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WEAK COMPACTNESS OF REPRESENTING
MEASURES FOR R(K)

T. W. GAMELIN

Let K be a compact subset of the complex plane, with connected
interior K°. Suppose that/? e K° has a weakly compact set of represent-
ing measures on 3K with respect to the algebra R(K), Then every
representing measure forp is mutually absolutely continuous with respect
to harmonic measure, as is every nonzero orthogonal measure on dK. A
class of champagne bubble sets with weakly compact sets of representing
measures is constructed.

1. Introduction. Let K be a compact plane set, and let R(K) be the
algebra of continuous functions on K that can be approximated uniformly
on K by rational functions with poles off K. A representing measure for a
point/? E Kis a Borel probability measure λ on K such that/(p) — Jfdλ
for all/ E R(K). The representing measures for/? form a convex, weak-star
compact set of measures on K. Our aim is to obtain information about
R(K) in the case that the set of representing measures on the topological
boundary dK of K for some fixed/? E K is a weakly compact subset of the
Banach space of finite measures.

In the case that p E K has a finite dimensional set of representing
measures on dK, reasonably complete information is available concerning
the Gleason part of p and the corresponding orthogonal measures. If such
a p belongs to dK, then in fact p is a peak point for R(K), so that the
point mass at/? is the only representing measure for/?. If such a/? belongs
to the interior K° of K, then the connected component U of K° contain-
ing/? is finitely connected and forms a Gleason part for R(K). Moreover,
the boundary values of any conformal map from a canonical circle
domain D into U determines a Borel isomorphism which transplants
harmonic measure on dD to harmonic measure on 3ί/, and which carries
measures in RiD)1^ to those measures in RiK)1^ corresponding to the
part U.

Following a conjecture of E. Bishop [1, p. 347, problem 8], S. Fisher
[3] initiated the study of norm compact sets of representing measures,
giving conditions for compactness and also for non-compactness in the
norm topology of the set of representing measures. The study was con-
tinued by the author in [4], where it was shown that if p E K has a norm
compact set of representing measures, then either /? E K°, or else p is a
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peak point for R{K). The proof in [4], which depends upon Iversen's
theorem on cluster values together with a theorem of Hoffman and Rossi,
is valid under the weaker hypothesis of a weakly compact set of represent-
ing measures.

Our first aim is to establish in §2 an abstract version of Iversen's
theorem. This will be combined in §3 with a result from [10], which
depends crucially on the Hoffman-Rossi theorem, to establish a theorem
on the weak-star approximation of representing measures by absolutely
continuous representing measures. The approximation theorem readily
yields information on weakly compact sets of representing measures,
including the following result.

THEOREM 1. Suppose that K° is connected, and that p G K° has a

weakly compact set of representing measures on dK. Then any representing

measure on dK for a point of K° is mutually absolutely continuous with

respect to harmonic measure. If moreover K° is dense in K, then every

nonzero measure on dK orthogonal to R(K) is mutually absolutely continu-

ous with respect to harmonic measure.

Incidentally this shows that each point q E dK is a peak point for
R(K). Otherwise one constructs an orthogonal measure on dK that
charges the singleton {q}, contradicting the fact that harmonic measure
does not charge singletons. Thus the only nontrivial Gleason part for
R(K) is precisely K°. It would be interesting to determine in these
circumstances whether R(K) is pointwise boundedly dense in HCC(K°);
this would imply in particular that R(K) — A(K).

The second statement of Theorem 1 can be obtained from the first by
a straightforward and standard argument. It can also be obtained, im-
mediately, by appealing to a theorem of I. Glicksberg [11] to the effect
that every nonzero orthogonal measure is mutually absolutely continuous
with respect to a representing measure.

In §5, we observe that the basic results are also valid for certain
algebras related to R(K). In §§6 and 7 we discuss various classes of
compact sets K, the roadrunner sets and the champagne bubble sets.

As a source for standard notation and terminology we refer to [8].

2. The Shilov boundary of i/°°(λρ). In this section, K is an arbi-
trary compact subset of the complex plane, and Q is a nontrivial Gleason
part for R(K). Let λQ denote the restriction of the area measure dx dy to
g, and let H°°(λQ) denote the weak-star closure of R(K) in L°°(λρ). By
Davie's theorem, every function in //°°(λρ) can be approximated point-
wise a.e. (dλQ) by a bounded sequence in R(K). The point evaluation at
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a point f E (? extends to be a weak-star continuous homomorphism of
H°°(XQ), which will be denoted by φζ. Every weak-star continuous homo-
morphism (nonzero, complex-valued) arises in this manner, from a point
of Q. For these results, and for further background material on /f°°(λρ),
see [9] and [10].

In many respects, i/°°(A^) is similar to the algebra H°°(D) of bounded
analytic functions on a domain D. In this section, we wish to prove a
theorem for H°°(XQ) which is known to be valid for H°°(D) and which is
an abstract version of Iversen's theorem.

Let 9H denote the maximal ideal space of HCO(XQ). We will regard the
functions in H°°(λQ) as continuous functions on 9It. The coordinate
function Z E R(K), when regarded as a continuous function on 911, maps

the closure Q of Q. For ζ E Q, define the fiber 9Lf of 9H over ξ by

{Ψ e 91L: Z(φ) - £}•

The Shilov boundary of H^iXg) will be denoted by III. The result we
require is the equality (2.1) of the following theorem, which is proved for
H°°(D) in [5].

THEOREM 2. Let Q be a nontriυial Gleason part for R{K), and define
H°°(\Q) as above, with maximal ideal space 911, fibers 9IL ,̂ and Shilov
boundary III. Then for each ζ G Q, the restriction of ^°°(λ^) to 911̂  is
closed subalgebra of C(9H^) whose maximal ideal space is 9R,£. Further-
more, ifζ<£K°,the Shilov boundary of the restriction algebra is given by

(2.1) inr = in n 9Hr, ζeQ\κ°.

Proof. We will follow the proof of the corresponding fact for H°°(D),
as given for instance in [7]. We provide only an outline of those parts of
the proof which carry over virtually verbatim from //°°(Z)).

The algebra H°°(XQ) is invariant under the Γg-operators used in
rational approximation theory. Using these, one can establish as in [7, §1],
that

sup{|/(φ)|:φe9R,,} =limsup/(*), / e f f » ( λ β ) .

In particular, if f(q) tends to zero as q -> ξ, q E β, then / = 0 on 911̂ .
Using the Γ-operators, one can also establish (as in [9, Corollary 2.2]) that

o

for each/E H°°(XQ), there is a bounded sequence {fj} in 7/°°(A )̂ that
converges uniformly to/on each subset of Q at a positive distance from ξ,
while each/j is analytic at ζ. In particular, {̂ } converges uniformly t o /
on each compact subset of 9H\9Ilf, and each jy is constant on 9Hf.
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As in the proof of [7, Lemma 6.3], the approximating sequence [fj)
can be used to show that if v is any measure on 9H such that v _L /f°°(^^)
and K ^ f ) — 0> then the restriction of v to 9H^ is also orthogonal to
#°°(λ g). Thus the proof of [7, Theorem 6.1] (see also [9, §6]) shows that if
91^ is not a peak set for 7/°°(λρ), there is a weak-star continuous
homomorphism in 91tp namely φ ,̂ and the kernel Iζ of φ^ has the
property that if a measure v on 91L is orthogonal to /̂ , then the restriction
of v to ^ΐt^ is orthogonal to / f. In this case, the restriction of Iξ to 9H^ is a
closed subspace of C(9H .̂), so that also the restriction of H°°(XQ) to 9Hf

is closed. In the other case, in which 9H^ is a peak set, it is a consequence
of Glicksberg's peak set theorem [8, Theorem II. 12.7] that the restriction
of H°°(λQ) to 9Itr is closed. Since 91^ is the level set of the function
Z E H°°(λQ), each 911̂  is //°°(λρ)-convex and hence coincides with the
maximal ideal space of the restriction algebra. This proves the first
assertion of Theorem 2.

Now let ξ E g, and fix φ E III Π 911̂ . Let TV be any open neighbor-
hood of φ. Since the generalized peak points are dense in III, there is a
sequence {φy} of generalized peak points for H°°(λQ) such that φy E N for
all j \ and Z(φy) -> f. The "independence of fibers" argument of J.-P.
Rosay [14], as utilized in [5, §1], then shows that every point in 9H
adherent to the sequence {φy} is a generalized peak point for //°°(λρ). In
particular, there exists ψ E N Π 911̂  that is a generalized peak point for
if°°(λ£), hence for the restriction of //°°(λρ) to 9Hr, so that ψ E IΠ^ and
IΠ^ meets N. Since JV is arbitrary, φ E IΠ .̂ We conclude that

(2.2) m f D m n 9 i t p f e β .

If ^ ^ is a peak set, then the reverse inclusion follows from an
abstract fact about uniform algebras. Thus (2.1) holds for all ξ E Q\Q.

Fix ξ E Q. The splitting property of measures orthogonal to 1^ cited
earlier in the proof, implies the following extension theorem (cf. [8,
Theorem II. 12.5] or [9, Lemma 6.1]): If h is any (strictly) positive
continuous function on 9JI, if g E C(9H .̂) is the restriction of a function
in Iς, and if | g |< h on 9Hf, then there exists/ E /̂  such that/ = g on 911̂ .
while |/1< /z on 9H. Now suppose φ E IΠ^ is distinct from φ .̂ Let N be
any closed neighborhood of φ in 911, and choose h E C(91t) such that
0 < Λ < 1, h < 1 on 91t\N, and Λ = 1 in a small neighborhood of φ.
Since φ E ΠI ,̂ there is a function g in the restriction algebra of H°°(XQ)

to 9H^ such that g = 1 somewhere on the small neighborhood of φ, | g |< h
on 91lp and g(φ^) = 0. The latter condition guarantees that g is the
restriction to 911̂  of a function in Iζ. By the extension result, there is
/ E Iζ such that | / |< Λ, while | |/ | | = 1. It follows that the Shilov boundary
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of H°°(λQ) meets N. Since N is an arbitrary neighborhood of φ, φ E IΠ,
and we conclude that

(2.3) Wξ c (IΠ Π 91tf) U {φζ}9 f E β.

Now suppose that ξ E Q is such that ΠIr ^ III Π 9HΓ In view of
(2.2) and (2.3), IΠf is then obtained by adjoining φ^ to III Π 9itΓ Since φζ

is an isolated point of IΠf, it is also an isolated point of 9!t r Hence there
exists/ E H°°(λQ) such that/(φ f) = 1, while | / | < 1/4 on 91tf\{<pf}. In
particular, \f |< 1/4 on IΠ Π 91LΓ Choose δ > 0 such that if Δδ is the
open disc {\z - ξ\< δ}, then | / | < 1/4 on IΠ Π Z~\Δδ). By shrinking δ,
we may suppose also that the range of / on Z - 1 (Δ δ ) is included in the
union of the two discs {\z\< 1/4} and [\z - 11< 1/4}.

L e t # = {φ E Z~ι(Δδ): |/(φ) - 11< 1/4}. Then Nis an open subset
of 9H which is disjoint from IΠ, and furthermore the boundary of N is
included in Z~\Δδ). By the local maximum modulus principle, N is
included in the i/°°(λρ)-convex hull ίN of dN.^ince \f - 11< 1/4 on N9

this estimate persists on 8iV, and consequently 97V Π Z - 1 (Δ δ ) = N. Now
by an abstract fact, Z(dN) includes the topological boundary of Z(dN).
Since Z(dN) is included in 9Δδ, we conclude that Z(N) covers Δδ.

Fix £ E Δδ. Since \f |< 1/4 on IΠ Π 9H ,̂ while \f - 11< 1 some-
where on C3ίll̂ , we see that I Π ^ IΠ Π 9Hf, and consequently ξ E β. Thus
Δδ C g, and f is an interior point of K. This shows that (2.1) is valid, and
the proof is complete. D

3. Weak-star density of representing measures. Let Q be a non-triv-
ial Gleason part for R(K), as before. Let σ be a positive measure on K,
and let H°°(σ) denote the weak-star closure of R{K) in L°°(σ). We will
write

to mean that the identity map of R{K) extends to an isometric isomor-
phism and weak-star homeomorphism of H°°(σ) and i/°°(λρ). This occurs
if and only if (i) σ is absolutely continuous with respect to some represent-
ing measure for some point of Q, and (ii) every point of Q has a
representing measure that is absolutely continuous with respect to σ. The
condition (i) means that σ lies in the minimal reducing band of measures
corresponding to the Gleason part Q. (See [2, §20].) In particular, σ is
supported on Q. The condition (ii) is equivalent to asserting that the point
evaluations at points of Q extend to be weak-star continuous homomor-
phisms of H°°(Q), again denoted by φ r, ξ E β.

Our aim in this section is to establish the following theorem.
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THEOREM 3. Let σ be a positive measure on K such that H°°(σ) ~
H°°(λQ), and let ζ^Q.Ifτ is any probability measure on the closed support
of o such that τ represents ζ on R(K), then τ belongs to the weak-star closure
of the set of representing measures for ζ that are absolutely continuous with
respect to σ.

Proof. This was proved in several special cases, including the case
σ = λρ, in [10]. To prove the result in the case at hand it suffices to check
the hypotheses of the abstract version, Theorem 7.3 of [10]. This amounts
to checking that the property (#) on [10, p. 137] holds, and for this we
proceed as follows.

The restriction map H°°(σ + r) -> //°°(σ) is an isometric isomor-
phism and a weak-star homeomorphism, so that

Moreover, these isomorphisms respect the fibering of 9Hby the 911 '̂s.
Let Σ denote the maximal ideal space of L°°(σ). Then H°°(σ) can be

regarded as an algebra of continuous functions on Σ. In fact, H°°(σ)
becomes a uniform algebra on the quotient space Σ / ~ obtained by
identifying points of Σ that are identified by H°°(σ). Thus Σ/~ can be
regarded as a closed subset of 911, and Σ/~ includes the Shilov boundary
ofH">(λQ).

Let Σ^ denote the fiber of Σ/~ over ξ E Q:

The range of / E H°°(σ) on Σ^ is precisely the σ-essential cluster set of/at
f. By Theorem 2, Σ^ includes the Shilov boundary IIIζ of the restriction of
#°°(a) = ^°°(A^) to 9ϊlΓ Thus if/ E #°°(σ), then

sup{|/(φ)|: φ E 91tr} <σ-ess limsup |/(z)|.

Now the τ-essential cluster set of / at ζ is included in /(9H^), as can be
seen by regarding HGC(σ + r) = H°°(σ) as an algebra of continuous
functions on the maximal ideal space of L°°(σ + T). It follows that

τ-ess limsup \f(z)\ < σ-ess limsup \f(z)\

for all ξ E Q that belong to supp r. This is property (#) of [10, p. 137], so
we may now appeal to Theorem 7.3 of [10] to deduce Theorem 3. D

4. Weakly compact sets of representing measures. Let Q be a

nontrivial Gleason part for R(K), and suppose q E Q has a weakly
compact set of representing measures on 37£. Then q has a dominant
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representing measure on dK, that is, a representing measure η that
dominates every representing measure for q on dK. Furthermore, the
Radon-Nikodym derivatives of the representing measures for q with
respect to η form a weakly compact subset of L\η). This is equivalent to
asserting that they form a bounded, weakly closed subset of V(η) which
is uniformly integrable.

Each point of Q has a weakly compact set of representing measures
just as soon as one point does (cf. [8, VI. 1]). Thus η dominates any
representing measure on dK for any point of Q. In particular, η dominates
the point mass at any point of Q Π dK, so that there are at most
countably many points of Q Π dK. The main theorem of [4] asserts that
Q C K°, and we will give a proof of this fact presently. First we give the
following corollary to Theorem 3.

THEOREM 4. Let Q be a Gleason part for R(K), and let σ be a positive

measure in dK such that H°°(σ) = H°°(XQ). Suppose that the set of repre-

senting measures on dK for some {hence for all) q E Q is weakly compact.

Then every representing measure for any q E Q is absolutely continuous with

respect to σ.

Proof. Since point evaluations at points of Q are weak-star continuous
on //°°(σ), σ has mass in any neighborhood of each point of Q Π dK, and
supp o — Q ΠdK. Let v be supported on Q, so that supp v C supp σ. By
Theorem 3, there is a net {va} of representing measures for q that
converges weak-star to v, such that va < σ. Passing to a subnet, we may
assume that {va} converges weakly, evidently to v. Since the representing
measures dominated by σ form a weakly closed set, we obtain v < σ, as
required. •

Now we indicate how to prove the main result of [4], that Q C K°
whenever points of Q have weakly compact sets of representing measures.
Let 7] be a dominant representing measure on dK for some point of Q, and
let p E dK. Write η — σ + aδp, where a > 0 and σ({p}) — 0. It is easy to
check that every point in Q has a representing measure dominated by σ,
so that 7/°°(σ) ^ /P°(λρ). Theorem 4 shows that η « σ . This implies that
v({p}) ~ 0. Hence η has no point measures on dK, and Q is disjoint from
dK. So Q C K°, and in fact Q is a union of connected components of K°.

It is not known (assuming weak compactness of the set of represent-
ing measures for q E Q) whether the Gleason part Q is connected.
However, in the case that K° is connected, the part Q coincides with K°.
Moreover, if σ is any representing measure on dK for a point q E K°, then
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H°°(σ) s H°°(λQ)y so that Theorem 4 shows that any other representing
measure is absolutely continuous with respect to σ. Thus all representing
measures on dK are mutually absolutely continuous. This proves Theo-
rem 1.

5. The algebra A(D). The line of argument above applies not only
to R(K) but to any Γ-invariant algebra [2, §7]. Here we mention the
analogue of Theorem 1 for the Γ-invariant algebra A(D).

THEOREM 5. Let D be a bounded domain in the complex plane whose
boundary 3D has no isolated points, and let A(D) denote the algebra of
continuous functions on D that are analytic on D. If p E D has a weakly
compact set of representing measures, then all representing measures on dD
for points of D are mutually absolutely continuous with respect to harmonic
measure.

Proof. The analogue of Theorem 3 is valid for A(D). To apply it as in
the preceding section, we need only to establish one minor point, namely,
that the closed support of any representing measure on dD foτqGD
coincides with dD. For this, let S denote the Shilov boundary of A(D). It
is easy to see that any representing measure on S for q e D has closed
support S. So it suffices to show that S = dD.

Now 5 is a closed subset of dD, and all functions in A(D) extend
analytically to D\S [2, Lemma 17.3]. In particular, the point masses at
points of (dD)\S must be absolutely continuous with respect to a
dominant measure for p on dD. Thus there are at most countably many
points in (dD)\S, and since dD has no isolated points, in fact S = dD, as
required. D

6. Roadrunner sets. A roadrunner set is a compact set K obtained
from the closed unit disc Δ by excising a sequence of open subdiscs Δ̂
with pairwise disjoint closures, such that the Δ̂  's accumulates only at
zero. The question of which roadrunner sets correspond to weakly com-
pact sets of representing measures is settled by the work in [3] and [4]. In
fact, Fisher [3] proved that if 0 is a peak point for R(K), then points of
K° have norm compact sets of representing measures. On the other hand,
if points of K° have weakly compact sets of representing measures, then 0
is necessarily a peak point for R(K), by the proof in [4]. In particular,
weak compactness and norm compactness are equivalent. For a more
interesting class of examples, we turn to champagne bubble sets.

7. Champagne bubble sets. A champagne bubble set is a compact
set K obtained from the closed unit disc Δ by excising a sequence of open
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subdiscs Δy with pairwise disjoint closures, such that the Δ ; accumulate
only on ΘΔ.

THEOREM 6. Let K — Δ\( U Δy) be a champagne bubble set, fix p E K°,
and let Mp be the set of representing measures on dK for p. Then the
following are equivalent.

(i) M is norm compact.
(ii) M is weakly compact.

(iii) // Δε is an open annulus (1 — ε < | z | < 1}, then v(Aε) -* 0, uni-
formly in v E Λf , as e -» 0.

(iv) The restriction measures [v |Δ: v E M } form a weak-star closed set.

Proof. Evidently (iii) and (iv) are equivalent, while (i) implies (ii). If
(ii) is valid, then the Radon-Nikodym derivatives of the representing
measures with respect to some fixed dominant measure are uniformly
integrable, so that (iii) is valid. Finally, Fisher's work in [3] shows that (iii)
implies (i). •

Note in particular that if ΘΔ is a null set for Mp9 then condition (iv)
holds, so that the set of representing measures is weakly compact. B.
0ksendal [13] has given necessary and sufficient conditions, in terms of
analytic capacity, for ΘΔ to be a null set. His condition is that the holes Δy

be large in the sense of analytic capacity γ, specifically, that

(7.1) hmmf — r — > 0

for a set of ξ E ΘΔ of full linear measure. It is easy to construct the Δy's
large enough so that the condition (7.1) is valid for all ζ E ΘΔ. In this way
we obtain a champagne bubble set such that points of K° have compact
sets of representing measures, all carried by U ΘΔy.

It may occur that the set of representing measures Mp is norm
compact, even though the discs Δy accumulate on all of ΘΔ and the
restriction of harmonic measure to ΘΔ is mutually absolutely continuous
with respect to arc length there. Such an example is constructed, using
Fisher's argument, as follows. Choose a sequence {ζn} of complex num-
bers of unit modulus which has each point of ΘΔ as a limit point. Suppose
discs Δ,,... ,Δn-\ have been chosen appropriately. Let Δ^ be a disc in Δ
with center so near to ξn and radius so small that, for
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the supremum of r(dΔn) for all representing measures v on dKn for/? with

respect to R(Kn) is less than 1/2". Let η G Aίp9 and let Snη denote the

sweep of η to dKn via harmonic measure. Then Snη is a representing

measure for/? on R(Kn), and Snη converges weak-star to η as n -» oc. The

sweep of S^+jTj to 3AΓm is Smτ}, and it is obtained by sweeping the mass of

Sm+λJ\ on 3Δ m + 1 to dKm. Since the mass of Sm+Yη actually swept is less

than l / 2 m + 1 , we obtain

m+\

This shows that Smη converges in norm as m -^ oc, and the limit must be

η. Moreover, the estimate shows that

00 ,

h-Smr,\\^ Σ \\SJ+iη -S,τ,| |< — .
j = m+\

This estimate is uniform in rj. Since the range of each SJ^RL is finite

dimensional, the limit 9lt is norm compact. We may assume that the

radii of the discs Δy are summable. Then the measure dz on dK is a finite

measure that is orthogonal to R(K). By Theorem 1, it is mutually

absolutely continuous with respect to harmonic measure. Thus the restric-

tion of harmonic measure to 3Δ is comparable to arc length.

By combining ΘksendaΓs condition with Fisher's approximation tech-

nique, it is possible to concoct a wide variety of champagne bubble sets

with norm compact sets of representing measures.

THEOREM 7. Let E be a Borel subset of 3Δ. Then there is a champagne

bubble set K such that points p E K° have norm compact sets of representing

measures on dK, and such that each representing measure is comparable to

the arc length measure on E U ( U°°= χ 9Δ ).

Proof. If £ is a subset of 3Δ of full arc length measure, then the

construction discussed above provides such an example. Thus we may

assume that F — (ΘΔ)\£I has positive arc length. Let {Fi}^=ι be a se-

quence of compact subsets of F such that the F/s are pairwise disjoint,

F\(U Ft) has zero arc length, each Fx has positive arc length, and for

/ > 2 the length of Fι is bounded by 1/2Z. Let {Eι}%] be a sequence of

compact subsets of E such that E\( U Et) has zero arc length.

Construct by induction open subsets Uk and Wk: of Δ, k > 1, such that

(i) Uk is the union of open discs {Δkj}J"=ι with pairwise disjoint closures

which accumulate on Fk\ (ii) Uk is contained in the (1/^-neighborhood of

Fk\ (iii) Uk is disjoint from U ίorj < k\ (iv) if
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then Fk is a null-set for R(Kk)^ (v) if uk is the harmonic function on
Kk^x with boundary values 1 on Fk and 0 on (dKk^])\Fk, then uk> 1/2
on Uk\ (vi) Wk is a domain in Δ whose boundary is a simple closed
rectifiable Jordan curve such that (dWk) Π (3Δ) = Ek\ and (vii) Wk is
disjoint from Uj for all k and 7. To see that this can be done, assume that
Ul9..., ί/Λ_ ] and fFj,. ., Wk_ x have been chosen. Let 0 < ε < I/A:, and
let Vk be the intersection of the ε-neighborhood of Fk with the set of
points in Δ\Kk-} at which uk> 1/2. For ε > 0 small enough, Vk is
disjoint from ί/, and from Wj for 1 <j < k. For i > 1, let L, be the
intersection of Vk with the circle {\z\ — 1 — 1/2'}. Fix c > 0 small, say
c = 1/100, and choose points zzl, z/ 2,... on Lt so that Δ(z/y ; c/21) C Vk9

such that the discs Δ(zzy; c/2') have pairwise disjoint closures, and such
that any subarc of Li of length greater than c/(8 T) includes one of the
points z/y-. Let Uk be the union of the discs Δ(zίy ; c/21') for 7 > 1 and
1 < / < 00. Let ζ e i^ be a point of full linear density of Fk. Then uk(z)
tends to 1 through any cone in Δ with vertex at £, so that all points in any
such curve and sufficiently close to ξ lie eventually in Vk. If the aperture
of the cone is chosen to be sufficiently large, say 77/2, then the construc-
tion is devised so that there is a sequence wι — zιj{i), i > iθ9 such that
\Wj ~~ f |< 2/2z. Fix δ > 0 small. Choose the smallest integer i such that
4/2* < δ. For δ sufficiently small, i > ι0. Note also that δ < 8/2', and
furthermore that Δ(f; δ) includes Δ(w ; c/2'). Since the analytic capacity
of a disc is equal to its radius,

γ(Δ(f δ) Π I/J > γ(Δ(wz; c/21)) - c/21' > cδ/8.

Hence

Since this is valid for almost-all points of Fk9 ΘksendaFs theorem shows
that Fk is a null set for all measures in R(Δ\Uk)

±, and hence for all
measures in RiK^ . Thus Uk has all the desired properties, and since Ek

is disjoint from Fλ U Ui^, it is easy to construct Wk with the proper-
ties asserted above.

Now let K — lim Kk = Δ\( U Uk)9 which is a champagne bubble set.
Since Fk is a null set for R(Kk)

x, /^ is also a null set for RiK)1^, and
hence i 7 is a null set for R(K)1^. Let λ^ be the measure dz on dWk. Since
j ^ C l , and Wk C Γ , λ^ is orhtogonal to R(K). Furthermore, the
restriction of λ^ to Ek is comparable to arc length on Ek. It follows that
any null set of R(K)^ lying inside U 2^ has zero length. Hence any
dominant representing measure for a point of K° is equivalent to the arc
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length measure on (U3Δ7) U E. To complete the proof, it suffices to
show that points of K° have compact sets of representing measures on
dK.

Since Fx U UFk is a null-set for measures orthogonal to R(Kk),
Theorem 1 of [3] shows that points of Kk have norm compact sets of
representing measures on dKk. It suffices to show that representing
measures on dK are uniformly limits in norm of representing measures on

dκk.
Assume for convenience that O G Γ , and let η be a representing

measure on dK for 0. For each /c, let ηk be the sweep of η to dKk, via
harmonic measure. Suppose k > 2. Then ηk_ι is obtained by sweeping ηk

to dKk_]. Now dKk is the disjoint union of dKk_} and dUk. Since the
sweep of ηk_x to 3Δ with respect to Δ is dθ/2π, ηk_{ < dθ/2π on Fk, and
consequently the mass of ηk swept from dUk to Fk does not exceed
2~k/2ττ < 2~k~2. Since uk > 1/2 on Uk9 at least half the mass of ηk on
3ί4 is swept to Fk, and consequently the total mass of ηk on dUk does not
exceed 2~k~\ Hence

This estimate shows that {ηk} converges in norm, evidently to η, and
moreover

Thus the set of representing measures for 0 on dK is the limit of the set of
representing measures for 0 on dKk, with respect to R(Kk). Since the limit
of compact sets is compact, points of K° have compact sets of represent-
ing measures. D

By utilizing the technique in the example preceding Theorem 7, one
may pluck out a further sparse sequence of discs so that the Δy's in
Theorem 7 accumulate on all of 3Δ.

On the basis of Theorem 1, it is possible to conclude that several
standard examples of champagne bubble sets fail to have norm compact
sets of representing measures. In one example, given in [6, p. 102], one
chooses the Δy's with very small radii and with centers forming a dominat-
ing sequence for //°°(Δ). In this case, the restriction of harmonic measure
to 3Δ is comparable to arc length, yet there are representing measures for
points of K° with no mass on 3Δ. Theorem 1 shows that the set of
representing measures associated with such a set is not weakly compact.

The second example, pointed out by Fisher and mentioned in [6, §7],
depends on a function constructed by A. Beurling and used by R.
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McKissick [12] as the principal ingredient of his celebrated Swiss cheese.
In Beurling's construction, the Δy's are chosen so that their radii are
summable, but so that there exists a nonzero function / i n R(K) that
vanishes identically on ΘΔ. This property of / guarantees that harmonic
measure for a point of K° has no mass on ΘΔ. On the other hand, the
measure dz on dK is a finite measure orthogonal to R(K) which has mass
on ΘΔ. Again Theorem 1 shows that the sets of representing measures for
points of K° are not weakly compact.
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