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MULTIPLE SERIES ROGERS-RAMANUJAN

TYPE IDENTITIES

GEORGE E. ANDREWS

It is shown how each of the classical identities of Rogers-Ramanujan
type can be embedded in an infinite family of multiple series identities.
The method of construction is applied to four of L. J. Rogers' elegant
series related to the quintuple product identity. Other applications are
also presented.

1. Introduction. The Rogers-Ramanujan identities [6; Ch. 7] are
given analytically as follows:

( 1 Λ ) l + ? Hi-**)—(i-

= Π τ τ -

= π -
Numerous authors [18], [19], [16], [12], [13], [22], [23] in the first half of
this century found related results connecting ^-series resembling those in
(1.1) and (1.2) with various modular forms and functions. The culmina-
tion of their efforts may be found in the two papers of L. J. Slater [22],
[23] wherein over 130 such identities are cataloged.

Within the last decade it has been observed that if one extends the
^-series allowed to multiple series then infinite families of Rogers-
Ramanujan type identities can be found [4], [5], [14], [17], [25], [26]. For
example [4],
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where (q)n = (1 - q)(l - q2) - (1 - qn). Such series have opened
several new combinatorial vistas related to such identities [8], [14].

However other identities originally found by Rogers have not been
fully generalized to infinite families (work in this direction is given in
[17]). The following four results of L. J. Rogers (for a history and
combinatorial applications see [11]) are perhaps the best examples of
"isolated" Rogers-Ramanujan type identities:
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1 0 " + 7 ) ( l - g

2 0 " + 1 6 ) ( l - q20"+4)

One reason these four are considered noteworthy is because of the
appearance of the Quintuple Product Identity [3; p. 466] in each second
line. This is especially intriguing in light of the fact that all previous
infinite family extensions [4], [5], [14] have involved only the Triple
Product of Jacobi [6; p. 21].
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The object of this paper is to show that all of the 130 identities given
in Slater's compendium [21] can be embedded in infinite families of
results. In particular, identities (1.4)-(1.7) can be generalized to infinite
families. For example, the generalization of (1.4) is

nl + n\+ ~+n2

k

V # ) «2 ~ nl V 9 h

Π
w = l

+ (A: + 1) (mod6A: + 4)
(4 A:+ 2) ( m d 12 A 8 )

, ( ) ( )
w* ± ( 4 A:+ 2) (mod 12 A:+ 8)

In fact the extensions of (1.4)-(1.7) presented in this paper all rely on the
Quintuple Product Identity (see (3.5), (3.9), (3.13)).

In §2, we shall prove Theorem 1 which provides the means for these
extensions. In §3 we prove the generalizations of (1.4)-(1.7). In a very
natural way certain questions concerning the "reducibility" of Rogers-
Ramanujan type identities arise; some initial observations on this topic
are provided in §4. In §5 we explore how Theorem 1 can be applied to
several identities that seem to fall naturally outside of the domain effec-
tively outlined by L. J. Slater in [22] and [23].

The results we prove are most closely related to S. Milne's striking
and elegant multiple series expansion for the general Rogers-Selberg
function [17]. Indeed Milne sketches applications using the quintuple
product identity [17; pp. 641-642], and presumably the specializations he
gives in [17; eq. (3.12) abed] make his function (α)<ί>u(x; q) summable to
yield our (1.3), (3.5), (3.9) and (3.13). The primary advantage of our
approach is that it allows us to avoid having to sum special cases of
(α)Φi,i(χί ί ) a n d instead lets us quote known summations from Slater's
extended tables [22]. Indeed one might say that Milne's work represents
the full generalization of Rogers' second proof of (1.1) and (1.2) [20] while
the results in this paper fully generalize Rogers' first proof [18].

2. The main theorem. The germ of our work lies in W. N. Bailey's
fundamental papers [12], [13] on Rogers-Ramanujan type identities. In
particular, the very brief §4 of Bailey's paper [13] provides the mechanism
for producing an infinite family of identities out of one identity. To give
Bailey's results we require the following standard notation [24; p. 89]:

(2.1) («;<7)oo = («)oo = Π ( i - < ! ) ,

(2.2) (a;q)n = (a)n = (a;q)O0/(aqn;q)o0

( = (1 — a)(l — aq) •••(! — aqn~ι) for n a nonnegative integer).
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The assertion by Bailey in [13; §4] is:

BAILEY'S LEMMA. If for n > 0

(2.3) βn - Σ
r = 0

then

(24)

= y, {pl)n

7Ό

To obtain the above result one merely takes the results from [13; §4]
and fills them into the identity in [13; §2]. Finally algebraic simplification
provides the above form of the result.

The important observation is that (2.4) is again an instance of (2.3)
with now

r
{aq/Pι)r{aq/p2)r

and

( '} PN £
Thus Bailey's Lemma can be iterated ad infinitum, and this iteration is
what is made explicit in the following result.

THEOREM 1. Let the sequences an and βn be related by (2.3), then

x . . b c
l °kCk

(aq)N(aq/bkck)N ^ (bk)nk(ck)n(c - (bι)nι(cι)nι

(q)*2-nι

n2-nι

(bkckq'N/a)nk(aq/bk.ι)nk(aq/ck_ι)nk (aq/bl)n2(aq/cl)ti2
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Proof, We proceed by mathematical induction. When k = 1, (2.7)
reduces to

n>o

{aq)N{aq/bιcι)J^ „

{bιCιq-N/a)ni

which is (2.4) (with ρλ = 61? ρ2 = cx) multiplied by (q)N(aq)N and sim-
plified. Hence the case k = 1 is merely Bailey's Lemma.

Now assume the result true up to but not including a particular k.
Then the case k - 1 is merely a new instance of (2.3) with

(2 10) β*

(

l)«(«<

(

h-\ck-

l/ck-x)n

b/bk 2cf

••(aq/b^)n(aq/c^)n

t 2 ) . -„ •••(aq/bιcι)n „

Hence we may substitute α* and β* into (2.4) with p1 = bk, p2 = ck and
then multiply through by (q)N(aq)N. The resulting lefthand side of (2.4)
is obviously the lefthand side of (2.7). The resulting righthand side is

( 2 . 1 1 ) ( ) W Σ

(aq)N(aq/bkck)N „ (bk)Λt{ck)nk{q-N)nk

(aq/bk)N(aq/ck)N n^0 {bkckq~N/a)nk
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(aq)N(aq/bkck)N

{aq/bk)N{aq/ck)N n^0 (q)nk(aq/bk_ι)nk(aq/ck_1)nk

χ y (^k)nk(
Ck)nk'"(bl)nι(Cl)ni

(^) * * * (#)

(bkckq
 N/a)nk

χ

(aq/bk_2)nk_ι(aq/ck_2)nk^ι

Xqnι+-+nk.lanι+ +nk.2 ( ^ _ ^ _ 2 ) - * - 2 . . . ( ^ ) ~ ^

(aq)N(aq/bkck)N y (t>k)nk(ck)nk • (bx)

(aq/bk)N(aq/ck)

{bkckq-N/a)nk{aq/bk_ι)nk{aq/ck_ι)nk (aq/b1)n2(aq/c1)fl2

which is the desired form of the right hand side of (2.7). Thus Theorem 1
is proved. •

While Theorem 1 looks cumbersome it has in fact a number of
famous and important specializations. The most important occurs for

(212)

1 if Λ = 0,

0 n > 0.

The fact that an and βn satisfy (2.3) is immediate from the following result
(with M — n) which is easily proved by mathematical induction on M.

( 2

' M

a result derived originally by R. P. Agarwal [1; p. 444, final equation].
The case k = 1 of Theorem 1 with an given by (2.12) and βn given by

(2.13) is the terminating case of the limiting form of Jackson's theorem
[24; p. 96]. The case k = 2 is Watson's celebrated ^-analog of Whipple's
Theorem [28] which implies (among many other results) the Rogers-
Ramanujan identities (equations (1.1) and (1.2)).
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3. ^-Series extensions of (1.3)-(1.7). We have chosen four identi-
ties from among Slater's list of 130. However it should be emphasized that
Slater derives all 130 identities from (απ, βn) pairs applied to (2.4) with
N -> oo. We may therefore derive for each (<xn, βn) pair given by Slater in
[22] an infinite family of identities corresponding to k = 1,2,3,... in
Theorem 1. We have chosen to generalize (1.4)-(1.7) as striking examples
of how this works. To simplify our proceedings we consider a special
limiting case of Theorem 1.

THEOREM 2. Let an and βn be related by (2.3). Then

1

(3.1)
\aH) oo n>Q

„?+»§-

. Let iV, bv b2,...,bk9 cvc2,...,ck all tend to infinity in Theo-

rem 1. D

THEOREM 3. Identity (1.8) is valid.

REMARK. All we need do for this result and the remaining results in
this section is to choose the appropriate (αn, βn) pair given by Slater [22]
and fill it in to (3.1).

Proof. Since (1.4) appears as identity (98) in Slater [23] we see that the
requisite («„, βn) pair in [22] is given by her ,4(1), i.e.

(3.2)

(3.3)

— ί

ί - ί
1,

OM ~f~ 5/7 ~l~ 1

^ = 1,

m

m

m

/(q)2n

= 3Λ -

= 3«>

= 3n +

= 0,

l>0,

o,
1 > 0,
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and furthermore a = 1 (Slater's x is our aq~ι). Hence by Theorem 2 (with

(3>4) Σ g«?+πi+-+"*

nk> - >n,>0 ( 4 ) « * - " * - i ( 0 ) " * - i - " * - 2 • • • ( < ? ) « 2 - « i ( < ? ) 2 ^

•j / 00 00

___i___ j X""* k(3n-l)2ί 6n2 — 5n + l\ i i _ι Y~* k(3n)2( n6n2 — n ι / 7 6 i > 7 2 + A?\

00

oo « = — co n= — co

i CO

/Λ\ 1 1 v 1 "" ̂  + ) " + ) ( 1 ~ < 7 + + w ) ( l ~ ̂  w )

NV/i ^4& + 2-K12A: + 8)rt \ / i Λ8A: + 6+(12A: +8)« \
X ^1 — ̂  j ^ l — q ' )

(by [6; p. 21, Th. 2.8])

CO

— FT (Λ ^n\~l

~ 1 1 \L ~ Q ) •>
Λ=£0, ±(A; + l)(mod6A: + 4)

w 56 ±(4A: + 2) (mod 12A: + A:)

as desired. D

THEOREM 4.

(3-5) Σ
nk>nk_x> •-

oo

Π
w^O, ±(2A:?2) (mod6A:+ 4)

nm ±2A:(modl2A:+8)

Proof. This result reduces to (1.5) when k = 1, and since (1.5) appears
as identity (96) in Slater [23] we see that the requisite (an, βn) pair in [22]
is given by her Λ(4), i.e.

(3-6) am =

q6"2-4", m = 3/ι - 1 > 0,

4 6" 2 + 4", m = 3« > 0,

1, m = 0,
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(3.7) βn = qn/{q2;q)m>

and furthermore a = q.

Hence by Theorem 2, with a = q and both sides multiplied by

(1 - q)'\

(3.8) Σ
nk>nk_ι> -

oo oo
y k(3n-l)2 + k(3n-l)ί 6n2-4n\ + γ + y A:(3«)2 + 3A:« / 6«2 + 4«\

oo
y 1 A

oo oo
V n(9k + 6)n2+Ok + 4)n _ n2k y /

ω l L-j H H La
oo \ n= - o o « = - o o

1 / oo oo

V n(9k + 6)n+(3k + 4)n _ ^2^ + 2 y n(ω \ La H H La H
o c \ w = — o o n= — oo

(replacing « by — n — 1 in the second sum)

1 oo
Π Λ _ (̂6A: + 4)(n + l ) \ / | _ 2k + 2+(6k + 4)n \ίγ _ 4k + 2+{6k + 4)n\

(<?)oo π - 0

Π

: + 8+(12A: + 8)«\A _ 2k+(l2k + 8)/ι \

(by [6; p. 21, Th. 2.8])

n

as desired.

THEOREM

(3.9)

5

ί

±(2A: + 2)(mod6A: + 4)
ί ±2A:(modl2A: + 8)

• >/Zi>0 V jf / i

__
00

π (1

' * - 2 ' " •(ί)ι.2-»1(ί)2«1

) - x

D

Λ 5£ ± (4A: + 4) (mod 12A: + 8)

Proof. This result reduces to (1.6) when k = 1, and since (1.6) appears
as identity (99) in Slater [23] we see that the requisite (an, βn) pair in [22]
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is given by her A(3), i.e.

(3.10)

(3.11)

-q

1,

6n2+2n
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m = 3« > 0,

m = 3n + 1 > 0,
m = 0,

and furthermore a = 1.
Hence by Theorem 2, with # = 1
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00
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1
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0

Π
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as desired. D

Finally we have

THEOREM 5.

q"ϊ + ni

(3.13)

Π
w l

±(2A:+ 1) (mod6A:+ 4)
(2A + 2)(modl2A: + 8)
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Proof. This result reduces to (1.7) when k = 1, and since (1.7) appears
as identity (94) in Slater [23] we see that the requisite (an, βn) pair in [22]
is given by her A(2), i.e.

(3.13) am = <

(3.14)

i6"2

-q

— n

+ n

/\ = V(?2;

h2

m =

m =

m =

3«

3«

—

>

+

1 >

o,

i >

o,

o,

and here a = q.

Hence by Theorem 2 with a = q and both sides multiplied by

(1 - q)'1

(3.15)

oo oo
y k(3n-l)2 + k(3n-l)ί q^n2-n\ + Γ J(3«)2 + ««/ 6«2 + «\

oo
_|_ Y k(3n + l)2 + k(3n + l)ί 6n2 + 5ni-l _ 6n2 + 7n + 2\

n = 0

00 00
Y (9k + 6)n2 + 3kn + n _ 2k + l y * (9/r+ 6)/?2+(9A: + 5

-, 00
x Γ T (γ _ ^-(6A: + 4)(Λ + 1 ) \ / J _ ^2A: + 1 +{6k + 4)n\ίγ _ 4A: + 3+(6/c + 4)«\

(^)oc n = 0
χ Λ _ «2A: + 2+(12A: + 8 ) « \ A _ 10A: + 6+(12A: + 8)/i \

Π (i-flT1.
n = l

«3eθ, ±(2^+l)(mod6A: + 4)
«5£ ±(2 A:+ 2) (mod 12 A:+ 8)

as desired. •

As is obvious from the above, each pair (απ, βn) given by Slater in
[22] can be inserted in Theorem 2 or Theorem 1. The four examples we
have chosen constitute applications to probably the most elegant results
considered by Rogers et al. beyond the original Rogers-Ramanuj an identi-
ties.
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4. The pairs of sequences («„, βn). Often in this subject one may

be given only one of the sequences an or βn. If the an are given then the βn

are determined by (2.3). Less well known but still of importance is the

"inversion" of (2.3). Namely [7; p. 8, Lemma 3]

(4.1) an = (1 - aq2n) Σ
7 = 0

Also of interest is the creation of (a'n9 β'n) given by Bailey's Lemma.

Furthermore if (a'n9 β'n) are given then one can immediately determine an

from (2.5), and one can solve for β 0, βv.. .,βN from the diagonal system

of equations (2.6). Thus the operation of forming the sequence of pairs:

(4-2) K,/βJ^ (<,#)->(<,#')->

which was codified explicitly in Theorem 1 can, in fact, be extended to the

left as well. In actual fact, if we consider an = a°n, βn = β®, then we can

form

(4.3) ••• ->{a<-2\β<-*>)-+(a<-1Kβ<-1))->(a°n,β2)

where each pair is related to the next through instances of (2.5) and (2.6).

In the following, we shall refer to a pair of sequences (an, βn) related by

(2.3) to be a Bailey pair. We shall call (4.2) an ordinary Bailey chain, and

(4.3) a bilateral Bailey chain. For any given Bailey chain one would like to

designate a "simplest" Bailey pair as the "reduced" element of the chain.

At the current state of knowledge it does not appear to be fruitful (or

perhaps possible) to provide a rigorous definition of "reduced". Suffice it

to say that the Bailey pair given by (2.12) and (2.13) are the obvious

"reduced" pair in their family.

Another important way to produce new Bailey pairs (α,7, βn) from

previous ones is through the replacements a -> α~\ q ~> q~ι. Thus if

an = an{a,q),βn = βn(a9 q)9

Ak(a9 q) = Ak = akqklak{a~x, q'1),

then the replacement of a by a ι and q by q λ in (2.3) yields

(4.4) 5 n = Σ
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Thus the substitution a -> a \ q -> q ι yields a new pair satisfying (2.3).
We call (An9 Bn) the ώ/α/ Bailey pair of (απ, βn).

For example, the Bailey pair (an9 βn) given by (2.12) and (2.13) is
self-dual. On the other hand Slater's A-Table [22] of eight pairs (an9 βn)
consists of the four pairs we utilized in §3 and the 4 duals of these pairs.

5. New applications. The ^-series identities that have previously
appeared primarily have their genesis in the work of L. J. Rogers [18], [19].
Indeed the majority of Bailey pairs given by Slater in [22] arise, as she
notes, from Rogers' pathbreaking papers. In fact, the Bailey pairs used in
the classical development of this subject have always taken an as zero or
plus or minus a power of q. The βn have always been simple finite
^-products.

Let us start by delving into the work of I. Schur on the Rogers-
Ramanujan type identities. Schur in his famous initial paper [21] on this
topic provided three polynomial identities that fit the Bailey pair criterion.
Namely he proved (where [#] = {q)A/{{q)B{<ϊ)A-B) a n ^ [*] is the grea-
test integer in x)

(5.1)

(5.2)

Σ ( -
λ = - oo LI

aλ

-

\

I

n
—
2

n

3λl

Jj
n

- 5 λ
2

= 1,

-

1+α~r Oί

7 > 0
;

J
where in (5.2) a = 0 or 1. Actually (5.2) first appears in [2]; however, as
noted there, the essential observations for this identity go back to Schur.
From (5.1) and (5.2) one can obtain 12 Bailey pairs: the first 6 come from
n even or odd, a = 0 or 1. The last 6 are the dual Bailey pairs of the first
6. In fact, Rogers had proved (5.1) in [18] since when n is even (5.1) is
Bailey pair A{1) of [22] and when n is odd (5.1) is Bailey pair A{2) of [22].
As mentioned previously, Rogers also had the dual Bailey pairs of ^l(l)
and A(2). Of the remaining eight possible Bailey pairs implied by (5.2), we
choose the case n even, a = 0. In this instance the Bailey pair is

7 m(10m-l) _ι m(10m + l

(5.3)

n =

n = 5m + 3 > 0,

n = 5m - 3 > 0.
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<5 4 )

where a = 1.
When this pair is used in conjunction with Theorem 2, the resulting

identity is

9)+(50/c+ 20)m \ / ^ + (25* + ll)+(5O* + 2(25A+ll)+(5OA + 2O)m\

4A + 2 TΊ (Λ _ (m + l)(50λ: f 20)\/-ι , n5k + \+(5Ok + 2O)m\(i . _45A- + 19+(50A + 20)wΛ

Σ
n A > > «

D. Bressoud [15], in a study building on Rogers' work, has found
several other new Bailey pairs. As an example, we list

(5.6) l,

πodd,

where (2 = 1.
Hence by Theorem 2,

00

π
« = 1

which, of course, reduces to (Kl) for k = 0.

Finally, and most off the beaten track, we shall see that the Wall
polynomials [27] from group theory fit into the Bailey pair scheme.

The Wall polynomials were first defined in [27] in order to determine
the generating functions for the numbers of conjugacy classes in the
symplectic and orthogonal groups over finite fields of characteristic 2.
They are defined by the following recurrences:

(5.9) X2n + ι = X2n + q2n + ιX2n^
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(5.10) X2n + 2 = X2n + ι + q^(l + q"+ι){X2n + ι + ( l - q2" + l)X2n-l),

where X_λ = X_x{a, b,q) = a and XQ = X0(a, b, q) = b.
Recently it has been shown that [10] among other results

(5.11) Xln_x(\Xq)~ Σ
y = - oo

(5.12) x2»-Λo,h<i)=Σ<ij2

j>0

Hence βn = Ar

2n_1(l, 1, q)/{q)2n forms a Bailey pair with

(5.13) αii lO,

and 0 = 1.
Thus by Theorem 2

(5-14) E

Finally βn = A'2n_1(0,1, q)/(q)2n forms a Bailey pair with

(5.15) «π

O, n even.

with a = 1.
Hence by Theorem 2

(5,6)

7 = 0 9

6. Conclusion. Our object has not been to add heaps of further
Rogers-Ramanujan identities to the already extended lists. Rather it has
been to exhibit clearly mechanisms for their construction. The problems
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of additive number theory [8], combinatorics and special function [5], and
physics [9] will presumably dictate which Bailey pairs and Bailey chains
will be of most interest. Presumably we have here provided the framework
for their construction.
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