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THE FEFFERMAN-STEIN DECOMPOSITION OF
SMOOTH FUNCTIONS
AND ITS APPLICATION TO H”(R")

AKIHITO UCHIYAMA

We show the ‘‘Fefferman-Stein decomposition” of smooth bump
functions. As an application of this we get one result about the singular
integral characterization of H”(R"). Our method does not use sub-

harmonicity.
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1. Introduction. In this paper functions considered are complex-
valued unless otherwise explicitly stated. Cubes considered have sides
parallel to the coordinate axes. For a function f(x) € L} (R"), let

If v = sup [1£(x) = fldx/11],
I 1

where the supremum is taken over all cubes in R", |I| denotes the
Lebesgue measure of I and

fi = [7(x) ax/111

A function f(x) is said to belong to BMO(R") if || f || gpmo < + 0.
Let 6,(%),...,0,(§€) € C*(S,_,), where

S, = {¢ER:|E=1)

and

f=lteeoi=( S e
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For h € L*(R") let
Kh=(6(/1E)AE),  j=1....m,

where ~ and ~ are the Fourier and inverse Fourier transforms. As is well
known [see Stein [29] p. 75], there exist a, € C and @ (x) € C*(S,_))
such that

and

K,h(x) = a,h(x) + P.V. fsz]( —J )|x—y|”h(y)dy

x
lx =l
for any h € L*(R"). For g € L*(R") let
Kjg(x) = ajg(x)

+P.V.[{Qj( !i :;’)|x—y|_"—ﬂj(ﬁ)Iy)%"x{h),x}}g(y)dy

where x . denotes the characteristic function of a set E C R". In [32], the
author showed

THEOREM A. If

0,(§) ---6,(%)
(=€) ---0,(-§)

then for any f € BMO(R") there exist g,,. ..,g,, € L*(R") such that

(1.1) rank(0 ) =2 onS,_,,
1

f= 2 K,g (modulo constants)
j=1

and
2 Hg,-Hoo = C,llf Imo>
J=1

where C, | is a constant depending only on 0,,....,0, .

REMARK 1. The case when K,...,K, ,, are the Riesz transforms and
the identity operator is the case considered by C. Fefferman [13] and C.
Fefferman-Stein [14].
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REMARK 2. In [32] we assumed that f has compact support. But this
restriction can be removed.

Consequently, if (1.1) is satisfied, then the singular integral operators
K,,...,K, characterize H'(R"). In this paper, we continue this research.

In the following, f(x) = ( f(X),....f,(x)) and g(x) denote C™-valued
functions. We use the following notations:

m 172
o= £ )
Kh(x) = (KA(x),.... K h(x)),

K-1(x) = 3 Kf(x),

m

K f(x) = 3 K}/(x),

J=1

where K*h(x) = (0(£/|£Dh(£))(x). I(x, t) denotes a cube in R” with
center x and side length 7.

DEerFINITION 1.1. Let
S={f € L*(R",C™): K* - f(x) =0},
where L?*(R",C™) denotes the set of C™-valued functions f(x) with
fise- oS € LAR™).

DEfFINITION 1.A. [Coifman-Rochberg [9].] For a real-valued function
fe L (R"),let

If llsuo = sup [f(x) = inf f(y) dx/I1l,
I I y€eI

where I is taken over all cubes in R”. A function f(x) is said to belong to
BLOR") if || fllgro < + o0. [Note that|| - ||z is not a norm.]
Our main result is the following.

THEOREM 1. Suppose that (1.1) holds. Let f € C'(R”,C"™),
—n—1
(1.2) [f(x)= (1 +[x]) ",
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and
(1.3) - i(x)

J

<s(1+x)7"%  j=1,2,....n.

Let w(x) be a nonnegative function defined on R" such that
(1.4) ”—log WHBLO = Co-

Then there exists g € L*(R", C™) such that

(1.5) f-ges
and that
=1
19 lI=C| [ wra] 1)
10,1)
where c, and C,, are positive constants depending only on @,,...,0,.

REMARK 3. If f(x) is R”-valued and if 6 (§) = 6,(—£) forj = 1,...,m,
then we can take g(x) to be R”-valued.

REMARK 4. If we apply Theorem 1 to the case when K, = the identity
operator and f(x) = ( f(x),0,...,0), then (1.5) implies

15) = 1(x) + 3 K, (),

This is the reason why we call Theorem 1 the Fefferman-Stein decomposi-
tion of smooth bump functions. The point is the fact that we can
dominate g,,...,8, pointwise by a “function” on the right-hand side of
(1.6).

The idea of this theorem comes from P. W. Jones’s recent work “L*
estimate for the d problem in a half-plane” [25]. We explain the relation
between Theorem 1 and Jones’s result in §3.

The proof of Theorem 1 is given in §5. The Main Lemma in §4 is
crucial and is itself a partial result related to the Fefferman-Stein decom-
position of certain weighted BMO spaces in terms of singular integral
operators K,...,K,,. The Main Lemma is proved in §§6-9. Its proof is a
refinement of the argument in [32].

As a corollary to Theorem 1, we get one result about the singular
integral characterization of H?(R"). Let ¢ € 9D(R") be a fixed real-valued
function satisfying [¢(x) dx = 1. For h € &'(R"), let

h* (x) = sup|(h = §,)(x)],

>0
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where ¢,(x) =t "Y(x/t). For + o0 >p >0, let
llzzr =12 -
Forh = (h,,...,h,) ES'R") D --- BS'(R"), let
h* (x) = sulgl(h *4,)(x)| = Sggl((hl # 9)(x),- s (R = )(x))].

It is known that || - || z» is essentially independent of the choice of .
[See C. Fefferman-Stein [14].]

DErINITION 1.B. For g > 0 and for a measurable function f(x) let

M,s(x) = swp [l av/in)

I3x

where I is taken over all cubes containing x.

THEOREM 2. If (1.1) holds, then there exist p, € (0,1) and C,; € R,
depending only on 0,,. ..,6,,, such that

(Kn)" (x) = Cp3M, (M, o(|KA])) (x)
for any x € R" and any h € L*(R").

REMARK 5. For & € L?(R") and h € L%(R",C™), let

htt(x) = sup (k= P,)(2)],
zER":lx’—z|<t
W' (x)= sup |(h=*P)(z),

>0,
ZER": |x—z<t
where P(x) is the Poisson kernel, that is,

(n+1)/2

Px) =,/ (I +2) "2 e, = T((n + 1) /2) /072,

Then in the above inequality, we can replace (K4) ™ (x) by (KA)™* " (x).

COROLLARY 1. If (1.1) holds and if max(1/2, p,) <p < 1, then

(1.7) bl = 2 |K |, < ¢ slAllme
j=1
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for any h € L*(R") and

m ) P 1/p
18 adile=3 (/) jim, &0« 2)o)f )
= Cl.5”h”H"

for any h € HP(R"), where ¢, , and c, 5 are positive constants depending only
oné,...,0, andp.

REMARK 6. For h € H?(R"), p < 1, we define & * P, by (h(£)P(£)),
which is known to belong to L'(R") N L¥(R") N C(R"). It is also known
that for any 2 € HP(R"), lim,_, , , K;(h = P,)(x) exists almost everywhere.
[See Stein [29] p. 201.]

REMARK 7. Inequality (1.7) with p =1 holds for any 4 € &'(R"),
whose Fourier transform is an integrable function on some neighborhood
of the origin, if we define K4 = (0/; ) in the sense of distributions and if
we define

I Al = + 0

for the distribution K ;4 that does not belong to L'(R™). [In Corollary 1 of
[32], we showed the above. But the statement in [32] was somewhat
ambiguous.]

As another application of Theorem 2, we get the following extension
of the results of Csereteli, Gundy and Varopoulos. [See [12], [18] and [34].]

COROLLARY 2. Let

(1.9) 2 laj(g) - 0](_§)| #0 forany§ €S, ;.
j=1

Let h be a finite complex measure on R" and let dh = fdx + ds, where
f € L'(R") and s is singular. Then

lx“f‘f}f}‘ {x ER" ng ‘,ETOKJ(]’ * P,)(x)' = )\} = Cygllsll,
where C| 4 is a positive constant depending only on 0,,...,6, and where ||s||,,

is the total variation of s on R".
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REMARK 8. It is known that for any finite measure A
Jim K,(h+ P)(x)

exists almost everywhere.
Proofs of Theorem 2 and corollaries are given in §2.

NOTATION. A dyadic cube is a cube of the form

==

[k27%, (k, + 1)274],

Jj=1

where k,...,k, and k are integers. For a cube 7, x,, /(1) and Q(/) denote
the center of I, the side length of 7 and

{(x,1) eR":xel,t€(0,/(1))},

respectively. For a > 0, al denotes a cube concentric with / and with
l(al) = al(I). Z,,,, denotes {v = (v,,...,2,) € C™ Z7_ |y, = 1}. |»|
denotes (27, |»;")!/?. For v € C"\{0}, U(») denotes v/|v|. [For the
sake of convenience, let U(0) = (1,0,...,0).] For » and p € C™, (v, p)
denotes Z7_ (Re »;Re u; + Im »;Im p)), i.e., the inner product in R*”. For
0 € C*(S,_,) and £ € R"\{0}, 6({) denotes 6(&/|&]). The letter C

denotes various positive constants depending only on 6,,...,0,,.

Acknowledgements. The author would like to express his deep grati-
tude to Professor P. W. Jones and the Department of Mathematics at the
University of Chicago for their kindness during the academic year 1981-
1982.

2. Proofs of Theorem 2 and Corollaries.

LEMMA 2.A. [See Coifman-Rochberg [9].] If h(x) Z 0 and if M |h(x) Z
+ oo, then

[[log Mlh”BLO =G,

Proof of Theorem 2. By dilation and translation the proof of Theorem
2 can be reduced to the inequality

(2.1) lth(x)xl/(x) dx

< C,3M, (M, ,,([KA[))(0).
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Put ¢ = ¢,/2C, . Take any v € Z,, _,. Applying Theorem 1 to f(x)
= Y(x)v and w(x) = M, ,(|KA|)(x)"*, we get g(x) such that

K*- (yv—g) =0
and such that

(0] = €, oK) [ M AKHDO) ")

X (1)

< CM, ,,([KA|)(x) "M, ,,(JKA])(0)"(1 +|x|) """
Thus

KRG ax v = [IK()l ()]s

:‘th(x) . g(x) dx

< M, ,((KH)(O) [ M, (KA (x)' (1 +]x) " dx

< CM,_ (M, ((KH))(0).

[In the first and the second formulae of the last string of inequalities, -
denotes the inner product in C™.] This concludes the proof of (2.1).
Remark 5 follows from the same argument. O

Proof of Corollary 1. Let h € L? and max(1/2, p,) <p < 1. From
Theorem 2 and the Hardy-Littlewood maximal theorem, it follows that
(22) Cp“Kh“Hp S“Kh”LP S”Kh”yp,
where

KAl =[|(KR) " -

From the boundedness of singular integral operators on H?, it follows
that

(2.3) KAl < c, ] o

On the other hand, by (1.1) there exist multipliers homogeneous of degree
zero

@](ﬁ),. .. ’®m(€) € Coo(Sn—-l)
such that

I E

6,(£)8,(£)=1 ons, .

Jj=1
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So

(24) Nrlae = Z(©,(&)(KA)V ()

Thus, from (2.2)-(2.4), we get (1.7).
Let h € H?. Applying (1.7) to & = P,, we get

= C,,E ”th”m = cp||KhHHp.

(2.5) crallh = Pl < 2 |k, (h+P,) HL,, =< ¢y slla * Pl

It is known that
h*P —-h inH? ast- +0
and that

sup]K (h*P)(x)| € Lr.
Thus by the Lebesgue dominated convergence theorem, we get
) p 1/p
I8, < 2], = (] tim K e 2 ) as e~ 0.
Therefore, letting ¢ —» +0 in (2.5), we get (1.8). [

LemMMA 2.1. Let u(x,t) be a nonnegative function defined on R" X
[0, + o0) and continuous on R" X (0, + o0). Let ¢ > 1. If

(2.6) u(x,0) = tl:'rilou(x, t) a.e.x
and if
(2.7) {x € R": supu(x,t) > 7\}‘5 A9
=0
for any A > 0, then
(2.8) tim M(u(-, 1))(x) = M(u(-,0))(x) a.e.x.

Proof. Take any € > 0. By (2.6) and (2.7) there exists ¢, > 0 such that
| G|< &, where

G= {x eR": sup |u(x,t) —u(x,0)|> 8}-
t€[0, 0]
Since

f supu(x,t)dx < Ce' ~1/4
G

=0
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by (2.7), there exists a measurable set £ such that

|E|< Ce—1/9/2,
|M\(u(-, 1)) (x) — M(u(-,0))(x)] < Ce""V/D/2 + ¢

for any x € E€ and any ¢ € [0, ¢,]. Since ¢ > 0 is arbitrary, we get (2.8). (I

Proof of Corollary 2. Put §, =1 and K, = the identity operator. By
the usual argument about maximal singular integral operators and the
Hardy-Littlewood maximal theorem, we get
= ClAllm

A {x ER" § sup |K;(h * P,)(x)|> )\}

j=0 >0

for any A > 0 and

(2.9) limsupA < Cl|s||r-

A—+o0

{x €R": 3 sup |K;(h*P)(x)|> )\}
j=() >0

It is also known that
5 (x) = lim K(h+B)(x)

exists almost everywhere and that k,(x) = f(x) a.e. By (2.9)

{xER M,/Z(Z |x|) )>)\}

(2.10)  limsupA < Cl|s||m-

A—+o0

Applying Lemma 2.1 to

1/2
|K(h*P)(x)|) if 1 >0,

u(x,t)=4{ " o
(éol'fj(x)l) ' itr=0,

and g = 2, we get
Ml/z(éo lKj(h*P,)l)(x)—aMl/z(g |x|) x) ae.x ast- +0.

Similarly

]| [SESTA PO Ao 8

a.e.x ast— +0.

(2.11) Mpo(Ml/z(
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Since 0,,...,0, satisfy (1.9), 6,,...,0,, satisfy (1.1). By Remark 5,

*¥m

(h*P)""(x) = (Ko(h*P))" " (x)
SCMp( 1/2(§ ’ h*P I))( )

for any ¢ > 0. Letting r » +0, we get

(2.12) B (x) = CM, (M, (D x)l))(x) ae. x
form (2.11).
On the other hand, [18] and [34] showed
(2.13) 1}\1m1nf}\|{x ER" A (x) >N} = ¢|s|m,
-+

where ¢ > 0 depends only on the dimension.Thus, for a sufficient large A,
we have

Isllsr = CN[{x € R M, (M, (S x [))(x) > A)|

=CNP Ml/Z(E i) (x)" dx
{M, LGl N(x)>A/2}

= N (M, (S ) (x) = a2} sl

by (2.10). Therefore
>" 1/7 2]"])(36 >>\ )>C“S“M asA - +oo.
Repeating the same argument, we get

DS

=0

=C|s|m asA - +oo.

Since A{| ky(x)|> A} |= 0 as A = + oo, we get Corollary 2. O

3. Jones’s formula. In this section, we explain the relation between
Theorem 1 and Jones’s recent work [25].

DEFINITION 3.A. A complex measure on the upper half-plane R% =
{(x,1): x € R, t >0} is called a Carleson measure if

sup lWl(Q(D))/Hl=]lull. < + o0,

where || is the total variation of u, I is taken over all intervals.
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Suppose that ||u||. = 1. It has been shown by Carleson [3] [see also
Hormander [19]] that there exists F € L®(R) such that

(3.1) IF =< C
and such that

(3.2) J1)F(x) dx = [[ f(x, 1) du(x, 1)
RY
for any f € LY(R) with supp f C [0, + o0), where
1) = [ BO)A(x = y) dy,
R

P(y) =1t/ (m(y* +1?)).

Recently, Jones [25] gave an explicit formula for the construction of F.

DEFINITION 3.B. [Jones [25].] For a measure p on R? let

I
63 Ik x5 = T TF)
X LI
cxp(0<1mf6£1m§x_n T 7 |#](n)

where i = (—1)'/2, and ¢ and 7 are complex numbers. [We identify n with
(Ren, Imn) € R%]

THEOREM 3.A. [Jones [25].] Let ||u||, = 1. Set

F(x) = [[ (0, %, 8) dn(s).

Then,
IF|l=<C
and (3.2) holds.

Our Theorem 1 can be regarded as a generalization of the formula
(3.3). In Jones’s argument, we can replace the formula (3.3) by Theorem 1.

In the following, we sketch it.
Let H be the Hilbert transform, that is

Hf = (—i(sign £) /(£))"
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Fort > 0 set
— —3/2
u(x) = [[ 571 +x=yl/s) P dlnl(p,5).
0<s=t,
YER

LEMMA 3.A. [See [9] and [22].] Let ||p||, < 1. Then,

”ut”BLO =G,

and
fu,dx = G, ||
I

for any cube I with I(I) = t.
Set e = ¢,/ C; ;. Then e *“(*) satisfies (1.4) and

fy+’e~‘“'(") dx/t=C

y—t

for any y € R. So, by applying Theorem 1 and Remark 3 to K, = the
identity operator and K, = — H and by using dilation and translation, for
each (y,t) € R% we get real-valued functions 81 yn(¥) and g, ,(x)
such that

P(y—x)— gl,(y,t)(x) - Hg2,(y,t)(x) =0,
(

—eu,(x)p— —3/2 .
]gj,(y’,)(x)|s Ce™ ™1 +|y — x| /1) / j=12).
Set
F(x) = [[ 816.0(x) + i820,.0(x) du(3.1).
R:
Then

F(x)| = C [[ e (1 4|y = x|/0) 7 dlp| (3, 1)
R

‘"C//exp(—e ff (1+]x—ol/s) 3/2d],ul(v,s))

O<s<t

W1+ = xl/0) " dlp) (p, 1)

- exp(—e ff S*‘(1+|x'0|/s)mdl#l(v,s)”

t=+o0
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and

J1FG) = [[[ dn(3,0) [(81.0(5) + i825.0(3)) ()

= [y, 0) [BLy = x)f(x) dx = [[ 17,1 du(y )

for any f € L'(R) with supp f C [0, + ).
4. Weighted BMO. In the following, we assume (1.4).

DEFINITION 4.1. For a measurable set E let
m,(E) :fw(x) dx
E
and

w(E) = sup w(x).

x€FE

DEFINITION 4.2. For f(x) € L} (R",C™), let

loc
I llsvow = sup [|£(x) = £,]dx/m (1),
rYr
where the supremum is taken over all cubes in R” and f, = [, fdx/|I|.
For the scalar-valued case, this definition is due to Muckenhoupt-
Wheeden [26]-[27].

We prepare some easy lemmas.

LEMMA 4.A. If|ff lgpmo w = 1, then for any cube I and any A > 0,
[{x € It [f(x) — £/ > N} | /] = €, e /D,

LEMMA 4.B. For any cube I and any A > 0
[{x € I: —logw(x) > —logw(I) + A}|/|I| < C, e 2"/,
These follow from [21], (1.4) and [9].

LEMMA 4.1. For any cubes I and J and for any t > 0,

(4.1) [{x € I: w(x) < w(1)}| /|| < C, 152/,
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(4.2) /w(z) —w(x)dx/m(I) < Ccy i.e.(1+ Ceo)m,(I)=w(I)|I],
I
(4.3) ifJ D1, then w(J)/w(I)=< Cc(J|/|I])*,

(4.4) if|[1|=|J|, then w(J)/w(I)=<C(1 +|x; — le/l(l))con/CA.z.

LemMA 4.2.

[wllemo w = Ceq.

The above two lemmas are easy consequences of Lemma 4.B.

DEFINITION 4.3. For 0 <e < 1, let

If lipe = sup [f(x) = £(»)l/Ix = ¥,

X,y xFy
o |l 9
I w2 = 3 51
J=1 J iLip1

LEMMA 43. If 1 = e = cyn/C,, and if suppf C I(0, t), then
If flemow = Ce¥[lf [lLipe/w(1(0, 7)).

Proof. We may assume ¢ = 1. Take any cube / in R”. If /(1) > 1 and
I N I0,1) # &, then

JIHCe) = tldx/m, (1) < Clf 1/ m, (1) < CIE [uipe/w(1(0. ).
Ifi(I)=1and I N I(0,1) # &, then
JIHGe) = td/m, (1) = CUDYE fuipe/w(T) = CIE fupe/w(£(0, 1))
by (4.3). O

MAIN LEMMA. Let ¢, > 0 be small enough depending only on ,,...,0,.
Let t > 0. Suppose that (1.4),

(4.5) If Mo w < ¢

and

(4.6) suppf C 1(0, t)
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hold. Then there exists g(x) such that

(4.7) lg(x)| = w(x)(1 +|x|/2) """
and
(4.8) f-ges.

We prove this Main Lemma in §9.

5. Proof of Theorem 1. Let i(t) € C*([0, + o)) be such that
(5.1) h(t) =0, supph C[1/4,1],
and

§ h(t)=1 on[l,+o0),
k=1

where
(5.2) R (1) =h@2 %) fork=1,2,3,....
Set
(5.3) ho(1) = 1= 3 hy(0).
Then
() = 3 hy(icx)
and

1 (1XDEC) 3o = C2¥AE lluipr/w(1(0,2%)) < €274 /w(1(0, 1))

by (1.2), (1.3) and Lemma 4.3.
Applying the Main Lemma in §4 to each 4, f, we get g, such that

hkf - gk S S,
l8(x)] = ¢ 'C27 K D (x)(1 + 27Hx]) "2 /w(1(0, 1)).
Set
e ¢]
g(x) = 2 gi(x).
k=0
Then (1.5) is clear and (1.6) follows from

3 Ino)|= 65 OS24 (14 274 (10,

< c5'Cw(x)(1 +|x|) " ? /w(1(0,1)). O
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6. The property of the space S. The hard part in our argument is
the problem, “What property does the space S have?” Since 6,,...,0,
satisfy (1.1), 8,,...,8, satisfy (1.1). Then by Lemma 2.2 of [32] there exist
functions

0,(¢,7) €C(S,1 X Zapn)s  1=j=m,

such that

Re ﬁ 17j(®j(£, v) + ®j(-§, v)) =0,
Im ﬁ 7.(8,(¢,») — ©,(—¢,v)) =0.

This fact tells us that for any » € ,,,_, the set of real-valued functions

{(p(x),»):p € S}
1s a sufficiently large class of functions. More precisely, we obtain

LEMMA 6.1. Let v € Z,,,_|. Let I be a cube. Let b(x) be a real-valued
function such that

(6.1) supp b C 31,

(6.2) fb(x) dx = 0,

(6.3) ellp> =< (1),

Then there exists a C™-valued function p(x) such that
(64) pes,

(6.5) /p(x) dx =0,
(6.6) (p(x),»)=b(x),
6.7 Ip(x)=c(l+lx—x)/(n)"", "

(6.8) <sc(n)'(1+x—x)/(D)"%  j=1,...n.

d
2 P(*)
J
Proof. Set

pi(x) = — (0,(£&, v)(Re(K* - (b9))) (£)) (x)
—i(0,(£, iv)(Im(K* - (b2)))(£)) (%)
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and
p(x) = (B1(x)s- - 2Bn(x))-
By the properties of {0} and by the same argument as in Lemma 2.3 of

[32],

K* p=—K*- (br), /p(x)dxzo, (p(x), v)=0.

=
Il

Set
p(x) = p(x) + b(x)v.

Then (6.4)—-(6.6) hold. Since p,(x) can be written in the form of a linear
combination of b and its images by Calderon-Zygmund singular integral
operators with smooth kernels [see Stein [29] p. 75], (6.7)—-(6.8) follow
from (6.1)-(6.3). See Lemma 2.3 of [32] for details. ]

LEMMA 6.2. The function p(x) of Lemma 6.1 can be decomposed as
follows:

p(x) = 2 2“j(n+1)Bl(x)’ supij c 21,
j=4

1Bl = €/ (271(1)),

[B(x)ax =0,
<Bj(x),v>EO ifj >4, (B(x),v)=b(x).

Proof. Let h,(x) be as in (5.2)~(5.3). Then
pCx) = [ho(2 4spCe) + Al | S AL b/ [ dy}
# 3 ) ) S mloler)avy o, (o) 4

Fh D[ 3 mp() dv i) d

k=;+1

gives the desired decomposition. See Lemma 3.5 of [32] for details. a
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7. Weighted Carleson measures. We continue to assume (1.4).

DEFINITION 7.1. For a measure p defined on R, let

Il = sup |ul(Q(1))/m (1),

where [ is taken over all cubes in R".
We prepare some easy lemmas.

LeMMA 7.1. If ||ull..,, = 1, then for any cube I

Jf waCe, )" dipl(x, 1) = cl.

o)

Proof. [For the definition of w(I(x, t)) recall Definition 4.1.] We may
assume that [ is a closed dyadic cube. Let {1, }72, be the maximal closed
dyadic subcubes of I such that

w(I, ) =27%w(I).
By (4.1)
2 |Ik,j| =< C, 27 k4|1,
J

So

[ WG 0) = S8 [f 2 w(n) d

o) k=0 J o, )

cw(I)~ %22k+'mw(1k,j)

< Cw(I) ' T2 T2 kw(1)|1, |
k j

= CYC, 27 ko1 < (1. O
k

DEFINITION 7.2. For nonnegative real numbers {A;},;, where 7 is taken
over all dyadic cubes, set

'Tk(x) = 2 AI(I + 2k|x - xll)—n_],
I I(1)=2"*
e(x) = 2 (%)jﬂk—,(x)-

j=0



236 AKIHITO UCHIYAMA

LEmMA 7.2.
(7.1) A= (1424% — x|)" m(x) ifI(I) =27%,
(7.2) ne(x) = (1+ 25 = y)" ', (»),
(7.3) ec(x) = (14 24x = y))" e (3).

Since this is easy, we omit the proof.

LEMMA 7.3. Let ¢, > 0 be small enough in (1.4). Let

(74) ” EAZIIIIS(J(,.[(I))|ICVW2 =1
Then
(7.5) n(x) = g(x) = Ow(I(x,27%)),
+ o0
(7.6) S e(x)'8-rs =C,
k=—o00 cw?

where §, ,, is the Dirac measure concentrated at the point (x, t) € R and
d,—, denotes the measure induced from n-dimensional Lebesgue measure on
the hyperplane t = a in R"'.

Proof. Since A ; < Cw(J),

n(x)=C 3 (1+2kdist(x, 7)) " 'w(J)
Jol()y=2"*

<CY () " (I(x,27%)) by (4.4)
< Cw(I(x,27%)).
So,

8

g.(x) < C, O(—g—)jw(l(x,z_k“))

Il

IA

ngo(%)IZJ“OCW(I(X,Z“")) by (4.3)

= Ccw(I(x,27%)).

Condition (7.6) follows from almost the same argument as Lemma 3.2
of [32] with slight additional estimates about the order of growth of w as
in the proof of (7.5). We omit the proof. O
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8. The decomposition of weighted BMO functions. We continue to
assume (1.4).

Following Chang-R. Fefferman [7], we decompose a weighted BMO
function f(x) and the weight function w(x).

LeEMMA 8.1. Suppose that suppf C 1(0, 1) and |if l|gmo = 1. Then there
exist C™-valued functions {b,(x)}; and nonnegative real numbers {\,},,
where [ is taken over all dyadic cubes in R", such that

(8.1) f=2Ab,

(8.2) A, =0 if 3IIn 1(0,1) = @,
(8.3) suppb, C 31,

(8.4) f b, dx = 0,

(8.5) b/l = CI(T) 2,

(8.6) ;>\2,|1|8(xh,(,» » =cC.

Proof. We use the idea of Chang-R. Fefferman [7]. Take a real-valued
function ¢(x) € %(R") such that

suppp C {x ER": |x|< 1},
+ o0
f ¢ (&)’ r'dt=1 forany¢ € R"\{0}.
0

Set

2

l/
~1/2 2 _
A=) /(ff |, « £(y)|"¢" " dt dy
T(I)

and

b (x) = [f 9.(x = )@ * D) dr dy/n,,
T(I)

where we define 0/0 = 0 and
T(I)={(x,t):xel,t € (I(1)/2,1(1))}.

Then (8.2) is clear. Conditions (8.3)—(8.5) follow from the same argument
as in Lemma 3.1 and Remark 3.1 of [32]. See [32] for details.



238 AKIHITO UCHIYAMA

Since
N= ([ ot deay
ICJ o))
= ¢ [[1f(x) = 1] dx = ClIw()’
3J
for any dyadic cube J by Lemma 4.A, (8.6) holds. O

LEMMA 8.2. Let k > 0. In Lemma 8.1 set

fi(x) = 2 Aby(x).

I (D=2"k
Then
(8.7) suppf, C 1(0,3),

(8.8) [f(x) —f,(y)|= CW(I(X> 2—k))2k|x -
provided |x — y| <27,

Proof. Set

® = (f]wcﬁ(zg)zt“dt)v

e—>+0ind’

1
= lim (60 ~f @ * @t ! dt),
£
where §, is the dirac measure concentrated at the origin. Since
f, =1x2k"®(2% ),

(8.7) is clear. (8.8) follows from ||f ||gpo,» = 1 and from

f.(x)—f(y) = ff(z)zk"(®(2"(x —z)) = ®(2%(y — 2))) dz. O

From Lemmas 8.1-8.2 we get

LemMa 8.3. Let |if|lgpmow = ¢o- Let suppf C 1(0,1). Let M be a
positive integer. Then there exist £,,(x), {b;(X)}. ayadic and nonnegative real
numbers {A; . ayadic SUCh that

(8.9) =3\, + 1y,
1
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(8.10) A ;=0 if3INI0,1)= B orifl(I)=2"M,
fI
(8.3)—(8.5),
(8.6) zxzf‘lllla(x,,l(l)) = ch‘,
I c,w?
(8.7) suppf,, C 1(0, 3),

(8:8) £ (x) = fu ()| = Ceow(1(x,277))2%]x — y|
provided |x — y|<27M,
LEMMA 8.4. Let c, > 0 be small enough in (1.4). Let M be a positive

integer. Then there exist real-valued functions wy(x), {b/(X)}. ayazic and
nonnegative real numbers {\, 1};. ayagic SUch that

(8.11) w= DN, b+ Wy,

(8.12) Aw‘,zlo if (1)=27",
(8.13) supp b, C 31,

(8.14) fb,dx =0,

(8.15) 16/lLip2 = ci(1)”?,

(8.16) ;xzw,,ma(xh,(,» < Cct,
(8.17) wi(x) = 3w(I(x,7i‘_k))/4,

where k = M and
Wk(x) = 2 }\w,lbl(x) + WM(x)-

I:27M>[In=27*

Proof. Take the same ¢(x) as in the proof of Lemma 8.1. If /(]) <
27 M then set

1,2
~1,2 2
Mo =l f o w0 e
()

and

bi(x) = [[ o(x =)@« w)(p)e dedy/n, ;.
T(I)
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If /(1) =27, then set A, , = 0 and b,(x) = 0. Set
wy(x) = w(x) — 2 Ay rbr(x).

I (H<2™™

Then (8.11)—(8.12) are clear. Conditions (8.13)—(8.16) follow from Lemma
4.2 and the same argument as in the proof of Lemma 8.1.
Let k = M. Take the same @ as in the proof of Lemma 8.2. Then

w, = w* 2k"®(2%).
PutJ = I(x,27%). Since

() = )| =| () = ()20 (245 =)

=Cf () = w(y)ldy/1J| = Ceow(J)
2J
by (4.2)—(4.3), we get (8.17). O

LEMMA 8.5. Let j be a positive integer. Assume that {b;(X)};. 4yazic and
{Al}l: dyadic SdtiSfy (84)9 (86)a

(8.18) suppb, C 2’1
and
(8.19) byl = (220(1)) .
Let a > 0. Set
fx)= 2 Ab(x).
I [(DH)<a
Then
(8.20) If llBMow = C277,

where C is independent of a.

Proof. Take any cube J (not necessarily dyadic). Let 2% < /(J) <
27K+ Set

f= 2 Asb,
I:i(I)y=2""k*1
and

f= > Ab,.

I [(I)<2777k+L
IN3J+# @
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Then
(8.21) f=f+f onJ.

Note that
jt+k—1

822) Ji(x)—f»)= T X Ab(x) = by(y)]

h=—o |(1)=2""
=2 2N 27 x = ylxay(x)
< 24x — Y| 2 BN 27T g0, (x)
< 2x — y|2/"w(I(x,27%))

provided | x — y|< 27X, By (8.4), (8.6), (8.18), (8.19) and by Lemma 3.3 of
[32] we get

1,2
(8.23) = C2’”( 2 NI I)
I: [(Ty<2~i=k+1,
IN3J# @
< c27"w(J)J|"2.
Thus by (8.21)~(8.23)
S8 = 1xla/m (1)
- 2 1/2
< c( [l = i) axil)  my=can o

9. Proof of the Main Lemma in §4. We may assume ¢ = 1 in (4.6)
and
9.1) w(1(0,1)) = 1.

In this section C, is a large constant depending only on 6,,...,6,,. Let M
be a large integer depending only on 6,,...,0, and Cy,. Let ¢, >0 be
small enough depending only on 6,,...,0,,, Cy, and M. In particular

(9.2) C, 27 ™<1 and CP2M+d¢ <1,

First, we give a rough explanation of the procedure to construct g(x).
We construct a sequence {g, }¥- such that

() | gu(x)|= Wk(x)XI(oA)(x),
(ii) f, — g, + (small errors) € S.
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[For the definitions of w, and f,, recall Lemmas 8.2 and 8.4.] Then by
letting k — + oo, we get g such that

|g(x)| = W(x)XI(OA)(x)’
f — g + (small errors) € S.

Next we estimate the weighted BMO norms of the error terms and repeat
the same procedure for them.

In order to meet the condition (i), we must adjust the length of the
vector-valued function g,. We must do this adjustment under the restric-
tion (ii). Here we use the property of the space S that was proved in
Lemma 6.1.

Now we go into details.

By Lemmas 8.3-8.4, we get

£ (x), {bl(x)}lzdyadic and {}\f,l}l:dyadic
WM(X), {bl(x)}lzdyadic and {}\w,l}lzdyadic

such that (8.9)~(8.10), (8.3)(8.5), (8.6)’~(8.8)’ and (8.11)~(8.17) hold.

Set
(9.4) A =cow(1) if I(1)=27M,
(9.5) A=0 if l(I)>2‘M.
LEMMA 9.1.

= Cc.
2

c,w

EAZIIIIS(X,,I(I))
1

This is clear from (8.6)" and (8.16).
From these {A,},, we define 9,(x) and ¢, (x) by Definition 7.2. Then
by Lemmas 9.1 and 7.3 we get

LEMMA 9.2. If x € I and I(1) = 27, then
CA,=n(x) <glx)=<Ccow(I).

LEMMA 9.3.

(o]

2 ek(x)zst:f"

k=—o0

< Cc}.

c,w?
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We inductively construct
{@(x)}=pey and {Bl,j(x)}lz dyadic, [(1)<2~M; j=456....
with the following properties (C.1)—(C.8). Put

M—1 '
(9:6)  p(x)= 2 270708, (x),

j=4
o0

9.7) Pro (x) = 2 2_1("+1)B ( ),
(9.8)  gu(x) = fy(x),
k k
(9.9)  gulx) =1, (x)+ 2 E }\Ipl,l(x) - 2 (%)

h=M+1 . ()=2"" h=M+1

fork=M+ 1, M+2,....

(C.1)  suppf, s C2 1, ”ﬁl j”Llpl =Gy, 27I(1) fﬁl,dx =
(C2) Br(x)=0 if IN 1(0,4) = @,
(C.3) Pyt P2 ES,
(C4)  loulx)] = Cree(x)2M0 2 /w(1(x,274)),
(C.5)  |@u(x) — @)= Cheg2M" Dy (x)24x — |
provided |x — y| < 27%,
(C.6) suppe, Csuppg, CI{0,3+ 27"+ 2724 ... 427KkM)
(C.7)  [g(x)[=wi(x),
(C8)  lgul(x) — gu(»)|= Gy re(x)2x — y|  provided [x — y|<27%.

The construction of the above functions is explained at the end of this
section. We accept this construction temporarily and prove the Main
Lemma. By the same argument as [32], we can show that § = lim,_ ., g,
exists in L2, By (C.6)—(C.7), we get

(9.10) suppg C 1(0,4)
and

(9.11) lg(x)] = w(x).
By (9.9)

912 g0 =10+ T Apa)- 3 o).

I i(I)y<2™™ h=M+1
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Set
(9-13) pz(x) = 2 Alpl,z(x)7
I (n<2=M
(9.14) o(x)= 2 @ux).
h=M+1
LEMMA 9.4.

f—(@E+p,+to)eES.

Proof. Since

g=1+ 2 )\I(Pl,l + P/,z) -9

I (Iy<2™™
by (9.12), the lemma follows from (C.3). ]
LEMMA 9.5.
(9.15) supp ¢ C 1(0,4),
(9.16) lllsmow = CCs1c52M 2,

Proof. Condition (9.15) is clear from (C.6). Take any I (not neces-
sarily dyadic). Then

2 lodx)ldx/m, (1)

Tr.2=k<y(n
= C92.12M("+2)f 2 ek(x)zw(l(x, z_k))hl dx/mw(I)
Tp. 2-*<ir)
by (C.4)
— -2
= G2 [ e (x)wl(1(x,274) 7 /I

< CC3 Mo

by Lemmas 9.3 and 7.1. On the other hand,

2 () - <Pk()’))l/w(1) < CCj cq2Mn*2)
k:27k=1(D)
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if x, y € I by (C.5). Thus

J

2 ox)— T eux))dx/m,(I)<CCf 22+, O

k=M+1 27k=1(1)
Set
f2 = q)a
w .
f,= 2 27D E }\lﬁl,j9
J=M+1 I i(I)<2™/
fk = E 2“/‘("+1)A1B1’j’ k 2 4.
J I I(I)y=2k"173,
(n<2—M
LEMMA 9.6.
o]
2 f,=9+p.
k=2

LeEMMA 9.7. For k = 3,

(9.17) suppf, C I(0,2%),
(9.18) /fk dx = 0,
(9.19) Ifillsmo w = CCy1cg2~ M27HFD,

Proof. We show only (9.19). If k = 4, then

e o]

”fk”BMOw = 2 2 2_j(n+l)}\l||BI,j”BMow

JEM+k=2 1. [(1)=2k"73

<3 27t Ce, < T2+ Ce 20 Hm
Jj I J

< Ccy2 M2 K+,
If £k = 3, then

[o 0]
”f3”BM0w= 2 27/
j=M+1

2 ABy

I (=27 BMO w

(o]
< ¥ 27Ccy=Ccy2™™ byLemmas85and9.1. O
J=M+1
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From Lemmas 9.4-9.7, we obtain the following.

LEMMA 9.8. Assume the hypothesis of the Main Lemma. Then there
exist §(x) and {f(x)}7Z, such that

o0

(9.20) f— (g + .zzfj) €S,

j:
(9.21) suppf, C 1(0,2't),
(9.22) I |l gpio e = Co@( M, cg)277C*D,
(9.23) |&(x)| = w(x),
(9.24) suppg C 1(0,4¢7),
where

a(M, c;) = C(Cy 27M + Cif ¢, 2M*D),

Since we have assumed ¢ = 1 at the beginning of this section, we
showed the above only for the case t = 1. But the general case follows
easily from the case ¢t = 1.

Proof of the Main Lemma. We continue to assume ¢ = 1. Take M and
¢, so that

(9.25) 1+ a(M,c,) <24,

Applying Lemma 9.8 to f, we obtain g and {f;};2, with (9.20)-(9.24).
Next, applying Lemma 9.8 to each f;, we obtain g, and {f;,}7-,.
Repeating this process, we obtain {g; ,;} and {f; } such that

o0
fjl’~~-:ji - (g]hzlx + k§2f.’l’:/nk E S’

suppf,  , C 1(0,29F k),

i+1y—(j+ -+ +k)(n+1)
”fjl,md}sk”BMow = Cott 27 ‘ ’

8, (x)] = @270t Dy (),

1

Suppgj.,...,/, C 1(0,4 - 21t Hi),

Set

gi:g+2 2 8.

s=1j,..., Js
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Then
f— (g‘-i— | 2 fj.,...,im) € S.
jl """ Ji+1
Set
g= lim g'.
Since 2,  f, . tendsto0in L? as i > oo, g satisfies (4.8). On the
other hand,
g=g+ X > 2 8.
k=1s:1S5<k/2 ji,....jo i+ -+ +i=k
=g+ X (9.26),
k=1
and

supp(9.26), C 1(0,4 - 2%),

026) ) =274 Dw(x) 3 w(KFSTT) samkenan(x)
s 1<s=k/2 s—1

by (9.25). Thus, (4.7) holds. 0

Construction of {B; ;} and {@,}.
We construct these functions inductively. We define g,, by (9.8). Then

(9.27) supp g, C 1(0,3)
by (8.7)'. Since
wy(x) = C27 oMy (1(0, 1))
by (4.3) and (8.17) and since
[f2(x)| < Ccy M,

we get

(9.28) |8 (x)] = Wy (x)

if ¢, > 0 is small enough depending on M. By (8.8)" and (9.4)
(9.29) |81 (%) — g (¥)| = Cep(x)2Y|x =yl

provided |x — y|< 2~ M. [Recall that ¢(x) is defined by Definition 7.2
from {A,} defined by (9.3)-(9.5).]
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Let k > M. Suppose that
{BI,/}2—M>1(1)>2—k,j=4,5,6,... and  {@,}h=m+1, k-1
have been constructed and that g, _, defined by (9.8)—(9.9) satisfies
(C.6) suppg,_, CI(0,3+27'+2724 ... 27 G71=M)
(CTY  lgimi(X) = weei(x),
(C8Y  lge—i(x) = 8ri(P)I= Co e i(x)27|x — y|
provided |x — y| <27%*1
Notice that by (9.27)-(9.29) g,, satisfies the above (C.6)-(C.8).

LEMMA 9.9. If | x — y|< 2M*, then
lgk—l(x) - gk—]()’)| = C9.12M(n+l)£k—1(x)2k|x —yl.

This follows from (C.8)" and (7.3).
Set

(9.30) Wk(x)zlgk—x(x)|+ 2 >‘w,lbl(x)
1:(9.31)

where 2 is taken over all dyadic cubes I such that

(1) = 27k and
INI0,3+ 27 42724 .- 427 KT17M) 2 g5

[Recall that {b,} and {b,} are defined by Lemmas 8.3-8.4.]

(9.31)

LEMMA 9.10. If | x — y|< 27K, then

Iwk(x) - Wk()’)l = CC9.,ek(x)2"|x _)’|~

This follows from (C.8)’, the first two inequalities in Lemma 9.2 and
(8.13)—(8.15).
From now we explain how to construct

{Bl,j}1(1)=2—",j=4,5,6,... and @,
For each I with (9.31) we apply Lemma 6.1 to
v = Ulge—i(x,)),
b(x) = Nw,lbl(x) - (Nf,lbl(x), V>,
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where
Nw,l = }\w,l/}\l’
)\’f’, = ?\f‘,/)\,.

[For the sake of convenience, we define U(0) = (1,0,...,0) and 0/0 = 0.]
Then we get p,(x) satisfying (6.4)—(6.5), (6.7)—(6.8) and

(6.6) <P1(x)a U(gk—l(xl))> = }\/w,lbl(x) - <)\},,b,(x), U(gk—l(xl))>-

Applying Lemma 6.2 to p,(x), we get {B; ;}72,. Define p; ,(x) and p;,(x)
by (9.6)—(9.7). Then (C.1)-(C.3) are clear.

Set
(9-32) ‘h(x) = p[,l(x) + }\},lbl(x)»
(9.33) h(x)= X Aq,(x),
I: (9.31)
(9.34) k(x) = g,_,(x) + h(x).
Then

(9.35) suppq; C 271,
(9.36)  |q,(x)|=cC(1+24x—x,|)"",
(937)  la,(x) = a;(»)|= C2x = yl(1 + 24x — x) "
provided that |x — y|<27%,

039 Ix)l= 5 Mal=Cnx) by (930),

(9.39)  [h(x) = h(y)|= ZA/lq;(x) = q;(»)]= Cmy(x)2%]x — y|
provided |x — y| <2 % by (9.37),
(9.40) suppk C 1(0,3 + 271 + 272 4 ... 427K+ M)
by (C.6)" and (9.35),
(941)  [K(x) — k()| =lgsr(x) — 2o o]+ h(x) = B(y)|
= (Coe-1(x)/2 + Cmi(x))24x — )|
<3Gy, (x)2"x — y|
provided |x — y| <27 * by (C.8)’ and (9.39)

since C, , is large enough.
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Set
(9.42) k(x) = (k(x), Ulg,—1(x))) Ulgy—1(x))
and
(943)  ky(x) = k(x) — k(x)
= h(x) = (h(x), U(ge—1(x))) Uge-(x))-
Then k, and k, are orthogonal. Set
(9.44) v(x) = (4,(x), Ulgy—1(x)) — Ulge—i(x,)))-
Then
(9.45) <‘I1(x), U(gk—l(x))> = <‘I1(x)s U(gk—l(xl))> + 0,(x)
= <PI,1(x), Ulge—i(x7)))
+ <)\}’,b,(x), U(gk—l(xl))> + UI(X)
= <P1(x)’ U(gk~l(x]))> R
=N, 1by(x) + v,(x)
by (9.32) and (6.6)". Thus

(9.46) k,(x)= gk—l(x) + <h(x), U(gk—l(x))>U(gk—l(x))

=Wk(X)U(gk-|(x))+ E }‘IDI(X)U(gk—l(x))
I:(9.31)

by (9.33), (9.45) and (9.30).

Take any dyadic cube J with /(J) = 27

Lemma 9.11. (1) If
(9.47) 81 (3] = 3wy (x,) /4,
then

[k(x)|<Tw,(x)/8 onlJ.

(ii) If
(9.48) |8i—1(x))[= we(x,)/2,
then

lgi—i(x)|=w(J)/4 on2MJ.
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Proof. By (8.17) and Lemma 9.2,
wi(x) > (1 = Ceqg)wy— ().
By (9.38) and Lemma 9.2,
[h(x)| = Ceqw,(x).

Thus (i) holds since ¢, is small enough.
Let x, y € 2MJ. Then, by Lemmas 9.9 and 9.2

|gk—l(x) - gk—l(y)’ = CC9.|2M("+2)COW(J)‘

Since ¢, is small enough depending on M and C,,, (ii) follows from
(8.17). O

LEMMA 9.12. If (9.48) holds and if | x — x,|,|y — x,|< 2M 7%, then
(9.49) lU(gk—l(x)) - U(gk—l(y))l
= CCy 2M Ve ((x)2" " |x — yl/w(J),
(9.50)  |U(k(x)) — Uk(y))|= CCy 2" Ve, (x)2"x — yl/w(J).
The first inequality follows from Lemma 9.9 and part (i) of Lemma

9.11. The second inequality follows from (9.41) and part (ii) of Lemma
9.11.

LemMa 9.13. If (9.48) holds, then
(9.51) Jo;(x)| = CCy 2™+ Ve, _ (x)(1 + 2¥|x — x,I)—nR]/w(J) onJ,
(9.52) |o;(x) = o,(y)

=< CCy 2M0 Vg, (x)24x — y|(1 + 2¥|x — x,|)ﬁnql/w(J) onlJ,

(9.53) 2 Ao (x)[=CC 2M Ve (x)ny(x)/w(J) ond,
I:(9.31)

(9.54) 2 }\Iul(x) - 2 }\101()’)'
I: (9.31) I: (9.31)

= CGy . 2M0" g (x)m,(x)2x — yl/w(J) onJ.

Proof. (9.51) follows from (9.35)—(9.36) and (9.49). Note that
U](X) - U/()’) = <(I1(x) - QI()’), U(gk—l(x)) - U(gk-l(xl))>
+ <‘I1(}’)a U(gk—l(x)) - U(gk‘l()’)»-
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Condition (9.35), (9.37) and (9.49) take care of the first term and condi-
tions (9.36) and (9.49) take care of the second term. Thus, (9.52) holds.
Conditions (9.53)—(9.54) follow from (9.51)—(9.52). O

LEMMA 9.14. If (9.48) holds, then

(9.55) Ik,(x)|= Cn,(x) onl,
956 [ka(x) — kol = Cn(x)2 5| on .

Proof. (9.55) follows from the last formula of (9.43) and (9.38). Note
that

(9.57) IU(gk~1(x)) - U(gk—l(y))‘ = C2"7'|x — )
by (9.49), Lemma 9.2 and (9.2). So, (9.56) follows from the last formula of
(9.43), (9.39), (9.38) and (9.57). O

LEmMMA 9.15. If (9.48) holds, then

(9.58) | |k(x)|— wk(x)l = CC9.12M(n+2)8k(x)2/W(J) onlJ,
(9:59)  |(Ik(x)| = w(x)) = (k(2)] = wi(2))]
< CC22M0 Vg, (x)24x — y|/w(J)  onJ.

Proof. Set r(t) = (1 + 1)"/2 — 1. Then

()

1,2

:{(mxw ) A,o,<x>)2+|kz<x>f} —5,(x) by (9.46)

I:(9.31)

(9.60)  [k(x)|— W, (x) = (k,(x)" +[ko(x)])

= () (2ZA,0,(x) /9, (x)
+ (20 (0)/m(2)) + (ko (x)]())’)

= W (x)ry(x).
Then by (9.53) and (9.55)
(9.61) |r2(x)| = CC9.12M(n+2)€k(x)z/W(J)z-

So, (9.58) holds.
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By (9.60), the left-hand side of (9.59)
=#(x) = m(P)ra(x) + m(P)ra(x) = 1ol p)]
=<[#(x) = W p)lrs(x)
+ 0w () {| SA0,(x) = ZA,0,(0)] /(%)
+Zn 0 ()] ) = ()|
+] () = o) ] /(x)?

+ ko () ()2 = () 7

Lemma 9.10 and (9.61) take care of the first term. Conditions (9.54),
(9.53), Lemma 9.10, (9.56) and (9.55) take care of the second term. O

Let #,(x) = 0 be such that

(9.62) u(x) =0 if g (%)= wei(x)/2,
(9.63) u(x) =1 if g (x)|=3w,_,(x)/4,
(9.64) |te(x) = 1(y)] = 2% — yl.

Set

@u(x) = £,(x)(Jk(x)] = W (x)) U(k(x)),
g:(x) = k(x) — @ (x).

By (9.32)—(9.34) this definition of g, coincides with (9.9).
Condition (C.4) follows from (9.62) and (9.58). Condition (C.5)
follows from the inequality

lpa(x) — @(¥) <|te(x) — 1(»)] | IK(x)| = W, ()|
+1(2)|(IK(x)[ = w(x)) = (Ik(»)| = %))
+lo(»)] |UK(x)) — Uk(y))],

when combined with (9.62), (9.64), (9.58), (9.59), (C.4), (9.50), Lemma 9.2
and ¢,2M"*D < 1. Condition (C.6) follows from (C.6)’, (9.62) and (9.40).
Condition (C.7) is clear from the definition of ¢, (x), part (i) of Lemma
9.11 and (9.58). Condition (C.8) follows from (9.41) and (C.5) if ¢, is small
enough depending on M and Cj .
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10. Proof of Remark 3. In the proof of Main Lemma, if f is
R™-valued, then f,, and {b;} are R"-valued. By Remark 2.2 of [32], if
vER"N3,,, and 0,(§€) = 6(—¢) for j=1,...,m, then we can take
p(x) in Lemma 6.1 to be R”-valued. Thus, if f is R™-valued, then we can
take g and {f;} in Lemma 9.8 to be R™-valued. Thus we can take g in
Main Lemma to be R™-valued.
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