CONTENTS

A – ALGEBRA AND NUMBER THEORY

B – ANALYSIS

J. Appell and M. P. Pera, Noncompactness principles in nonlinear operator approximation theory	13
E. N. Dancer, Order intervals of self-adjoint linear operators and nonlinear homeomorphisms	57
R. deLaubenfels, Well-behaved derivations on C[0,1]	73
D. Feyel and A. de La Pradelle, Sur certaines extensions du théorème d'approximation de Bernstein	81
C. C. Graham and B. M. Schreiber, Bimeasure algebras on LCA groups	91
A. Miyachi, Weak factorization of distributions in H^p spaces	165
E. S. Noussair and C. A. Swanson, Global positive solutions of semilinear elliptic problems	177
J. C. Snader, Strongly analytic subspaces and strongly decomposable operators	193
B. Tomaszewski, A construction of inner maps preserving the Haar measure on spheres	203
A. Uchiyama, The Fefferman-Stein decomposition of smooth functions and its application to $H^p(\mathbf{R}^n)$	217

D – GEOMETRY

C. Andradas and J. M. Gamboa, A note on projections of real algebraic varieties	1
---	---

E – LOGIC AND FOUNDATIONS

T. Carlson, Extending Lebesgue measure by infinitely many sets	33
C. G. Jockusch, Jr. and I. Kalantari, Recursively enumerable sets and van der Waerden's theorem on	
arithmetic progressions	143

G - TOPOLOGY

D. S. Coram and P. F. Duvall, Non cell like decompositions of S^3	47
J. F. McClendon, On non-contractible valued multifunctions	155

Our subject classifications are: A – ALGEBRA AND NUMBER THEORY; B – ANALYSIS; C – APPLIED MATHEMATICS; D – GEOMETRY; E – LOGIC AND FOUNDATIONS; F – PROBABILITY AND STATISTICS; G – TOPOLOGY; H – COMBINATORICS