let ττG: MG -> (Mg*)" be the
Hurwitz moφhism (2.6) of [Ha], assigning to each G-cover the ramifica-
tion moduli over the branch points. By Proposition 2.7 of [Ha], this is an
etale cover, and its degree is the number of pointed principal G-covers of
X. Choose a point of MG lying over £, and let W -» X be the corre-
sponding pointed G-cover of X. By construction there is a point wt E W
over xi whose stabilizer is P, C G. Since Pv...,Pn generate G, W is
connected by Corollary 1.2. By the Hurwitz formula,

2g(W) - 2 = #G(2g(X) - 2) + 2 />,((?:/»,).
1 = 1

Since σ(PF) < g(W)9 this proves the theorem for W. It remains to show
thatσ(Z) = σ(W).

For any principal Z/p-cover 5 -> Λ", let Sz -» Z be the pullback. Thus
is also a principal Z/p-cover. The association SΊ-» 5 Z corresponds to the
group homomorphism

induced by Z -> X We claim that this homomorphism is injective. For
suppose S -» X is a principal Z//?-cover corresponding to a point in the
kernel. Thus 5 Z -» Z is trivial. Since the monodromy of Z -> X is gener-
ated by loops around the branch points, the same is true for the pullback
Sz -> iS. Thus by Corollary 1.2, Sz is connected, provided S is. Since
Sz -» Z is trivial, 5 must be disconnected, and hence is trivial. So indeed
the kernel is trivial.

Thus there are exactly pσ(<X) principal Z/p-covers of Z which are
induced by such a cover of X. The same is true with Z replaced by W. So
it remains to show that Z and W have the same number of principal
Z/p-covers which are not induced by a principal Z/p-cover of X. Since
Z/p is abelian, we may equivalently consider pointed principal Z/p-covers.

Given such a pointed Z/p-cover V -» Z, let F -» A" be the Galois
closure of V-* X. By Corollary 2.2, the Galois group P of V -> X is a
/?-group. Let 4̂, 5 C P be the subgroup corresponding to F, Z. For any
point v E V over zz, the stabilizer of v is a subgroup of P which maps
isomorphically to Pt under the quotient map P -> G. So there exist
P{,... ,PΠ' C P which map isomorphically to P7 under P -> G, such that the
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point of Mp corresponding to F i s sent, under the Hurwitz moφhism πP:

MP -> (Mj,00)", to a point lying in the image of Πz

w

=1 M z

o l o c. The cover

F -» X thus determines data P, A, B, P[9... ,Pn' satisfying:

(i) P is a/?-group, and A < B < P;

(ϋ) ( 5 : A) = /?, and Λl contains no non-trivial normal subgroup of P;

(in) P/B ™ G, and the quotient map P ^> G maps P/ isomoφhically

onto P,;

(iv)Pί,...,P,;,,4 generate P.

Here (i)-(iii) are clear. To verify (iv), note first that P{9... ,PΠ', B generate

P, since P , , . . . ,PΠ generate G. So by (ii), the group Q C P generated by

P i , . . . ,PΠ\ Λ is of index 1 or/?. If (iv) is false, then Q is a normal subgroup

of index /?, since P is a /?-group [HI, 4.3.2]. Let S -> X be the subcover of

F -* X corresponding to (λ Thus S -* X is cyclic of degree /?. Since

P[,...,P^ C (? and Q<P, all the stabilizers of ramification points of

F-> X lie in β. So S -^ X is etale. Since P ( , . . . , P ; , 5 generate P, it

follows that B ξ£ Q. But β is of index/? in P, so g and 5 generate P. since

β < P, ( P : Q Π B) = p(P: B) = /? # G . Thus the smallest subcover

F, -» X of F -» X dominating Z and 5 is of degree/? # G . This is also the

degree of Z XXS -* X, and of F -» X (which dominates Z and S). The

moφhisms F -» Vλ -* Z XXS are thus isomoφhisms, and so F arises as a

pullback of a principal Z//?-cover of X This is a contradiction, proving

(iv).

So given any pointed principal Z//?-cover of Z (or similarly, of W)

which is not induced by such a cover of X, we obtain data (P, ^4, 2?,

P ^ . .jP^) satisfying (i)-(iv) above. In order to complete the proof that

σ(Z) = σ(W), it suffices to show that the number of such covers of Z

inducing given data is equal to the number of such covers of W. Specifi-

cally, we claim that this number is #Hom(ττ1(X), P)/#Hom(πι(X), G).

To see this, consider the diagram

MP ^ MG

ΊTp ψ

Here πP and πG are the Hurwitz moφhisms, and are etale coverings of
degrees #Hom(7r1(X), P) and #Hom(7Γ!(X), G) respectively. The mor-
phisms iP and iG are the inclusions induced by P, ̂  P/ ̂  P and by Pέ <=* G.
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Pulling back to Π, Mp°°, we obtain

7Γp\

Here mf

? and πG are covering maps of degrees equal to those of πP and τrG,
respectively. So a! is a covering map whose degree is the quotient of these
integers. Let ξ E M'G C MG be the point corresponding to Z -> X Each
point in the fibre α ' " 1 ^ ) corresponds to a pointed P-cover Uj-*X. The
subgroup y ί C P determines a subcover V -> Z of U -* X. By 1.1, F is
connected. By (ii), C/ -> X is the Galois closure of V-> X, and so F -> X
yields the data (P, A, B, P'). Thus the points in the fibre a'~\ξ)
correspond to the pointed principal Z/p-covers of Z with the given data.
So there are #Hom(7r1(Λr), P)/#Hom(ττ1(X), G) such covers. Similarly,
this is the number of such covers of W. This verifies the claim, thus
showing that σ(Z) = σ( W)9 and hence proving the theorem. D

Observe that Proposition 2.3 is a special case of Theorem 2.5. Since
rG > 2 #G - 2, Theorem 2.5 also shows that

g(Z) > 1

where Z -» X is a ^-cover with group G, and groups Pz occurring as
stabilizers. In addition, a/?-cover Z ^ X satisfies σ(Z) < g(Z) unless the
length of the relative local differentials is minimal at each branch point (in
which case g(Z) is minimal among all covers with the given Galois group
and stabilizers).

Postscript. R. Crew has informed me that he has proven a result which
implies Theorem 2.5. Namely, using crystalline cohomology, he has shown
[Cr, Cor. 1.8]

σ(Z) - 1 = #G(σ(X) - 1) + 2 (G: P,)(#P, - 1),
i=\

in the notation of Theorem 2.5.
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