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COMPACT QUOTIENTS BY C*-ACΠONS

DANIEL GROSS

Let I b e a compact normal complex space on which C* acts 'in a
nice manner'. We describe all invariant open subsets U of X such that
the holomorphic map U -> U/C* of U onto the categorical quotient for
the category of compact complex spaces, U/C*, is locally Stein. The
description depends on a partial ordering of the fixed point components
which arises from the Bialynicki-Birula decompositions of X.

Introduction. Let p: Γ X ^ - > I b e a meromorphic action, (cf. §1),
of T — C* on an irreducible compact normal complex analytic space X.
Such an action is said to be locally linearizable if and only if given any
x E X there is a Γ-invariant neighborhood V of x and a proper Γ-equi-
variant holomorphic embedding of Finto Cn with T acting linearly onCw .

In this paper we solve the following problem:
Describe all Γ-invariant Zariski open subsets U of X, such that U/T

is a compact complex analytic space and U -» U/T is a semi-geometric
quotient (i.e. a categorical quotient which is locally Stein cf. (1.8)).

This problem has been solved by A. Bialynicki-Birula and A. Sommese,
[B — B + S], under the above setting when U contains no fixed points
and by A. Bialynicki-Birula and J. Swiecieka, [B — B + Sw], when the
action is algebraic and X is a compact algebraic variety.

As in [B — B + S], our description of semi-geometric quotients U -»
U/T is intimately linked to a certain partial ordering of the fixed point
components Fx,...,Fr So that we can state our results precisely we shall
introduce the following notation. We assume that all analytic spaces are
Hausdorff, reduced and have countable topology.

Let {i7,,... ,Fr) be the connected components of the fixed point set of
T, Xτ. Define φ + , φ': X-+Xτ by φ + (x) = lim,_0** and φ~(x) =
l im^^ tx, respectively.

Let X+ = {x E X\ φ + (x) E /)}, i = 1,... ,r, and Xr = {x E
X\4Γ(x)eFi}9i=l9...9r.

An index / is said to be directly less than an index j if C{j — (Xf — Ft)

Π (X~ — Fj) φ 0 . We say that / is less than j 9 denoted / <j9 if there

exists a sequence i = / 0,. . ,,ik — j such that it is directly less than z'/+1 for

/ = 0,...,/:— 1. This relation forms an ordering of the indices {1,... , r ) .

149



150 DANIEL GROSS

A cross section of {1,...,/*} is a division of {1,...,/*} into two

non-empty disjoint subsets A' and A+ satisfying the condition that / E A~

andy < / implies thaty E A~.

A semi-cross section of {1,. ..,/*} is a division of {1,... ,r} into three

disjoint subsets, 4̂~, ̂ 4°, v4 + , at least two of which are nonempty, which

satisfy the following two conditions:

(a) if / <j andy E A0 then / £ Λ°

(b) if A+ φ 0 then (A'UA0, A + ) is a cross section and if Λ~=£ 0

then (^4~,^4°UΛί + ) i s a cross section.

A subset B of X is a semi-sectional set if 1? = Z — U / G / ί + Λ^ —

U y ( Ξ / r JQ~ for some semi-cross section (A~9 A
0, A + ) .

MAIN THEOREM. Let p: TX X^ X be as above and let U be a

T-invariant Zariski open subset of X. Then U/T is a compact complex

analytic space and U -> U/T is a semi-geometric quotient if and only if U is

a semi-sectional set with respect to some semi-cross section (A~, A0, A + ). D

Our proof uses the techniques of [B — B + S].

We conclude this paper with a simple illustration of the Theorem for

the case of a diagonal action of C* on P 1 X P 1 .

I would like to express my sincere thanks to Professor Andrew J.

Sommese for his generous support and encouragement in completing this

project.

1. Notation and background material. In this section we establish

the pertinent notation and background material needed for the proof of

the Theorem. The principal reference for this material is [B — B + S].

Let T denote C*, the multiplicative group of non-zero complex

numbers. A holomorphic action p: T X X -> X of T on a normal compact

analytic space X is said to be a meromorphic action if p extends to a

meromorphic map p P ' X I ^ I , where P 1 in one-dimensional complex

projective space. This condition is satisfied if X is a Kaehler manifold and

Xτ has non-empty intersection with every connected component of X,

[So].
The maps φ + , φ : X -> Xτ as defined in the introduction always exist

for meromorphic actions, [KorJ. The collections of subsets {X+\i =

1,... ,r} and [X~\i — 1,... ,r} form two decompositions of the space X,

called respectively the plus and the minus Bialynicki-Birula decomposi-

tions. They satisfy the following properties:

(1.1) (a) X = U Xf — U Xr is a disjoint union of Γ-invariant sets.
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(b) There are two special components of Xτ, Fx called the source and

Fr called the sink (renumbering if necessary), such that Xf and X~ are

Zariski open in X.

(c) Each Xf and Xj is a constructive set, i.e., the finite union of

locally closed sets.

These properties were proven in the algebraic category by Bialynicki-

Birula, [B — B], and in the Kaehler category by Carrell and Sommese,

[C + S], and Fujiki [Fu2].

We will now state a result found in [B — B + S] which is modeled on

a result of Fujiki [Fu 2]. It provides the basis for the proof of the Main

Theorem.

THEOREM (1.2). Let p: T X X -* X be a meromorphic action of T on an

irreducible compact complex analytic space X. There is a diagram:

z 5, x

n
Q

with the following properties:

(a)/w aflat morphism of irreducible compact complex spaces Z and Q.

(b) μ is a bimeromorphic holomorphic map of Z onto X such that the

restriction ofμ to each fiber Zq — f~\q) is an embedding.

(c) There is a natural holomorphic action of T on Z making f and μ

T-equivariant with respect to the trivial action on Q and p on X respectively.

(d) There is a dense Zariski open subset % of Q such that for every

q E %, Zq is reduced and μ(Zq) is the closure of a T-orbit from X^ Π X~.

(e) Every fiber Zq of f is one-dimensional and for fibers Zq, Zq, that are

reduced, μ(Zq) = μ{Zq,) if and only if q — q'.

(f) μ(Z ) is connected and meets Fx, the source, and Fn the sink, for all

q^Q.
(g) For all q E Q,ZqΠ Zτ is finite.
(h) Any continuous map Ί: A -> Y of an open subset A of Q to a complex

analytic space Y which is holomorphic on a Zariski open dense subset of A is

holomorphic on all of A. D

Let K be a compact complex space and let Comp(^) be the set of all

compact subsets of K. The Hausdorff metric on Comp(K) is defined by:

dist(^4, B) = max ί min dist(α, b)\ + max f min dist(6, a))
αe^ Uefi j b<EB l a<EA ]
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where dist(α, b) is the metric on K. Let A9 Ai9 i E /, be elements of

Comp(K). When we say that the At

9s converge to A we mean they

converge in the Hausdorff metric.

We have the following Corollary to (1.2).

COROLLARY (1.3). Let p, X, Q, Z, F and μ be as in (1.2). Let {qn} be a

sequence in Q. If qn converges to q in Q then μ(ZqJ converges to μ(Zq) in

X.

Proof. We claim that qn converges to q in Q implies that Z ^ converges

to Zq in the Hausdorff metric in Z, where Z ^ = f~\qn),Zq = f~\q). Let

z be an arbitrary point of Zq9 then any open neighborhood V of z must

intersect Z ^ for n » 0. Suppose not, since /: Z -> Q is flat it is an open

map and hence f(V) is an open neighborhood of q. If ZQn does not

intersect V then qn would not be an element of f(V) and therefore qn

would not converge to q. Thus we have that Z ^ converges to Zq and by

the continuity of μ: Z -* X that μ(ZqJ converges to μ(Zq). D

DEFINITION (1.4). Let p: T X X -> X be a meromoφhic action of Γ

on a normal compact analytic space. We say that p is a locally linearizable

action if given any x G l there is a Γ-invariant neighborhood V of x and a

proper Γ-equivariant holomorphic embedding of Finto C^ with T acting

linearly on C*.

PROPOSITION (1.5). A holomorphic action p: T X X -* X on a normal

irreducible compact complex space X is locally linearizable if either of the

following is true:

(a) X is an algebraic variety and p is an algebraic action or

(b) Xτ φ 0 and X can be equivariantly embedded in a compact Kaehler

manifold Y with a holomorphic action p: T X Y -* Y.

Proof, (a) is due to Sumihiro [Su] and b) is due to Koras [Kor2]. D

We shall also use extensively the following (cf. Corollary (0.2.4) of

[B - B + S]).

PROPOSITION (1.6). Let p: TX X -» Xbea locally linearizable action of

Ton a compact analytic space X. Given any q E Qwe can choose {xl9...9xk}

in μ(Zq) - μ(Zq)
τ with:

( a ) φ + ( * , ) E Fx andφ~(xk) E Fr

(b) φ-(xj) = φ+ixj+jforj = 1,... , * - 1
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(c) ifφ-(Xj) = φ+ (x,), then i=j+l
{ά)T{xx,...,xk)=μ(Zq)

Moreover, if X is normal, then μ(Zg) Π F] = {xt}, μ(Zq) Π Fr =
{xk}. D

We note that the last statement of Proposition (1.6) may not hold if X
is not normal, i.e., it is possible in such a case that Fx — Fr, for example
simply identify a point of Fx with a point of Fr.

COROLLARY (1.7). Let X and p be as in (1.6). For any connected
component Ft ofXτ, F}<Ft< Fr. •

Let p: G X Z -» Z be an action of a reductive group G on complex
space Z. We can definie an equivalence relation on the points of Z by
x ~ y if and only if there is a sequence of points x = xθ9 xλ,... ,xn = y in
Z such that G^ΠGx ί + 1 ^ 0 , / = 0,... 9n - 1. We define Z/G to be the
set of equivalence classes under the above relation and define a map π:
Z -» Z/G by π(x) = [x], where [x] denotes the equivalence class contain-
ing x. Z/G is given the quotient topology, i.e. Fis an open subset of Z/T
if and only if 77-1(F) is an open subset of Z. We call π: Z -> Z/G the
categorical quotient of Z by G.

We note that in general our definition of a categorical quotient does
not coincide with the usual definition, in which the equivalence relation is
defined by the invariant holomorphic functions. Our definition implies
that fibers of π are connected and thus the quotient, X/G, need not be
Hausdorff. When the quotient is assumed to be Hausdorff either defini-
tion will suffice.

DEFINITION (1.8). A categorical quotient π: Z -> Z/G is a semi-geo-
metric quotient if it is locally Stein, i.e. given any point y E Z/G there is a
neighborhood Woiy such that π~\W) is Stein.

LEMMA (1.9). Let p: T X X -» X be a meromorphic action of T on X a
compact complex analytic space. Let U be a T-invariant open subset of X. If
π: U -* U/T is a semi-geometric quotient then each fiber contains at most
one fixed point.

Proof. Let x j E Uτ and suppose x — y. Then we can find a se-
quence of fixed points in U9 x = zQ9 zl9...9zn = y such that zt E [x] and
Zy is directly related to z / + 1 , i.e. there is a point z E U with φ + ( z ) = zt

and φ"(z) = z / + 1 or φ + ( z ) = z / + 1 and φ~(z) — zr Thus, if x ^y then
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*~\[χ]) contains φ + (z) UΓzU Φ'(z) which is homeomorphic to P 1

contradicting the assumption that π is locally Stein. D

COROLLARY (1.10). Let p, U, and π be as in (1.9). Then π restricted to
Uτ is one to one onto π(Uτ). •

The above allows us to identify Uτ with a subset of U/T, namely

LEMMA (1.11). Let p, U9 and π be as in (1.9). Then fibers ofπ are either
orbits or x* Ux" for some x E t/Γ, where x+ = {z E X\ φ + (z) = x] and
JT = {z E JT|φ-(z) = x}.

Proof. By (1.9) each fiber contains at most one fixed point. If the fiber
does not contain a fixed point then it must consist of a single orbit since
the intersection of the closures of two distinct orbits is either empty or
contained in the set of fixed points. If the fiber contains a fixed point then
since £/is open and Γ-invariant, it follows that the fiber contains x+ Όx~.
For the fiber to contain anything else it must contain a second fixed point
which is impossible. Thus the fibers are as stated. D

LEMMA (1.12). Let p: T X X -* X be a meromorphic action of T on X a
normal compact complex analytic space X. Let U be a T-inυariant open
subset of X such that p: U -» U/T is a semi-geometric quotient. If U/T is
Hausdorff it possess the structure of a complex analytic space and π is a
holomorphic map.

Proof. The definition of a semi-geometric quotient implies that we
may cover [/with 7r-saturated Stein sets, At. Each At/Tis a complex Stein
space such that π: At -> At/T is holomorphic, [Sn]. Since the structure on
AJT is induced by the invariant holomorphic functions on A, it follows
easily that the structure on the At/T9s are compatable. Thus, if U/T is
Hausdorff it is a complex analytic space and m is holomorphic. D

2. Semi-geometric quotients. Throughout this section we shall as-
sume that p: T X X -> X is a locally linearizable action of T — C* on an
irreducible normal compact complex analytic space X with fixed point
components Fl9...,Fr

We want to describe all Γ-invariant Zariski open subsets U of X
whose quotient U/T is semi-geometric and a compact complex space. The
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following propositions enable us to partition all such U into these three

disjoint classes:

Class I. U contains no fixed point components, i.e. U C X — Xτ.

Class II. The only fixed point component U contains is either the

source Fx or the sink Fr.

Class III. U contains fixed point components F^iφ 1, r, and if U

contains Ft and Fj they are not directly related to each other.

PROPOSITION (2.1). Let U be a T-invariant Zariski open subset of X

whose quotient U/T is semi-geometric and a compact complex space. If

FiCλUΦ 0 , then X+ U Xr C U

Proof. Let x E Ft Π U. Since U is open and Γ-invariant the sets x +

and x~ must both be contained in U. Since Xf = U ; c e / Γ x + and Xf —

UJCGF
 x w e m u s t o n l y show that if F}] Π U Φ 0 , then Ft C U. Further-

more, since Ft Γ\ U is open in JF), this reduces to showing that Ft Π U is

closed.

Let x £Fi Π U C Ft and let {xn} be a sequence of distinct points

contained in Fι converging to x. Since U -^ U/T is a semi-geometric

quotient each distinct xn must have a distinct image in U/T, and so we

may consider {xn} as a sequence in U/T. Now U/T is assumed to be

compact and so, passing to a subsequence and renumbering if necessary,

we have that xn converges to some y E U/T. The locally Stein condition

of semi-geometric quotients implies that we can find a neighborhood

Wτ C U/Toίy and a Stein set W = ir'\Wτ) C U

We can assume that {.*„} is contained in Ft Π W, which is a closed

Γ-invariant subset of W. By Corollary 3.6 of [Sn] since W is Stein we have

that π(Fi Π W) = Fι Π PFΓ is closed in Wτ (we note that in this case our

definition of categorical quotient coincides with that of [Sn]). This implies

thaty Eπi^Π W) and thus by identification, cf (1.10),j> E Fι Π W C U.

The convergence of the {xn} yieldsy = x. D

PROPOSITION (2.2). Let U be as in (2.1). Let Ft and Fj be two fixed point

components and suppose that F( C U. If Fj is directly related to Fi then

Proof. Assume Ft< Fjm Suppose Fj C U then we can find an x E U

such that φ + (x) E Ft and φ'(x) E i y (2.1) implies that U D φ + (x) U Γx

U Φ~(JC) which is biholomorphic to P 1 . This contradicts the local Stein-

ness of the quotient since there can be no neighborhood of π(x) in U/T

whose inverse image in U is Stein. D
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PROPOSITION (2.3). Let U be as in (2.1). // U contains the source, FX9 or

the sink, Fr, then U does not contain any other fixed point component.

Proof. Assume U' D F{. Since Fr is directly related to Fl9 Fr £ U. Let

F( C U9 i ¥= \9 r. Let x E Ft and choose q E Q such that x E μ(Zq), where

g, Z^ and μ are as in (1.2). Let % also be as in (1.2) and choose a sequence

{qn} C % converging to q. μ(Zq) converges to μ(Zq) by (1.3). Thus we

can find a sequence of points {xn} C U such that xn E μ{Zq) and i n

converges to x. Let {}>„}, y be the image of {xn}> x respectively in U/T.

{yn} C image of Fj, which is identified with Fλ9 but since x & Fλ9 y & Fλ.

But every open neighborhood of y meets {yn}9 so j> is in the closure of i7!

in U/T. Since Fj is closed this contradiction proves the proposition. D

We now show our Main Theorem holds for each of the three Classes

separately.

Assume U is of Class I, i.e. U C X — Xτ. This case was done in

[B — B + S]. Their description is given in terms of cross sections. How-

ever, by considering a cross section (A~, A + ) as a semi-cross section

(A~9 A0, A + ) with A0 — 0 , their result coincides with our Main Theo-

rem.

We next assume U is of Class II, i.e. the only fixed point component

U contains is either Fx or Fr. To simplify things we assume Fλ C U.

PROPOSITION (2.4). Let U be as in the preceding paragraph. If the

quotient U/T is semi-geometric and a compact complex space then there

exists a semi-cross section A = (A"9 A0, A + ) such that U is a semi-sectional

set with respect to A.

Proof. Since F{ C U we have by (2.1) that Xf C U. The proof of

Proposition (2.3) can in fact be used to show that U contains only Xf , i.e.

U=Xf. Hence:
r

U=χf = χ- U χ+ = x - U χ+ - \J x-
2 = 2 iSA+ j<ΞA~

where A+ = {2,...,r}, A~= 0 . Taking A0 = {1} we have the desired
semi-cross section. •

PROPOSITION (2.5). Suppose U is the semi-sectional set associated to the

semi-cross section (A"9 A0, A + ) where A - 0 , A0 = {1}, ^l+{2,...,r}.

Then U is a T-inυariant Zariski open subset of X whose quotient U/T is

semi-geometric and a compact complex space.
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Proof. By definition we have:

u = x- U xΐ - U x;.
i<ΞA+ j<EA~

Using the facts that A' — 0 and that X — U7

r

=1 X^ which is a disjoint
union we have that U = X* . Thus we have that U is a Γ-invariant Zariski
open subset of X.

Since U/T = Xf/T - Fλ we have that U/T is a compact complex
analytic space. For each x E F{ let Vx be a Γ-invariant Stein neighborhood
of x in U given by definition of the action being locally linearizable. Then
we have covered U/T by sets whose inverse images in U are Stein. U/T is
obviously a categorical quotient and so it is a semi-geometrical quotient.
The proposition is proven. D

Combining (2.4) and (2.5) gives the Main Theorem for Class II sets.
From now on unless stated otherwise, we assume that U is of Class

III, i.e. U contains fixed point components Fi9 iΦ\9 r and any two are
not directly related.

LEMMA (2.6). Let U be a T-inυariant Zariski open subset of X whose
quotient U/T is semi-geometric and a compact complex space. Then X^ Π
X; c U.

Proof. Let C = X+ Π X~9 then C is a Zariski open subset of X. Since
X is assumed to be irreducible C must also be irreducible. By Zariski
openness and denseness C must intersect U. The same proof as that of
Lemma (1.1.1) in [B - B + S] yields that C is contained in U. D

Let % be the subset of Q from Theorem (1.2). The above Lemma
allows us to identify % with a dense open subset of U/T.

We have need of the following fact. Let A be a complex space and let
B be a dense subset of A. Let {xn} be a sequence of points of A, then we
can find a sequence of points contained in 2?, {yn}9 such that dist(xrt, yn)
< \/n where dist is the metric on A. If {xn} diverges then {yn} diverges
and if {xn} converges then {yn} converges to the same point. Thus if we
have a sequence in U/T we can assume it is contained in Gll.

We shall make the following convention. Let y E U/T, when we
choose a point x E π~ι(y) we assume x is the unique fixed point if π~ι(y)
contains one, otherwise x may be any point of π~\y).
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LEMMA (2.7). Let U be a T-invariant Zariski open subset of X. Then
U/T is a semi-geometric quotient and a compact complex space if and only if
given q E 0, either:

(a) There exists ay E X- Xτsuch that μ(Zq) Π U = Ty or

(b) There existyl9 y2 E X - Xτ with φ~(yx) = Φ+ ( j 2 ) such that ^(z

q)
Π U — Tyx U φ~(yx) U 7y2> wλere g, Z^ and μ are as given in (1.2).

Proof. To prove the necessity of (a) or (b) we first shall show that
μ{Zq) n ί / τ έ 0 . Suppose not, we can find a sequence {qn} C % C g,
such that qn converges to q and thus μ(Z^) converges to μ{Zq) in the
Hausdorff metric. We note this implies that any open neighborhood of
μ(Zq) contaiins μ(Zq), n > 0. By (2.6) we can consider {qn} C U/T. By
assumption U/T is compact and therefore, after passing to a subsequence
and renumbering if necessary, qn converges to an element y of U/T. Let
x E π~\y). Let Vx and V2 be disjoint open subsets of X which contain
μ(Zq) and x respectively. We can assume that V2 C U. π(V) contains a
dense open subset consisting of elements of %. Since qn converges to y
andy E π(V) we can replace elements of {#„} for « » 0, with elements of
π(V) Π % without affecting convergence, so we may consider #„ E ττ(F)
for w > 0. This implies π~\qn) Π F2 =£ 0 . But T Γ " 1 ^ ) = M(Z^) Π [ / C
F lβ This contradiction implies that μ(Zq) Π ί/ φ 0 .

We now claim that μ(Zq) Π ί/ is connected. Obviously this is true if
q E Gll. Suppose q is not an element of % and that μ(Zq) Π U is not
connected. Then we can find two disjoint closed invariant sets, Sx and S29

with Sx U S2 = μ(Z^) Π ί/. Note w(SΊ) ^ π(S2). As before we can find a
sequence {#„} contained in %, such that μ(Zq) converges to μ(Zq). Let
xΛ = 7r(μ(Z^)), then by continuity we have that xn converges to both
τr(Sλ) and π(S2) in U/T. This contradicts ί//Γbeing Hausdorff.

μ(Zq) Π ί7 can contain at most one fixed point since if it contained
two, connectivity would imply that it contains P1 and then U/T could not
be a semi-geometric quotient. If μ(Zq) Π U contains no fixed point it has
the form of (a), if it has a fixed point, x9 since x+ Ux"C t/by (2.1) it has
the form of (b).

Suppose μ(Zq) Π U is of the form (a) or (b) for any q E Q. We will
first show that π: U -> U/T is a semi-geometric quotient. The fiber over
any point in U/T must either be a single orbit or x+ Ux~ for some fixed
point x. This can be seen by considering μ{Zq) Π U. If it is just an orbit
then it goes to a point in U/T and is the fiber over that point. If it
contains a fixed point then every μ(Zq,) Π U which contains the x will go
to the same point in U/T. Thus the fibers are as stated above and it is
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easily seen that this implies that U/T is a categorical quotient. For each
y E U/T choose x E π~λ(y). For each x let Vx be the Γ-invariant Stein
neighborhood of x in X given by the action being locally linearizable.
Since U is Γ-invariant we can consider that Vx C U and by the description
of the fibers that the Vx are π-saturated. Thus we can cover U/T with sets
whose inverse images are Stein and, so the quotient U/T is semi-geomet-
ric.

Assume U/T is not Hausdorff, then we can find {yn} C U/T with >>„
converging to two distinct points zλ and z2. We may assume {yn} C %
and so {yn} C Q which is compact. We may assume, after passing to a
subsequence and renumbering if necessary that j ^ converges to q E Q. Let
xt E ^T~\zt) and Vt be an open neighborhood of z, in £//Γ. VtD yn for
ft » 0 and so we can find a sequence of points {xljrι} C ί/ with c, Λ E
μ{Zy) Π fl*"1^) such that jcf jΠ converges to jc,.. Since μ: Z -> Xis continu-
ous the above implies that μ{Zq) contains both xx and x2. But since xλ

and x2 are both contained in U this implies that their image in U/T must
be the same, i.e. zλ — z2. This contradiction implies ί//Γ is Hausdorff.
Applying Proposition (1.10) gives us that U/T is a complex analyltic
space.

It remains to show that U/T is compact. Let {xn} be a sequence in
U/T. We can assume it is contained in % and therefore in Q which is
compact and so we can find a convergent subsequence {x'm} with xf

m

converging to q E Q. Let x E μ(Z^) Π ίΛ Since x'm converges to q we
have that μ>(Zx>) contained in U with zm E μ(Zx,) Π t/ and such that the
zm converges to x. By the continuity of U -» ί//Γ we have that JC^
converges to j where y is the image of x in t//Γ. Thus we have shown that
every sequence in U/T has a convergent subsequence which converges to
a point in U/T. Therefore, U/T is compact.

This completes the proof of Lemma (2.7). •

THEOREM (2.8). Let A — (A~9 A
0, A^~) be a semi-cross section. If U is

the semi-sectional set which corresponds to the semi-cross section then U is a
T-inυariant Zariski open subset of X whose quotient U/T is semi-geometric
and a compact complex space.

Proof. Recall

i(ΞA+ j(EA~
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It is obvious that U is Γ-invariant. The proof that U is Zariski open is the

same as that given in Theorem (1.3) of [B — B + S].

Let q E (λ We claim that μ{Zq) Π U Φ 0 . Suppose not, then {h E

{ l , . . . , r } | ί ; n / i ( Z ^ 0 } would all lie in A' or all in Λ + . This follows

from Proposition (1.6) since otherwise we could find an x E μ(Zq) and an

/ andy withy E A~ and / E A+ , such that φ + (x) E 7̂  and φ~(*) G f1). By

the above description of [/ we see that this implies that x E U and thus

that μ{Zq) (ΛUΦ 0. Therefore the set of h with FhΠ μ(Zq) φ 0 lies

totally in either A~ or v4 + . By (1.6) we would have that either r E A~ or

1 6 > 1 + . The former implies that ^4~= {l,...,r} and the latter that

A+ = {1 ,...,/*}. In either case this would imply that U = 0 . Thus for all

q E 0 we must have that μ(Zq) Π U Φ 0 .

Let q £Ξ Q and let ^ and j 2 be two points in X — Xτ such that

Tyx U 7y2 is contained in μ(Zq) Π ί/. We claim that either Tyλ — Ty2 or

either φ*(y}) = Φ~(y2) or φ " ^ ) = Φ + ( j2) Suppose Tyλ φ Ty2. Under

this condition assume also that Φ^(y{) Φφ~(y2)
 a n d Φ~(y\) Φφ+(y2)-

Then again applying (1.6) we can find a and b such that either φ + (y 2) E Fh

and φ~(^,) E F a and a < b or φ+(j>,) E / ; and φ"(j 2) E / ; and α < b.

Either way we get a contradiction. In the former case if a E ^4" then

j j E / ; - a n d i s n o t i n ί 7 , i f β E ^° U ^ + t h e n / ? E Λ + , (since(v4", A0, A + )

is a semi-cross section), and therefore y2 E X£ and thus not in U.

Likewise the latter case also implies that either yλ or y2 is not an element

of U.

Assume that in fact Φ~(y{) — Φ+ (y2) — χ- Let x E Fk, then k E A0,

since otherwise if k E A~ this would mean j j is not an element of U and if

k E 4̂ + this would mean j 2 is not an element of U. Hence x E U.

Therefore, we have shown that for every q E 0 either μ(Zq) Π U = Ty

for some ^ E X - Xτ or μ(Z^) Π U= Tyx U φ " ( ^ ) U Ty2 for some ^ t

and y2 in ̂ Γ — JΓΓ. Applying Lemma (2.7) finishes the proof. D

LEMMA (2.9). Let U be a T-inυariant Zariski open subset of X whose

quotient U/T is semi-geometric and a compact complex space. Let {Fk} be

the set of fixed point components contained in U. Let Uf = U — U X^.

Then U' is a Class I T-invariant Zariski open subset of X whose quotient

U'/T is semi-geometric and a compact complex space.

Proof. U' is obviously Γ-invariant and contained in X — Xτ. Lemma

(1.3.1) of [B — B + S] shows that U X^ is a closed set and thus Uf is an

open constructible set and therefore is Zariski open.

For all q E Q we can consider μ(Zq) Π W which is contained in

μ(Z ) Π U. If μ(Z ) ΓΊ U = Ty for some y <Ξ X - Xτ then y is not an
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element of Xk for any Fk contained in U and so μ(Zq) Π U' = Ty. If
μ(Zq) Π U= TyxU ψ'(yx) U 7>2, for some yl9 J 2 6 l - Xτ, we have
that yx E Xk for some Fk contained in U but that y2 is not an element of
Xk for any Fk contained inί/ and thus that μ(Zq) Π Uf — Ty2. Hence we
have that for every q E Q there is an y E X - Xτ sjuch that μ(Zq) Π U'
= 7>. Applying Lemma (1.2) of [B — B + X] gives the desired result. G

REMARK (2.10). In [B - B + S] it is shown that a Class I Γ-invariant
Zariski open subset U of X has a compact complex space as quotient if
and only if (X — U) has two connected components, one which contains
the source, Fl9 and the other which contains the sink, Fr. We will use this
fact in the next theorem.

THEOREM (2.11). Let Ubea T-invariant Zariski open subset of X whose
quotient U/T is semi-geometric and a compact complex space. Then U is a
semi-cross sectional set with respect to some semi-cross section (A~, A0, A +).

Proof. Given U let U' be the corresponding Class I set given by
Lemma (2.9), i.e. U' = U- U ( * £ ) where {Fkχ9...9Fk^ is the set of
fixed point components contained in U. As noted in Remark (2.10),
(X — U') has two connected components, one containing Fx and the other
Fr. Since we assume that U does not contain either Fx or Fr we must have
that U(Xk) does not contain them either. Therefore (X — [/') — U(Xk)
must be disconnected, since Fx and Fr are still in different components.
But (X- U') - U(Xk) = (X- U). Thus we have that (X- U) is
disconnected and that Fx and Fr are in different components.

Let Ax be the connected component of X — U which contains Fx and
let A 2 be the connected component of X — U which contains Fr. Assume
there was another connected component of X — U besides Aλ and A2, call
it A3. Let x €Ξ A3 and choose & q E Q such that x E μ(Zq). By Lemma
(2.7) we know that μ(Zq) Π U is either Ty for some y E X - Xτ or
Tyx U Φ I J Ί ) U 7>2, for some ^ ^ E l - Xτ. In either case (1.6) im-
plies that μ(Zq) Π (AT— ί/) has two connected components, one which
intersects Fx and another which intersects Fr. Thus x must be in the same
connected component of X— U as Fx or Fn i.e. yί3 =^4, or A3 — A2.
Therefore, X — U has exactly two connected components.

Let {Fx,...,Fr} be the set of connected components of Xτ. Set
A— {j: Fj is contained in Ax}9 A0 = (fe: Fk is contained in J7] and
A+ = {/: f) is contained in ^42}. We claim that (A~, A0, A^) forms a
semi-cross section of {1,. ..,/•}. Lety E 4̂" and suppose f is directly less
than j . We can find xy E fj., xy, E î ,, and x E X such that φ + (x) = x / 9
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and φ~(x) = Xj. Thus we can find a q E Q with μ{Zq) containing

[Xj, xjf9 x). Looking at μ(Zq) Π (X — U) we see that JFJ, is contained in

Al9 i .e ./ E Λ~. A finite application of the above step shows t h a t / E A~

for any j ' <j. Now let /: E 4̂° and suppose 7 is directly less than k.

Proposition (2.2) shows that Fj is not contained in U and (1.6) implies that

it must be contained in Av Thus j E A~ and therefore so is any / < k.

Now suppose there was a k' E A0 with k < k\ the above implies that

k E A. Therefore we see that if k E A0 and if k' is related to k then kr is

not an element of A0. It is also obvious by what we have shown that if

k E A0 and if k < i then / E A+ . Hence (̂ 4~, ^4°, 4̂ + ) forms a semi-cross

section of ( 1 , . . . ,r}.

Let JC E ί/. Then either x E(X£ U X£)9 for some ^ e / , o π E X~

Π X7

+, for some i G A^ and 7 E A~. Therefore since ί/, 4̂j and A2 are

Γ-invariant and the points of U satisfy the conditions stated above we

have that U is given by:

u = x- U x? - U x;.
ι<ΞA+ j<ΞA~

Hence U is a semi-sectional set with respect to the semi-cross section

{A-,A\A + ).

Combining (2.8) and (2.11) yields the Main Theorem for Class III

sets. •

3. An Example. Let T act on P1 X P1 by t([z0: zx\ [w0: wj) =

([z 0 : tzλ\[w0: twγ]). There are four fixed points of this section, F} =

([1 : 0], [1 : 0]), F2 = ([1 : 0], [0 : 1]), F3 = ([0 : 1], [1 : 0]) and F4 =

([0 : 1], [0 : 1]). The plus decomposition is given by

^ ^ P 1 X P 1 - {z0 = 0orw 0 = 0} ?

x : = ([0:l], [ 0 : 1 ] ) .

The minus decomposition is given by

^,- = ( [1 :0] , [1:0]),

XI = P 1 X P 1 + {z, = 0 or wt = 0}.

Hence ([1 : 0], [1 : 0]) is the source and ([0 : 1], [0 : 1]) is the sink.
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The following chart describes the possible Γ-invariant open subsets U
of X whose quotient U/T is semi-geometric and a compact complex
space:

Class

I

I

I

I

II

II

III

III

III

III

III

A~

{1.2,3}

{1.2}

{1.3}

{1}

0

{1,2,3}

{1,2}

{1,3}

{1}

{1}

{1}

A0

0

0

0

0

{1}

{4}

{3}

{2}

{2,3}

{3}

{2}

A +

{4}

{3,4}

{2,4}

{2,3,4}

{2,3,4}

0

{4}

{4}

{4}

{2,4}

{3,4}

U

C2-0

C* XP1

C* XP1

C 2 - 0

c2

c2

P1 XP1 -([0:1], [0:1])

-{([l:0],K:w,])}

P' XP1 -([0:1],[0:1])
-{([zo:z,],[l:0])}

P1 XP1 -([0:1], [0:1])
-{([1:0], [1:0])}

P1 XP 2 -([1:0], [1:0])
-{([zo:z,],[O:l])}

P1 XP' -([l:0],[l:0])
-{([l:0],K:w,])}

U/T

P 1

p
P1

P 1

point

point

P 1

p,

p,

P 1

P 1
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