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3-MANIFOLDS WITH SUBGROUPS ZΦZΦZ
IN THEIR FUNDAMENTAL GROUPS

E. LUFT AND D. SJERVE

In this paper we characterize those 3-manifolds M3 satisfying
Z Θ Z Θ Z C ^i(Λf). All such manifolds M arise in one of the following
ways: (I) M = Mo # R, (II) M= Mo # R*, (III) M = Mo Uθ R*. Here
Λf0 is any 3-manifold in (I), (II) and any 3-manifold having P2 compo-
nents in its boundary in (III). R is a flat space form and R* is obtained
from R and some involution t: R -> R with fixed points, but only finitely
many, as follows: if C,,..., Cn are disjoint 3-cells around the fixed points
then R* is the 3-manifold obtained from (R - int(C, U UQ))/ί by
identifying some pairs of projective planes in the boundary.

1. Introduction. In [1] it was shown that the only possible finitely

generated abelian subgroups of the fundamental groups of 3-manifolds

are Zn9 Z θ Z 2 , Z, Z θ Z and Z θ Z θ Z. The purpose of this paper is to

characterize all M3 satisfying Z Θ Z Θ Z C πx(M).

To explain this characterization recall that the Bieberbach theorem

(see Chapter 3 of [8]) implies that if M is a closed 3-dimensional flat space

form then Z Θ Z Θ Z C πx(M). We let M,,.. . 9M6 denote the 6 compact

connected orientable flat space forms in the order given on p. 117 of [8].

Similarly Nl9...9N4 will denote the non-orientable ones. For explicit

descriptions see §2. One of the main theorems from [3] is

(1.1) THEOREM. The only space forms from the orientable ones Ml9...9M6

which admit involutions having fixed points, but only finitely many, are Mλ9

M 2 , M6. Moreover these involutions are unique up to conjugacy and have 8,

4, 2 fixed points respectively.

If ι\ Mt -» Mi9 i = 1, 2 or 6, is such an involution and xl9... 9xn are

the fixed points (n = 8, 4, 2) then there are disjoint 3-cells Cl9...9Cn so

that

x ^ e i n t C , and ι(Ct) = Cι9 1 < / < Λ .

We let M* denote the orbit manifold Mt - int(Cj U U C J / t . Thus

3M* consists of 8 projective planes, 8M* consists of 4 and 3M* has 2.

Canonical presentations of Mf, i = 1, 2, 6, are given in [3]. By making

identifications of pairs of such projective planes in dM* we obtain new

manifolds still containing Z Θ Z θ Z in their fundamental groups. We
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refer to any such manifold obtained this way as a projectively flat space

form. In this identification procedure it is not necessary to identify all

boundary components.

(1.2) EXAMPLE. MX is the torus Sλ X Sι X Sx and the involution can

be taken to be ι(x, y9 z) — (x, y9 z).

FIGURE 1

8 P2 boundary components, 2 pairs of which have been identified.

If Mo is a manifold having P2 components in its boundary let

M o U 9i?* denote the manifold obtained from the disjoint union Mo U R*

of Mo with a projectively flat space form R* by identifying some P2

components of dM0 with some from 3i?*. Then 77,(M0 Uai?*) contains

Z θ Z θ Z as a subgroup.

attach

R*

FIGURE 2

MAIN THEOREM. Suppose M3 is a 3-manifold. Then ττx(M) admits

Z θ Z θ Z as a subgroup if and only if M has one of the following forms:

(I) M — Mo # Rfor some flat space form R,

(II) M — Mo # i?* for some projectively flat space form i?*,

(Ill) M = M o U8 /?* for some projectively flat space form /?*, where, in

case (III), Mo is as above.
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Throughout we work in the PL category and use [2] for a standard
reference. Section 2 contains the descriptions of the space forms, section 3
contains a topological characterization of them, and §4 has the proof of
the main theorem.

2. Flat 3-dimensional space forms. In this section we will briefly

summarize some of the basic facts about flat space forms — see [8] for
details. Recall that a complete connected riemannian manifold is a flat
space form if its sectional curvature is constantly zero, and that the
classical Bieberbach theorem states that a 3-manifold M3 is a flat space
form if and only if its universal covering space is R3 and the deck
transformation group π,(M) is acting on R3 by rigid motions. This is also
equivalent to the existence of a regular covering by a flat torus Sι X Sι X
Sι -> M in case M is closed.

For such a 3-manifold M there is therefore an extension

1 ->ZΘZΘZ-> G-» Ψ -> 1,

where G — π{(M) is torsion free and Ψ is a finite group. Moreover the
abelian subgroup Z θ Z θ Z can be taken to be maximal abelian. Con-
versely we have the following result of Bieberbach: an abstract group G is
the fundamental group of a 3-dimensional flat closed space form if G is
torsion free and there exists an extension 1 -* Z θ Z θ Z
-> G -> Ψ -> 1 with Ψ finite and Z θ Z θ Z maximal abelian in G. If p:
Ψ -*G13(Z)is the representation associated to an extension then ZΘZΘZ
is maximal abelian if and only if p is faithful. Thus the affine classifica-
tion of flat space forms in dimension 3 proceeds by first classifying the
finite subgroups of G13(Z) up to conjugacy and then by determining
which ones correspond to torsion free extensions.

If p: Ψ -> G13(Z) is a representation then the congruence classes of
extensions N Z Θ Z Θ Z - ^ G ^ t ^ l associated to p are in 1-1 corre-
spondence with H2(Ψ; R), where R is the Ψ module Z Φ Z Θ Z . Then it
is easy to see that G is torsion free if and only if the cohomology class
X E H2(G; R) restricts to a non-zero class in H2(Zp; R) for each
subgroup Zp c G, p a prime.

Proceeding in this way it is a routine matter to classify 3-dimensional
flat space forms up to affine diffeomorphism. It turns out that the only
possible holonomy groups Ψ are 1, Z 2, Z3, Z 4, Z6, Z 2 θ Z 2 in the
orientable case and Z 2, Z 2 θ Z 2 in the non-orientable case.

Let al9 a2, a3 denote a fixed basis of R3 and let tu t2, t3 be the
corresponding translations. If A is a 3 X 3 matrix with respect to this
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basis and v G R3 then let (A, tv) denote the affine map

(A,to):u-*υ+A(u)

Then the classification of space forms up to affine equivalence is given by
the following two theorems.

THEOREM (2.1). Up to affine equivalence there are 6 orientable closed

flat 3-dimensional space forms. They are represented by the manifolds R3/G,

where G is one of the groups below:

1. Ψ — {1} and G is generated by tx, t2, tv

2. Ψ — Z 2 and G is generated by t}, t2, ί3 and a = (A, ta]/2), where

A =
1 0
0 - 1

Lo o - l
3. Ψ = Z 3 and G is generated by tx, t2, t3 and a — (A, ί ί J l / 3 ) , where

A =
1 0 0
0 0 - 1

LO 1 - 1

4. Ψ = Z 4 and G is generated by tx, t2, t3 and a = (A, taι/4), where

A =
1 0 0
0 0 - 1

LO 1 OJ

5. Ψ = Z 6 and G is generated by tx, t2, t3 and a = (A, taι/6), where

A =
1 0 0
0 0 - 1
0 1 1

6. Ψ = Z 2 θ Z 2 and G is generated by tx, t2, ί3 and a = (A, taι/2),

β = (B> t{ai+ai)/2), where

A =
1 0
0 - 1
0 0 - 1

0
0
1

, B =
- 1

0
0

0
1
0

0
0

- 1

REMARKS. (1) The normal subgroup Z θ Z θ Z is generated by the
translations tl9 t2, t3 and the corresponding representations Ψ -> G13(Z)
are given by the matrices A for cases 2,..., 5 and by A, B for the last case.

(2) This theorem explicitly describes the way in which the groups act
by affine motions on R3. In order to put a metric of constant curvature
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zero on the space forms, that is, to make these motions rigid, we must
impose certain metric conditions on the α, . But this does not concern us
here.

THEOREM (2.2). Up to affine equivalence there are 4 non-orientable
closed flat 3-dimensional space forms. They are represented by the manifolds
R3/G, where G is one of the groups below:

1. Ψ — Z 2 and G is generated by tx, t2, t3 and ε = (A, ta^2), where

1 0 0 '
A = 0 1 0 .

.0 0 - 1 .

2. Ψ = Z 2 and G is generated by tλ, t2, t3 and ε = (A, ία / 2)> where

A =
1 0
0 1
0 0 - 1

3. Ψ — Z 2 θ Z 2 and G is generated by /,, t2, t3 and a = (A, taχ/1\
ε = (B, tai/2), where

A =
1 0
0 - 1

1 0 0
0 1 0

L o o - l j
4. - Z2 θ Z

A —

), where

1 0
0 - 1

0 - 1

G is generated by tx, t2, t3 and a-{A, tay/2),

0

0
0

0 - 1

1 0 0
0 1 0
0 0 - 1

We let Ml9... ,M6 denote the orientable space forms and Nl9...9N4

the non-orientable ones. Perusing the list of groups in the orientable case
reveals that the subgroup generated by t2913 is normal in G. In the first 5
cases Mj,.. . , Af5 we have an extension

and for M6 we have an extension

θ
1 - * Z Θ Z - > G - > Z 2 * Z 2 - > 1

where Z θ Z is the subgroup generated by ί2, t3. The matrices associated
to the extension in the first 5 cases are given by conjugation by tλ for Mλ
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and by a for Λ/2,... ,M5. They are, respectively,

(2.3) 1 0
0 1

- 1 0
0 - 1

0 - 1
1 - 1

0 -
1 0

1] [0 - 1 ]
o r l i IJ

Notice that these matrices are in S12(Z) and have orders 1, 2, 3, 4 and 6.

Geometrically this means that Ml9... ,M5 are orientable torus bundles

over Sι resulting from orientation preserving homeomorphisms

φ: Sι X Sι -» Sι X Sι

having finite orders, and with ψ*: H^S1 X Sι) -* H^S1 X Sι)

given by the matrices in (2.3) respectively. In terms of complex coordi-

nates these homeomorphisms can be described as follows:

'(χ,y) i f / = l ,

(x,y) i f / = 2,

(y, xy) if/ = 3,

(y, x) if / = 4,

(j,xy) if / = 5.

Then Mn 1 < / < 5, is the mapping torus construction

M^SιXSιX [0, 1]/ (x, 7,0) - {φ,(x9 y), l).

The torus bundle structure over S] is given by Figure 3.

typical fiber

t = 1

t = 0

5 1 = [0, l ] / 0 ~ l

FIGURE 3

The last orientable flat space form M6, the so-called Hantzsche-Wendt

manifold, is not a torus bundle over the 1-sphere. However, M6 is the

union of 2 copies of the orientable twisted /-bundle over the Klein bottle.

A particular model W for this twisted /-bundle is W = S] X Sι X

[0, l]/(x, y,0) - (τ(x, y), 0) where T: S1 X S1 -» S' X Sι is any fixed

point free orientation reversing homeomorphism, e.g., τ(x, y) = (— x, —y)
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or τ(x, y) = (—x, —y). The /-bundle structure is given by sliding down
the ί-axis. Notice that Sλ X Sι/(x9 y) ~ τ(x, y) is the Klein bottle K and

a torus. (See Figure 4.)

= 1

W

t = o Vr""C*r -

FIGURE 4

To see how M6 is the union of 2 copies of W we first analyze the

structure of G — πx(M6). From the above description of G it follows that

there is a decomposition of G as an amalgamated free product G} * Z Θ Z G2,

where

G] = the subgroup generated by tl912, α,

G2 = the subgroup generated by t}, t2, β.

In fact Gλ,G2 are Klein bottle groups and M6 decomposes as follows:

M6 = S 1 X S 1 X [0,1]/ (x, 7,0) ~ (-jc, -J7,0) and

Wθ9 Wx are copies of W and Wo Π Wx is an incompressible torus.

= 1

ί = 0

FIGURE 5

We can summarize this construction as follows. Let W be an orienta-
ble twisted /-bundle over a Klein bottle. Then HX{W) = Z θ Z 2, and
H{(dW) = Z ® Z has a natural basis b0, bx such that, with respect to the
inclusion i: dW -» W9 t*(b0) is a generator of 2Z and t^frj) is the
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non-zero element of Z 2 . Now let WQ9 Wx be two copies of W and let φ:
dW0 -> dWx be an orientation preserving homeomorphism with φ*:
Hx(dW0) -» Hx(dWx) given by the matrix [? ~d ] with respect to the natural
basis. Then M6 = WQ U Wx/x ~ φ(x).

Up to conjugacy a complete list of matrices of finite order in S12(Z) is
given by (2.3). The corresponding list in G12(Z) has 2 more representa-
tives, namely

-?]
Note that although these matrices are similar over the ring Ί\\\ they are
not similar over Z. The corresponding torus bundles over S] turn out to
be Nl9 N2 respectively. To see this for JV, we note that G — πx(Nx) satisfies
an extension

1 - > Z Θ Z - * G - > Z - > 1 , where Z Θ Z

is generated by t2, t3 and θ(e) is a generator of Z. Since εt2ε~ι = t2 and
εt3ε~ι = t^1 it follows that the matrix of this extension is [ι

0 _°x].
Accordingly Nx is the mapping torus construction

Nx = Sι X Sx X [ 0 , 1 ] / (x9 y9 0) - (x, yy 1).

In the case of N2 we also have an extension

1 -* Z Θ Z -» G-*Z -* 1, where G = ^(iV2),

Z Θ Z is generated by ^^^ 3̂? and θ(ε) = a generator of Z. Now ε ί , ^ " 1

= /j/2» εt3ε~ι = ^^ί^"1 and so the matrix is [{, _J]. Therefore

N2 = SιXSιX [0, 1]/(JC, ^,0) - (xy, j ? 1).

We now have a complete list of conjugacy classes of matrices of finite
order in G12(Z). There are five orientable matrices leading to the space
forms Af,,...,M5 and two non-orientable matrices corresponding to Nx,
N2. The other space forms are not torus bundles over a circle. As noted
above M6 is the union of two twisted /-bundles over the Klein bottle.

The non-orientable space forms iVl9... ,JV4 admit Klein bottle bundle
structures (for a different approach see [4]). In the following we derive
explicit descriptions. First of all Nx is homeomorphic to K X S\ where K
is the Klein bottle. To see this note that

Nx = SιXSxX [ 0 , 1 ] / (χ9 y, 0) - (x, y, 1)

= Sι X {Sι X [ 0 , 1 ] / (y, 0) ~ (y91)} = Sι X K.
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Now let σ: S] X Sι -> Sι X S] be the homeomorphism σ(x, y) =
(xy, y). Thus N2 is the torus bundle over Sι associated to σ. Then consider
the circle Sθ = {(x, y) E Sι X Sι\x2y = e27Tiθ}, 0 < θ < 1. It is easy to
verify that Ŝ  is invariant under σ and that the following diagram
commutes:

Sθ => S[

where Ŝ  -»S1 is the homeomorphism

e - c l (x, y ) - * xandpθ: Sι-> Sι isx-* e2tIπθx
άθ -> o

Put #0 = S, X [0, 1]/(JC, 7,0) - (σ(x, 7), 1) C 7V2. Then ^ is a Klein
bottle and N2 = Uo^^<! AΓ̂ . In other words, 7V2 is a twisted product of
K = S1 X [0, l]/(x,0) - (3c, 1) and 51. To see how this twisting works
consider the map

f:S] X[0,1] X[0,1] -> S] X Sι X[0, l],

/ ( J C , / , β ) = ( c e 2 ^ , χ - 2 e 2 ^ ( 1 ~ 2 ί ) , / ) .

The following are easy to verify:
(i) f(Sι X [0,1] X θ) = S0 X [0,1], in fact / induces a homeomor-

phism S{ X [0,1] X θ -> ̂  X [0,1].
(ϋ)/(jc, 0, β) -/(jc, 1, β), as points in N2, for 0 < θ < 1.
Therefore/induces: F: 5 1 X [0,1] X [0, 1]/(JC,0, β) - (x, 1, β) -> iV2,

F[x, ί, β] = [xe2fr/fl/, x~2e27Γ/^(1"2/), t]. In fact F induces homeomoφhisms
K X θ Ξ>KΘ, 0 < ^ < 1. For θ = 0, 1 we have

F[x,r,0] - [ x , χ - 2 , / ] , F [ x , ί , l ] =[jce 2 l Γ / /,x"V 4 ί r ι /,/]

and hence

JV2 = Λ:x[o, ι]/[x9 /,o] ^ [ ^ - 2 - \ /, i].

To determine the Klein bottle bundle structure on K we first show
θ

that there exists an extension 1 -* Q -* G-*Z -* l9 where G = ττx(N3) and

β is the fundamental group of the Klein bottle. From the description of G
as a group of rigid motions on R3 we can derive the following relations:

a 2 = tl9 e 2 = ί 2 , ε α ε " 1 = ί 2 α , a t 2 o Γ λ — t2

x,

Now it follows that the subgroup generated by ε, t3 is a choice for Q and
0(α) is a generator for Z. Thus N3 = KX [0, l]/(/?,0) - (σ(p), 1), where
σ: iί -»jfiΓis the homeomoφhism inducing conjugation by α on π,
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aεa ι = ε ι and at^a λ = /;

and therefore we may choose σ to be σ[x9 t] = [JC, 1 — t]. To see this

consider the corresponding homeomoφhism on Sx X [0,1]. Therefore

N3 = KX[0,l]Λx,t90]~[x9l-t9l].

f = 1

FIGURE 6

Finally it remains to describe the ^-bundle structure on N4. The

fundamental group G — irx(N4) has the relations

a2 = tl9 ε2 = t29 εaε~ι = / 2 ί 3 α , α ^ α " 1 = ί^1,

Again we choose Q = the subgroup generated by ε, tv Then Q is normal

and is isomoφhic to π^A^). There is an extension I -> Q -> G-*Z -* l9

where G — π{(N4) and θ(ά) is a generator for Z. One can easily check that

αεα" 1 = Γxε~\ at3a~ι = /3"1.

The homeomorphism σ: K ̂  K inducing conjugation by α is a[x, t] —

\xe~2mi\ 1 - t\ Thus

= K X [0, ! ]/[*, /,0] 2«>\ 1 - M ] .

ί = 1

t = 0 <
-

ω

X

——-*•

[0, 1]

e
0

FIGURE 7

S1 x [0, 1]
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We can summarize the preceding results as follows. Let ψz: K -> K be

homeomorphisms, / = 1, 2, 3, 4, so that the induced isomorphisms ψ/# on

Hλ(K) = Z θ Z 2 are given by the following "matrices":

<2 4> [ ?]• [ ?]• [-ί ?]• [ i ?
Then Λ̂  is the mapping torus construction

,y)Λ).

Note Nl9...9N4 comprise all possible ^-bundles over Sι.

Abelianizing the fundamental groups, the first homology groups of

the space forms are easily computed to be as follows:

(2.5)

Hχ(M,)=Hλ

H,(M2) = Z

Ht(M3) = Z<

HX(M4) = Z>

HX(M5) = Z

H,(M6) = Z,

(Sι X S]

ΘZ 2 ΘZ

9 Z 3

©Z2

ΦZ 4

XS1)

'2

= Z Θ Z Θ Z ^,(iV,)

//,(iV2)

fit(N3)

— ΠΓ ίΏ T (X-

r~r (Ύ\ rw
— £j vL/ £j

'TΓ /T\ fΊ 1
Hi VL/ Z-J'-, ^

πr /τ\ τ~m

— £j \D JL^ .

> z 2

©z2

Since the identification maps in the bundle structures of all ten space

forms A/,,... ,M6, NV...,N4 have finite order it follows that all ten space

forms admit Seifert fibrations. The exceptional fibers correspond to fixed

points of the group actions generated by the identification maps. See also

[4].

The canonical involutions on M]t M2, M6 can now be easily described

in terms of bundle coordinates:

(1) Mλ, ί8[x, y, t] = [x, y, 1 - t] has 8 fixed points [ ± l , ± l , 0 ] ,

[±1,±U]
(2)

\[-x,-y,\-t] i f O < / < 1/2,

The 4 fixed points are [±i, ±i, | ] .

M2 = S] XS] X[0
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f = 1

FIGURE 8

(3) M6, ι2[x, y91] — [x, —y91) has two fixed points [/, ± 1,0].
Finally, there are 2-fold coverings M, -> M2 and M2-+ M6. By vary-

ing ι2, i4, 48 within their conjugacy class we can make these involutions
compatible with these coverings. To do this consider the three involutions
of Mx — S] X Sy X S1 defined in terms of complex coordinates as fol-
lows:

σ(x9 y9 z) = (-* , y9 z), p(x9 y9 z) = (x9 -y9 z)9

ι(x9y9z) = (-x9 -y,z).

Then it is easily checked that σ, p, i pairwise commute, σ: Mλ -» M, is the
covering translation for M, -» M2, and the induced involution p: M2 -> M2

is the covering translation for M2-+ M6. Since i commutes with σ, p it
gives involutions on M2 and M6. These induced involutions are the
canonical ones.

For a more explicit description of Mf9 M% and M* see [3]. In
conclusion we have the following hierarchy of coverings:

3

FIGURE 9

3. The topology of flat space forms. In this section we characterize
the compact 3-dimensional flat space forms as those connected P ̂ irre-
ducible M 3 satisfying Z Θ Z θ Z C ir,(M). (A 3-manifold M is irre-
ducible if each 2-sphere in M bounds a 3-cell; it is P2-irreducible if it is
irreducible and if it does not contain 2-sided protective planes.)
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(3.1) LEMMA. Suppose M3 is a compact connected P1-irreducible
3-manifold with πx(M) — fnλ{R) for some compact flat space form R. Then
M is sufficiently large.

Proof. By (2.5) in §2 the first homology group Hλ{M) is infinite
except when R — M6. Thus M is sufficiently large in these cases. If
R — Mβ then πx(M) splits as a free product with amalgamation Gx * Z Θ Z G 2

(see §2) and therefore there is a 2-sided incompressible surface in M (see
[7]). Hence M is sufficiently large. D

As a corollary it follows that the space forms Mu...,M6, Nl9...9N4

are sufficiently large. They are P2-irreducible because their universal
coverings are R3.

(3.2) LEMMA. Let M be a connected 3-manifold so that π2(M) = 0 and
Z Θ Z Θ Z C πx{M). Then M is closed and Z θ Z θ Z has finite index in

Proof. We have coverings M' -> M" -» M where M' is the universal
covering of M and M" corresponds to Z ® Z ® Z. Now suppose that
either M is not closed or the index is infinite. Then H3( M") = 0. Now M'
is non-compact and hence H3(M') = 0. But πλ(Mf) = τr2(Mf) = 0 and
therefore ir^(Mr) — 0 by the Hurewicz isomorphism theorem. In other
words Λf is contractible, and this implies that M " i s a ^ ( Z Θ Z Θ Z, 1).
Thus i/3(Mr/) = / / 3 ( Z Θ Z Θ Z ) = Z. Contradiction.. D

(3.3) THEOREM. Lei M be a P1-irreducible connected 3-manifold such
that Z ® Z ® Z is a subgroup of πx(M). Then M is a compact flat space
form.

Proof. By the sphere theorem we have π2(M) = 0, and since πx{M) is
infinite the universal covering space is contractible. In other words M is a
K(G, 1). Lemma (3.2) now implies that M is closed a n d Z Θ Z Θ Z has
finite index in G. Replacing Z θ Z θ Z by the intersection of its con-
jugates gives us an extension N Z Θ Z Θ Z - ^ G - > Ψ ^ 1 with Ψ a
finite group. By [1] G is torsion free and according to [6] there is a
compact flat space form R with πx(R) = G. Hence there is a homotopy
equivalence M ^ R because M9 R are both spaces of type K(G, 1). But M9

R are sufficiently large by (3.1) and therefore we can deform the homo-
topy equivalence M ^ R into a homeomorphism. D
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4. Proof of the Main Theorem.

(4.1) LEMMA. Let M be a compact irreducible 3-manifold. Then there

exists an integer n(M) such that if Pl9.. .,Pk are pairwise disjoint 2-sided

projective planes in M and k > n(M) then some pair Pi9 Pj must be parallel

(i.e., cobound a product) in M.

Proof. A 2-sided projective plane in a 3-manifold is incompressible [2,

Lemma (5.1)]. Then (4.1) is a special case of Lemma (3.2) in [2].

(4.2) LEMMA. Let M3 be a connected 3-manifold with Z Θ Z Θ Z C

πx(M) and let S2 X [-1,1] be a bicollar of the 2-sphere S2 = S2 X 0 C

intM.

(I) // S2 does not separate M then Z θ Z θ Z C τr,( Af0), where

M0 = M-intS2X[-l,l].

(II) If S2 separates M into Mx, M2 then at least one of 7ΐx(Mx), πx(M2)

contains Z θ Z θ Z.

Proof. (II) follows from the Kurosh subgroup theorem in a standard

way. Thus consider (I).

Let D2 be a 2-cell such that D2 X [- 1,1] C Λf0, D
2 X [-1,1] Π 3M0

= D2X {-1} U D2X {\},D2X {-1} C 5 2 X {-1} and £>2 X {1} C

S2 X {1}. Thus M = MQ U Γ and MO Π T = dTis a 2-sphere. By the van

Kampen theorem πx(M) = ̂ ( M Q ) * Z and so Z Θ Z Θ Z C τr,(Mό) by

the Kurosh subgroup theorem. Since πx(M'o) — πx(M0) the lemma fol-

lows. •

Now we complete the proof of the main theorem. There is a compact

submanifold in M whose fundamental group contains Z θ Z θ Z as a

subgroup. Therefore we may assume that M is compact. If the prime

decomposition of M is M — Mx # # Mn then by the Kurosh sub-

group theorem Z θ Z θ Z is a subgroup of some π^M^. Also Mi must be

irreducible since the fundamental group of a 2-sphere bundle over Sι is Z.

Thus, without loss of generality, assume M is already irreducible. If M

does not contain 2-sided projective planes then M is P2-irreducible, and

hence case (I) of the theorem now follows from (3.3).

Now assume that P, , . . . 9Pk C int M is a maximal collection of pair-

wise disjoint 2-sided projective planes such that no two are parallel and

none are boundary parallel. Let Pi X [—1,1] C int M be disjoint bicollars
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and let Ql9...9Qm be the components of M — U / P / X ( — 1 , 1 ) . Up:

M -> M is the orientable covering then the Qj = p~\Qj) are the con-

nected pieces left after cutting M along the thickened 2-spheres/>~1(i>

7) X

(— 1,1). Since π,(M) is a subgroup of index 2 in π^M) we conclude that

iT\{M) has Z θ Z θ Z for a subgroup. By (4.2) at least one of the pieces

QJ9 say Q = p~λ(Q)9 must contain Z θ Z θ Z in its fundamental group.

Next set Q = the manifold obtained from Q by capping all the 2-sphere

boundary components with 3-cells. Then Q is irreducible (see Theorem F

of [5]) and so is a space form by (3.3).

If t: M -> M is the deck transformation of M -» M then ι(Q) = Q

and so by radial extension we obtain an involution ϊ: Q -» Q having fixed

points but only finitely many. By (1.1) it follows that I is canonical. Thus

Q is one of M*9 M* or M*.

To conclude the proof we need only analyze the way in which the

pieces are sewn back together. Thus let R* be the protectively flat space

form obtained from Q by reattaching those Pz X [—1,1] which were

removed to produce Q. If R* — M we are in case (II) and if /?* φ M this

is case (III).
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