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ORDINARY AND SUPERSINGULAR COVERS
IN CHARACTERISTIC p

DAvVID HARBATER

This paper studies Galois wildly ramified covers of the projective
line in characteristic p. It is shown that for p-covers of tamely ramified
covers, the monodromy is ‘‘generated by the branch cycles.” But exam-
ples are given to show that this condition fails in general for towers taken
in the opposite order and for other covers as well—even in the case of
covers branched only over infinity. It is also shown that p-covers branched
at a single point are supersingular and more generally that for any curve
which arises as a p-cover, there is a bound on the p-rank which in general
is less than the genus.

In 1957, S. Abhyankar observed [Ab] that while the monodromy
group of a branched covering of the Riemann sphere is generated by loops
around the branch points, the analogous condition fails to hold in
characteristic p. He conjectured that the condition at least holds for
tamely ramified covers. This is indeed the case, as A. Grothendieck
showed by the technique of specialization (XIII, Cor. 2.12 of [Gr]). In §1
of this paper, we show that it also holds for Galois covers which are the
“opposite” of tame—viz. those whose Galois group is a p-group. More
generally, we show that Galois covers which arise as p-covers of tamely
ramified covers are “ordinary” (i.e. satisfy the above condition). But as §1
shows, towers taken in the opposite order need not satisfy this condition,
nor does every “extraordinary” cover arise in this manner. We also discuss
the connection to the problem of groups occurring as Galois groups over
the affine line. Section 2 relates these ideas to supersingularity, and more
generally to the phenomenon of a curve having fewer étale p-covers than
“expected” for its genus. It is shown that an ordinary cover of the
projective line which is branched over a single point must be supersingu-
lar. More generally, a bound is given on the number of étale Z/p-covers
of a curve which arises as a branched p-cover of another curve, in terms of
the degree and the ramification groups.

We fix our terminology: All curves are assumed to be smooth, and
defined over an algebraically closed field k. If X is a connected curve, then
a (branched) cover Z —» X is a morphism of curves which is finite and
generically separable. The branch locus is thus finite, and Z — X is étale if
the branch locus is empty. A cover Z — X is called Galois with group G if
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Z is connected and if the Galois group G (of automorphisms of Z over X)
acts simply transitively on the generic fibre. A Galois cover whose group
is a p-group is called a p-cover. A group G is said to “occur (as a Galois
group) over X ” if there is a Galois étale cover Z — X with group G. Given
a finite group G, a G-cover consists of a cover Z — X (Z not necessarily
connected) together with an inclusion of G into the Galois group, such
that G acts simply transitively on generic fibres. If in addition Z — X is
étale, it is called a principal G-cover.

I wish to thank M. Artin, M. Fried, and V. Srinivas for helpful
conversations about material in this paper.

1. Ordinary covers. Let 7: Z — X be a Galois covering of curves,
having branch locus {x,,...,x,}. Following Abhyankar [Ab], we say that
the monodromy of the cover is generated by loops around the branch points
if there exist points z,,...,z, € Z with x; = 7(z,), such that the stabilizers
of z,,...,z, together generate the Galois group. If X = P!, we will also call
such a cover ordinary. (Any other Galois cover of P! is extraordinary.) If
the characteristic of the ground field k is 0, then every Galois cover of P!
is ordinary (e.g. Theorem T in §7 of [Ab]); in general, tamely ramified
Galois coverings of P! are ordinary (XIII, Cor. 2.12 of [Gr]). Assume now
(and for the rest of the paper) that k is of finite characteristic p. Below we
show (Theorem 1.5) that a Galois cover of P' must be ordinary if it arises
as a p-cover of a tamely ramified cover of P'.

1.1. PROPOSITION. Let G be a p-group and let Z — X be a G-cover of
curves. Let H C G and let Y - X be the subcover corresponding to H. Say
{x,...,x,} is the branch locus of Z - X, let z,,...,z, € Z be points lying
over x,,...,x, respectively, and let P, C G be the stabilizer of z; in G. If
P,,...,P,, H generate G, then Y is connected.

Proof. Let Y’ be a connected component of Y, and let z” be a
connected component of Z lying over Y'. Let z{,...,z, € Z’ be points
lying over x,,...,x, respectively, and let P|,...,P, be their stabilizers in
G. Let K C G consist of the elements 6 € G such that 7 o 0(Z) = Y/,
where 7: Z — Y is the canonical morphism. Then K is a subgroup
containing P|,...,P,, H. If K 5 G then K is contained in a proper normal
subgroup N < G, since G is a p-group [HI, 4.3.2]. Thus N contains the
stabilizer of every ramification point of Z — X. So N contains P,,...,P,,
H, and hence equals G. This is a contradiction. So actually K = G. Thus
m(Z)=Y.SoY =Y ie, Yis connected. O
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Taking H to be the trivial group, we obtain

1.2. COROLLARY. Let G be a p-group and let Z —» X be a G-cover of
curves whose monodromy is generated by loops around the branch points.
Then Z is connected.

Call a curve X supersingular if X has no nontrivial principal Z/p-
covers, or equivalently if no Galois étale cover of X has group Z/p. (In
this terminology, the projective line is supersingular.) Since every maximal
subgroup of a p-group is normal and of index p [HI, 4.3.2], such a curve
has no non-trivial étale p-covers.

1.3. PROPOSITION. Let X be a supersingular curve, let G be a p-group,
and let Z — X be a G-cover. The following are equivalent:
(1) Z is connected,
(i) The monodromy of Z — X is generated by loops around.the branch
points;
(i) If {zy,...,z,} is any lift of the branch locus of X, then the stabilizers
of the points z; together generate G.

Proof. Since (iii) = (ii) is trivial, and (ii) = (i) by 1.2, it suffices to
show (i) = (iii). Let H C G be the subgroup generated by the stabilizers of
zy,...,z,. If His a proper subgroup of G, then H is contained in a proper
normal subgroup N of G. Let Y — X be the subcover of Z - X corre-
sponding to N. Then Y — X is an étale p-cover. This contradicts the
supersingularity of X. a

1.4. COROLLARY. Every p-cover of P! is ordinary.
More generally, we have

1.5. THEOREM. A Galois cover of P! is ordinary, provided that it is a
p-cover of a tamely ramified cover of P'.

Proof. Let Z - P! be a Galois cover which is a p-cover of a tame
cover Y > P'. We may assume that Y is maximal among tame subcovers
of Z - P!. Let G, P be the Galois groups of Z > P!, Z - Y. Then P < G,
since the Galois closure of Y — P! is a subcover of Z, and is also tame
(e.g. by Prop. 7 of [Ab]). Since Y — P! is tame, it is ordinary. So over the
branch points x,,...,x, of Z - X there exist y,,...,y, € Y whose stabi-
lizers in G/P generate G/P. Choose z, € Z over y,, for 1 =i <n. Let H,
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be the stabilizer of z; in G, and let H C G be the group generated by the
subgroups H,. Then H and P generate G.

Observe that if y € Y lies over a branch point x;, then some point of
Z lying over y has its stabilizer lying in H. Namely, since H and P
generate G, there exists # € H such that 4(z,) lies over y. Since the
stabilizer of A(z,) is equal to that of z;, conjugated by 4, it follows that the
stabilizer of h(z,) lies in H.

Since H and P generate G, it suffices to show P C H; for then
H = G. Suppose otherwise. Then H N P is a proper subgroup of P, and
so is contained in a proper normal subgroup N <1 P. Since N contains
H N P, by the previous paragraph it follows that for each y € Y over x,
there is a z € Z over y whose stabilizer in P is contained in N. Since N is
normal in P, the stabilizer of every ramification point of Z —» Y is
contained in N. Let Y — Y be the subcover of Z — Y corresponding to N.
Then Y — Y is unramified and of degree greater than 1. So ¥ — P! is
tamely ramified. This contradicts the maximility of Y. O

The proof of 1.5 actually shows more: Let Y — X be a tame Galois
cover of curves branched at x,,...,x,, and let y,,...,y, be points over
Xi,-..,X, Whose stabilizers generate the Galois group. If Z is a p-cover of
Y which is Galois over X, and z,,...,z, € Z lie respectively over y,,...,»,,
then the stabilizers of z,,...,z, generate the Galois group of Z - X.

Since every p’-cover (i.e. Galois cover whose group has order prime to
p) is tamely ramified, we have

1.6. COROLLARY. If G is a group with a normal ( equivalently, unique)
Sylow p-subgroup, then every Galois cover of P' with group G is ordinary.

In the case of Galois covers of P' branched at a single point, an
ordinary cover is simply one which is totally ramified there. Since there
are no tame covers of P! branched at only one point, such a cover must be
a p-COVer.

While Galois covers arising as p-covers of tame covers are ordinary,
covers taken in the opposite order need not be. For example, let Z - P!
be a Galois cover with group Z/p, branched only at co. Such a cover may
uniquely be written

n
22 —z= D ¢x,
i=0
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where ptn and ¢; = 0 for p|i. The genus of Z is (p — 1)(n — 1)/2 [Mi],
and in particular is positive whenever n > 2. Thus Z has unramified
Galois covers of degree d, for all d prime to p. Given such a cover ¥ — Z,
let ¥ — P! be the Galois closure of ¥ — P'. Then V is branched only at
%, but is not totally ramified there. Hence ¥ — P!, which arises as an
étale cover of a p-cover, is extraordinary.

1.7. EXAMPLE. In characteristic 3, let Z — P! be the cyclic cover given
(in affine coordinates) by

23—z =x2.

Then Z is of genus 1. Consider the étale cover Y — Z, cyclic of degree 2,
which is the normalization of

yi=1z(z—1).
The Galois closure of Y - P! is a degree 2 cyclic cover of Y, and is the
normalization of

yi=z2(z+1), yp=(z—-1)(z+1), ypy,=z2(z—1)(z+1).

The group of this Galois closure is the alternating group 4,. The Galois
closure is branched only at co, and the fibre there consists of four points,
each with ramification index 3. O

As remarked above, only p-groups may occur as Galois groups of
ordinary covers of P' branched precisely at co. The existence of extraor-
dinary covers, however, complicates the study of the fundamental group
of the affine line, since other groups may thus occur over A'. Example 1.7
may lead one to suspect, though, that extraordinary covers must dominate
p-covers, and thus that the corresponding groups must have a normal
subgroup of index p. But this is not the case, as we show below (Prop.
1.11). First some lemmas are needed.

The following lemma was observed by V. Srinivas and A. Wasser-
mann, and appears in [KS].

1.8. LEMMA. Let Y — X be a connected degree p cover, and Z — X its
Galois closure. If Z dominates a p-cyclic cover of X, then Y is Galois over X.

This follows from the fact that the Galois group of Z is contained in
the symmetric group S,, which has no subgroup of index p?. Namely, if Y
were unequal to the given p-cyclic cover of X, the smallest subcover of Z
dominating both would have degree p?, a contradiction.
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1.9. LEMMA. Let Y — X be a cover whose branch locus contains a point
x € X. Suppose that for each y € Y over x, the extension 0 x.x C @)Y, ,isof
degree p but is not Galois. Then the Galois closure of Y — X does not
dominate any p-cyclic Galois cover of X which is branched at x.

Proof. Let Z — X be the Galois closure of ¥ — X, and let z € Z lie
over x. We may regard (9Z as containing @Y , and thus also containing
the Galois closure 03 y.y of (‘)Y , over 0 x.x 1D fact 0 2., is the compositum of
its subrings @Y ,» a8y € Y ranges over the points lying over x (Lemma 1
of §5 of [Ab]). The Galois group of each O x.x C @Y , is a subgroup of S,
with no Z/p-quotient (by 1.8), and it is a quotient of the Galois group G
of 0 x.x C 0., .. To prove the lemma, it is enough to show that G has no
normal subgroup of index p. Since all stabilizers in characteristic p are
cyclic-by-p (i.e. have normal Sylow p-subgroup with cyclic quotient), it
suffices to show

Claim. Let G be a cyclic-by-p group and N,,...,N, < G such that
M, N, = {1}. Suppose that each G/N, has no Z/p-quotient and its Sylow
p-subgroup has order p. Then G has no normal subgroup of index p.

Here G is a semi-direct product of its unique Sylow p-subgroup
P <1 G with a cyclic group C C G of order m, where p { m. Each G/N,is a
semi-direct product of a (normal) cyclic subgroup of order p with a cyclic
group of order m;, where m;|m, and it has no quotient of order p.
Replacing N, by N, N P, we may assume that N, C P and m, = m. Each N,
is then normal and of index p in P, and M N, = {1}, so P has trivial
Frattini subgroup. Thus P is an elementary p-group [HI, 12.2.1]. Since

N, = {1}, the rank of P is at most n. By eliminating some of the
groups N,, we may assume that no proper subset of { N,,...,N,} has trivial
intersection, and thus that n equals the rank of P. Let 0, = M _; N, < G.
Then #Q,=p, and Q, N N, = {1}. Also, N Q, = {1} since O, N Q, C
M N, = {1}. Since #Q, = p, and Q,,...,Q, lic in an elementary p-group
P of rank n, it follows that Q,,...,Q, generate P. Let g, be a generator of
Q;. Then g, € N, for j # k. Since M, N, = {1}, it follows that for all k,
qr & N,. Thus the image of g, in G/N, has order p, and thus is a
generator of the Sylow p-subgroup of G/N,. Since Q, < G, the subgroup
P, C G generated by Q, and C is of order pm. So P, > G/N, under
G — G/N,. Thus P, has no normal subgroup of index p. Also, P,,...,P,
generate G, since Q,,...,Q, generate P. Now suppose G had a normal
subgroup H of index p. Then for each i, (P: H N P;) = 1 or p. The latter
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case is impossible since P, has no normal subgroup of index p. So P, C H
for all i. Since P,,...,P, generate G, it follows that # = G. This is a
contradiction, proving the claim, and the lemma. O

1.10. LeMMA. Let Y = Spec k[[t]] and Z — Y a Galois cover of degree
P". Then the length of the k[[t]]-module Q ,y of relative differential forms is
an even integer, and is at least 2p" — 2.

Proof. Regarding k[[]] as the completion of the local ring of P' at o,
we obtain a morphism ¢: Y — P'. Let G be the Galois group of Z - Y.
By Corollary 2.4 of [Ha], there is a Galois covering ¥ —P' with group G,
branched only at co (where it is totally ramified), such that Z — Y is the
pullback of 7 by ¢. Applying the Hurwitz formula to V - P' yields

2g(V) —2=p"(—2) + length Q ,

where g(V’) is the genus of V. Since g(¥') is a nonnegative integer, the
conclusion follows. O

We can now show

1.11. PROPOSITION. If the characteristic of k is an odd prime p, then
there exist Galois covers of P', branched only at oo, which do not dominate
any p-cyclic cover of P'. Such covers are extraordinary.

Proof. Since (as observed after Corollary 1.6) every ordinary Galois
cover of P!, branched only at oo, is a p-cover, and since every p-group has
Z/p as a quotient, the second sentence is immediate.

We now give examples of such covers in each odd characteristic. Let
a € k be non-zero, and let a € k be the unique pth root of a. Let :
Z - P! be the cover of the projective x-line given in affine coordinates by

2% —z—x(z2—a)=0.

Thus Z is the projective z-line, and 7 is of degree 2 p. The only branching
is at x = oo. The fibre there consists of the two points z = a, oo, with
ramification index p at each of these points. Let n,, n, be the lengths of
the Op:1 -modules of relative differentials at these two points. Then by the
Hurwitz formula,

ie.n, +n,=4p — 2.
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Passing to the complete local ring at x = o0, z = o0, and using local
coordinates X = x~ ', Z = z~!, we have

Pl —az?)(1— 77277 ) =2 —ag? + 2% + ..

XxX=z
ax = (—z%2+...)dz.

So n, =3p — 2, hence n, = p. Thus n, and n, are odd. So by Lemma
1.10, the complete localization of Z at either point is not Galois over (9,,.
(but is of degree p). By Lemma 1.9, the Galois closure of Z — P!
dominates no p-cyclic cover branched at x = oo. Since Z is étale elsewhere,

and P! is simply connected, the Galois closure is as desired. |

By Lemma 1.8, a connected degree p étale cover of A' must be Galois,
provided that its Galois closure dominates a p-cyclic cover of A'. But by
Proposition 1.11, not every Galois étale cover of A' need dominate such a
p-cyclic cover. Still, T. Kambayashi asks [Ka] whether every connected
degree p étale of A' is Galois. Equivalently, for G to occur as a Galois
group over Al, is it necessary that every subgroup of index p be normal?
This is trivial for p = 2. Kambayashi and V. Srinivas here observed [KS]
that this is also true for p = 3, since otherwise the Galois closure would be
an étale cover of A! with group S,—an impossibility in characteristic 3.

But for p = 5, a negative answer to Kambayashi’s question would be
implied by a conjecture of Abhyankar. Namely, Abhyankar conjectured
[Ab, §4] that for an affine curve X, a group G occurs over X if and only if
the p’-group G/N does, where N is the (normal) subgroup generated by
the Sylow p-subgroups of G. In the case of the affine line, this may be
rephrased as follows. Call a finite group G a quasi-p-group if G is
generated by its Sylow p-subgroups, or equivalently if G has no quotients
of order prime to p other than the trivial group. Then Abhyankar’s
conjecture says that the groups which occur over A! are precisely the
quasi-p-groups. For p = 5, this would imply that the alternating group 4,
occurs as the Galois group of a Galois cover Z — P! in characteristic p.
Regard 4, CA4,, and let Y - P! be the subcover corresponding to
A, . Then Y - P! is of degree p and is étale over Al, yet is not Galois.
Thus for p = 5, an affirmative answer to Kambayashi’s question is incom-
patible with Abhyankar’s conjecture.

2. Supersingular covers. This section relates the previous ideas to
supersingularity. Proposition 2.3 shows that the smooth completion of
every étale p-cover of the affine line is supersingular. More generally, 2.5
and 2.6 give a bound on the number of principal Z/p-covers which a



ORDINARY AND SUPERSINGULAR COVERS 357

p-cover X — Y may have. This bound is generically less than the expected
number p38, where g is the genus of X. First we need

2.1. LEMMA. Let G be a finite group, and H < K < G such that the
index (K: H) is a power of p. Then H contains a subgroup N which is
normal in G, such that (K: N) is a power of p.

Proof. Let H = H,, H,,...,H, be the conjugates of H in G. Thus all
H, <K. LetJ;=H N---NH, for i = 1,...,n. It suffices to prove that
the index of each J; in K is a power of p; for then we may take N = J,. We
proceed by induction on i. By assumption, J; = H has p-power index in
K. Suppose the same holds for J.. Since H,_, is normal in K of p-power
index, it follows that J,, , = H,,, N J;is normal in J; of p-power index. So

1

the index of J, , in K is a power of p. O

2.2. COROLLARY. If X > Y and Y - Z are p-covers, then so is the
Galois closure of X - Z.

2.3. PROPOSITION. Every p-cover of the projective line which is branched
at a single point is supersingular.

Proof. Let Z —» P! be such a cover branched only at co. Suppose
Y - Z is a Galois étale cover with group Z/p. Then the fibre of Y - P!
consists of p points. Now by Corollary 2.2, the Galois closure ¥ - P! of
Y - P! is a p-cover. By the remark after Corollary 1.6, ¥ — P! is totally
ramified over co. Hence so is Y — P!, which is a contradiction. O

2.4. ExaMPLE. By [Mi), the genus 1 Z/3-covers of P! in characteristic
3, branched only at oo, are precisely those given by
(%) P—z=cx*+dx (c#0),

where ¢, d lie in the ground field. By Proposition 2.3, all such covers are
supersingular. But up to isomorphism, there is a unique supersingular
elliptic curve in characteristic 3, viz. the curve v* — v = u%. And indeed,
the change of variables

u=cx—d/|c,
v=z+¢ (where& — £ =d%/c)

transforms the curve (*) into this form. (Question: In general, to what
extent are supersingular curves “accounted for” in this manner?) 0O
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Proposition 2.3 does not hold if more than one branch point is
allowed. For example, let Y; - P! and Y, —» P' be p-cyclic Galois covers
branched respectively at 0 and co. Let Y = Y, X1 Y,. Thus Y - P! is
Galois with group Z/p X Z/p. Let Z - P! be the quotient of Y by the
diagonal subgroup. Then Y — Z is étale and cyclic of degree p, so Z is not
supersingular.

Still, under quite general hypotheses, a weaker version of 2.3 hoids.
We consider an invariant which measures how far a curve is from being
supersingular. For a curve X in characteristic p, define 0 = o( X)) to be the
rank of the elementary p-group consisting of the p-torsion points on the
Jacobian of X. Then

0<o(X)=g(X),

and o = g for a generic curve of genus g. There are exactly p° principal
Z /p-covers of X, and so a curve X is supersingular if and only if
o(X) = 0. (Since Z/p is abelian, p° is also the number of pointed principal
Z /p-covers of X, if a base point of X is chosen.) Moreover the p”-torsion
points on the Jacobian form the group (Z/p")°, so there are exactly p"°’
principal Z/p"-covers of X. The integer o can also be described as the
rank of the Nth iterate (for N > 0) of the p-linear Frobenius map F:
H'(X,0)-> H'(X,0). In the case of elliptic curves, ¢ is the Hasse
invariant. See [Se] for details.

For any p-group G, let r; be the minimum possible length of the
k([¢]]-module of relative differentials 2, ,,, where Z ranges over all Galois
covers of Y = Spec|[¢]] having group G. By Lemma 1.10,r;, =2 - #G — 2.
Applying the Hurwitz formula to the genus 0 cover z” — z = x of the line,
we see that r; = 2p — 2 if G is cyclic of order p. (Isr; =2 - #G — 2 in
general?)

The following result gives an upper bound on o(Z) and a lower
bound on g(Z), where Z - X is a p-cover. It relies on results of [Hal.

2.5. THEOREM. Let Z — X be a p-cover with group G. Let x,,...,x, be
the branch points, let z;, € Z be a point over x;, and let P, C G be the
stabilizer of z,. Then

20(Z) —2=< #G|2g(X) — 2+ X rp/#P,| =2g(Z) — 2.
=1

=

Proof. The second inequality follows immediately from the Hurwitz
formula and the definition of 7.
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For the first inequality, we begin by reducing to the case that the
monodromy of Z — X is generated by loops around the branch points. To
do this, let Y - X be a maximal unramified subcover of Z — X. Then Y is
unique, and the Galois group of Z — Y is a normal subgroup H < G,
since any two unramified subcovers are dominated by a third. So ¥ - Xis
Galois, with group G/H, say of order m. Let y;,...,y,,, € Y be the points
over x;, and choose a point z;; € Z over y; . The stabilizer P,;; of z,;in H is
the same as the stabilizer of z; j in G, since Y — X is unramified; so
P, ~ P,

We claim that { P}, generates H, and thus that the monodromy of
Z - Y is generated by loops around the branch points. If not, the
subgroups P, generate a proper subgroup of H which, since H is a
p-group, lies in a proper normal subgroup N < H [HI, 4.3.2]. The stabi-
lizer in H of every point in Z must lie in N, since N < H and N already
contains the stabilizer of some point in each fibre of Z — Y. The subcover
of Z — Y corresponding to N is thus unramified over Y, and hence over
X. The maximality of Y implies N = H, which is a contradiction. This
proves the claim.

It suffices to verify the theorem with X replaced by Y. For then,

20(Z) - 2= #H(2g(Y) 2+ é é rPU/#PU).
But
2g(Y) — 2= #(G/H)(2g(X) — 2).
So
20(Z) — 2= #H(#(G/H)(Zg(X) ~2)+ 3 mr,,/#p,.)

=

= #G

n
2(X) =2+ 3 r,,,/#P,.)
i=1
as desired. So we are reduced to the case that the monodromy of Z —» X is
generated by loops around the branch points.

For any p-group 4, let M;* be the moduli space of pointed A-covers
of Spec k[[x]], and let M be the subspace corresponding to connected
A-covers (cf. §2 of [Ha]). Pick a base point of X other than x,...,x,, and
pick a base point for Z over that. Let M, be the moduli space of pointed
principal A-covers of X — {x,,...,x,}. For 1 <i=<n, let {, € Mp'"*
correspond to the extension Oy, C 0, , and let £ be a point of M,?, loc
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such that the module of relative differentials of the corresponding finite
extension of k[[x]] is of minimal length (viz. r,). As in the proof of
Corollary 2.10 of [Ha], the inclusion P, => G induces a morphism ¢;:
M = MF<. Let §, & € (M) be the respective images of ({,,...,$,)
and (¢,,...,¢,)under ¢ = (¢,,...,0,). Let 750 M;—> (MF*)" be the
Hurwitz morphism (2.6) of [Ha), assigning to each G-cover the ramifica-
tion moduli over the branch points. By Proposition 2.7 of [Hal], this is an
étale cover, and its degree is the number of pointed principal G-covers of
X. Choose a point of M lying over §, and let W — X be the corre-
sponding pointed G-cover of X. By construction there is a point w, € W
over x; whose stabilizer is P, C G. Since P,,...,P, generate G, W is
connected by Corollary 1.2. By the Hurwitz formula,
2g(W) —2=#GQg(Xx)—2)+ > r(G: P,).
i=1

Since o(W') < g(W), this proves the theorem for W. It remains to show
that 6(Z) = o(W).

For any principal Z/p-cover S - X, let S, —» Z be the pullback. Thus
is also a principal Z/p-cover. The association S~ S, corresponds to the
group homomorphism

Hom(m,(X),Z/p) - Hom(m(Z),Z/p)

induced by Z —» X. We claim that this homomorphism is injective. For
suppose S — X is a principal Z/p-cover corresponding to a point in the
kernel. Thus S, - Z is trivial. Since the monodromy of Z - X is gener-
ated by loops around the branch points, the same is true for the pullback
S, = S. Thus by Corollary 1.2, S, is connected, provided S is. Since
S, — Z is trivial, S must be disconnected, and hence is trivial. So indeed
the kernel is trivial.

Thus there are exactly p°® principal Z/p-covers of Z which are
induced by such a cover of X. The same is true with Z replaced by W. So
it remains to show that Z and W have the same number of principal
Z /p-covers which are not induced by a principal Z /p-cover of X. Since
Z /p is abelian, we may equivalently consider pointed principal Z/p-covers.

Given such a pointed Z/p-cover ¥V - Z, let ¥ - X be the Galois
closure of ¥ - X. By Corollary 2.2, the Galois group P of ¥V > X is a
p-group. Let A, B C P be the subgroup corresponding to V, Z. For any
point v € V over z,, the stabilizer of v is a subgroup of P which maps
isomorphically to P, under the quotient map P — G. So there exist
P|,...,P, C P which map isomorphically to P, under P - G, such that the
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point of M, corresponding to ¥ is sent, under the Hurwitz morphism ,:
M, - (M}**)", to a point lying in the image of [[7_, M. The cover
V - X thus determines data P, 4, B, Pj,...,P, satisfying:

(1) Pisap-group,and 4 < B < P;

(ii) (B: A) = p, and 4 contains no non-trivial normal subgroup of P;

(iii) P/B ~ G, and the quotient map P - G maps P/ isomorphically
onto P;;

@iv) Pj,...,P,, A generate P.

Here (i)-(iii) are clear. To verify (iv), note first that Py,...,P,, B generate
P, since P,,...,P, generate G. So by (ii), the group Q C P generated by
Pl,...,P/, Ais of index 1 or p. If (iv) is false, then Q is a normal subgroup
of index p, since P is a p-group [HI, 4.3.2]. Let S — X be the subcover of
V — X corresponding to Q. Thus S — X is cyclic of degree p. Since
Pl,...,P, C Q and Q < P, all the stabilizers of ramification points of
¥V - X lie in Q. So S - X is étale. Since P|,...,P,, B generate P, it
follows that B Z Q. But Q is of index p in P, so Q and B generate P. since
Q<P, (P:. QNB)=p(P: B)=p- #G. Thus the smallest subcover
V, = X of V - X dominating Z and S is of degree p - #G. This is also the
degree of Z X, S — X, and of V' — X (which dominates Z and §S). The
morphisms V - V, - Z X .S are thus isomorphisms, and so V arises as a
pullback of a principal Z/p-cover of X. This is a contradiction, proving
(iv).

So given any pointed principal Z/p-cover of Z (or similarly, of W)
which is not induced by such a cover of X, we obtain data (P, 4, B,
P{,...,P)) satisfying (i)—(iv) above. In order to complete the proof that
a(Z) = o(W), it suffices to show that the number of such covers of Z
inducing given data is equal to the number of such covers of W. Specifi-
cally, we claim that this number is # Hom(7,( X), P)/# Hom(m( X), G).

To see this, consider the diagram

M, 5 M,
Tp l, \LWG
(Mloc) N Mloc)

\) HMloc/

Here 7, and 7; are the Hurwitz morphisms, and are étale coverings of
degrees # Hom(7(X), P) and #Hom(m,( X), G) respectively. The mor-
phisms i, and i are the inclusions induced by P, > P/ = P and by P, = G.
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Pulling back to [, M;*, we obtain
v
M, - M
LI v g
[T Mz
; i

Here 7y and 7/ are covering maps of degrees equal to those of =, and 7,
respectively. So a’ is a covering map whose degree is the quotient of these
integers. Let { € M, C M, be the point corresponding to Z — X. Each
point in the fibre &’ ~'({) corresponds to a pointed P-cover U.— X. The
subgroup 4 C P determines a subcover V' - X of U - X. By 1.1, V is
connected. By (ii), U — X is the Galois closure of V- X, and so V' - X
yields the data (P, A, B, P’). Thus the points in the fibre o’ '({)
correspond to the pointed principal Z/p-covers of Z with the given data.
So there are #Hom(w,(X), P)/# Hom(m(X), G) such covers. Similarly,
this is the number of such covers of W. This verifies the claim, thus
showing that 6(Z) = o(W), and hence proving the theorem. O

Observe that Proposition 2.3 is a special case of Theorem 2.5. Since
rG =2 - #G — 2, Theorem 2.5 also shows that

8(2) =1+ #G(g(X) — 1+ Z(1 - 1/%P)),

where Z —» X is a p-cover with group G, and groups P, occurring as
stabilizers. In addition, a p-cover Z — X satisfies 6(Z) < g(Z) unless the
length of the relative local differentials is minimal at each branch point (in
which case g(Z) is minimal among all covers with the given Galois group
and stabilizers).

Postscript. R. Crew has informed me that he has proven a result which
implies Theorem 2.5. Namely, using crystalline cohomology, he has shown
[Cr, Cor. 1.8]

o(Z2) = 1= #G(o(X) = 1) + 3 (G: P)(#P, — 1),

i=1

in the notation of Theorem 2.5.
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