A CONSTRUCTION OF INNER MAPS PRESERVING THE HAAR MEASURE ON SPHERES

BOGUSLAW TOMASZEWSKI

We show, for $n \ge m$, the existence of non-trivial inner maps $f: B^n \to B^m$ with boundary values $f_*: S^n \to S^m$ such that $f_*^{-1}(A)$ has a positive Haar measure for every Borel subset A of S^m which has a positive Haar measure. Moreover, if n = m, the equality $\sigma(f_*^{-1}(A)) = \sigma(A)$ holds, where σ is the Haar measure of S^m .

In this paper \mathbb{C}^n is an *n*-dimensional complex space with inner product defined by $\langle z^1, z^2 \rangle = \sum z_i^1 \overline{z}_i^2$, where $z^j = (z_1^j, z_2^j, \dots, z_n^j)$ for j = 1, 2, and the norm $|z| = \langle z, z \rangle^{1/2}$. Let us introduce some notation:

$$B^n = \{ z \in \mathbb{C}^n : |z| < 1 \}, \qquad S^n = \partial B^n;$$

let d be the metric on S^n :

$$d(z, z^*) = (1 - \operatorname{Re}\langle z, z^* \rangle)^{1/2} = \frac{1}{\sqrt{2}} |z - z^*| \text{ for } z, z^* \in S^n,$$

and finally

 $B(z, r) = \{ z^* \in S^n : d(z, z^*) < r \} \text{ for } z \in S^n \text{ and } r > 0.$

For every complex function $h: X \to \mathbb{C}$ we define $Z(h) = h^{-1}(0)$. A holomorphic map $f: B^n \to B^m$ is called inner if

$$f_*(z) = \lim_{r \to 1} f(rz) \in S^m$$
 for almost every $z \in S^n$

with respect to the unique, rotation-invariant Borel measure σ_n on S^n such that $\sigma_n(S^n) = 1$. If a continuous function $g: \overline{B}^n \to \mathbb{C}^m$, defined on the closure of B^n , is holomorphic on B^n , we write $g \in A_m(B^n)$ or $g \in A(B^n)$ when m = 1. The theorem stated below is a generalization of the result of Aleksandrov [1]. Corollary 1 answers the problem given by Rudin [3]. Corollary 4 is a result of Aleksandrov obtained independently by the author.

THEOREM. Let $n \ge m$ and let $g = (g_1, \ldots, g_m) \in A_m(B^n)$, $h \in A(B^n)$ be maps such that $|g(z)| + |h(z)| \le 1$ and $h(z) \ne 0$ for some $z \in B^n$. Then there exists an inner map $f = (f_1, f_2, \ldots, f_m)$: $B^n \to B^m$ such that f(z) =g(z) for every $z \in Z(h)$ and $f_i(z) = g_i(z)$ for every $z \in B^n$ and i = $1, 2, \ldots, m - 1$. COROLLARY 1. For every $n \ge m$ there exist inner maps $f: B^n \to B^m$ such that for every Borel subset $A \subseteq S^m$ the inequality $\sigma_n(f_*^{-1}(A)) > 0$ holds provided $\sigma_m(A) > 0$. Moreover, if m = n, the equality $\sigma_n(f_*^{-1}(A)) = \sigma_n(A)$ holds and f is not an automorphism of B^n .

COROLLARY 2. For every $n \ge 1$ there exist inner maps $f: B^n \to B^m$, not automorphisms of B^n , such that

$$\int_{S^n} (h \circ f_*) \, d\sigma_n = \int_{S^n} h \, d\sigma_n$$

for every continuous function h on S^n .

Corollary 2 is an immediate consequence of Corollary 1. Let us assume that $n \ge m$ and $n \ge 2$. To deduce the assertion of Corollary 1 from the Theorem let us take a holomorphic function $k \in A(B^1)$ and the map $g \in A_m(B^n)$, $g(z) = p(z) + \frac{1}{4}z_n^2 r(z_n)$, where $p(z) = (z_1, z_2, ..., z_{m-1}, 0), r(z) = (0, ..., 0, k(z_n))$ for $z \in B^n$. Define $h(z) = \frac{1}{4}z_1z_n^2$. Then

$$|g(z)| + |h(z)| \le |p(z)| + \frac{1}{4}|z_n^2| + \frac{1}{4}|z_n^2| \le \sqrt{1-z_n^2} + \frac{1}{2}|z_n^2| \le 1.$$

By virtue of the Theorem there exists an inner map $f = (f_1, f_2, ..., f_m)$: $B^n \to B^m$ such that

(1)
$$f_j(z_1, z_2, \dots, z_n) = z_j$$
 for $j = 1, 2, \dots, m-1$,

(2)
$$f_m(0,0,\ldots,0,z_n) = \frac{1}{4} z_n^2 r(z_n),$$

(3)
$$f(z_1, z_2, \dots, z_{n-1}, 0) = (z_1, z_2, \dots, z_{m-1}, 0).$$

For any $z \in B^{m-1}$ and $l \ge m$ let

$$B_{z}^{l} = \left\{ z^{*} \in B^{l} : z_{j}^{*} = z_{j} \text{ for } j = 1, 2, \dots, m - 1 \right\},$$

$$S_{z}^{l} = \left\{ z^{*} \in S^{l} : z_{j}^{*} = z_{j} \text{ for } j = 1, 2, \dots, m - 1 \right\},$$

let σ_z^l be the rotation-invariant measure on the sphere S_z^l such that $\sigma_z^l(S_z^l) = 1$ and let f_z , f_z^* be the restrictions of f, f_* to the sets B_z^n and S_z^n respectively. From (1) it follows that $f_z: B_z^n \to B_z^m$ and (2) says that $f_z(w_1) = w_2$, where w_1, w_2 are the centers of the balls B_z^n, B_z^m respectively. Since B_z^m is a one-dimensional complex ball, the equality $\sigma_z^n((f_z^*)^{-1}(C)) = \sigma_z^m(C)$ holds for every Borel subset C of S_z^m and every z for which f_z is an inner map (see [4] p. 405). The function f_z is inner for almost every $z \in B^{m-1}$ (with respect to the usual Lebesgue measure λ on B^{m-1}) because the map f is inner. Let us notice that there are positive functions

 $s_1, s_2: B^{m-1} \to R_+$ such that for all Borel subsets $C^1 \subset S^n, C^2 \subset S^m$ we have

$$\sigma_n(C^1) = \int_{B^{m-1}} s_1(z) \cdot \sigma_z^1(C_z^1) d\lambda(z),$$

$$\sigma_m(C_2) = \int_{B^{m-1}} s_2(z) \cdot \sigma_z^m(C_z^2) d\lambda(z),$$

where $C_z^1 = C^1 \cap S^n$, $C_z^2 = C^2 \cap S^m$. Substituting $C_1 = (f^*)^{-1}(C_2)$ and using the equality $\sigma_z^n(C_z^1) = \sigma_z^m(C_z^2)$ (which holds for almost every z), it is easy to see that both of the above integrals are positive or equal to 0. If n = m then $s_1 = s_2$ and the equality holds. This ends the proof of Corollary 1.

The following proof of the assertion of the Theorem is based on Löw's construction of inner functions [3]. Let g and h be maps satisfying the assumptions of the Theorem. Then $\sigma_n(F) = 0$, where $F = Z(h) \cap S^n$. (This fact can be proved by induction. For n = 1 it is well-known theorem.) For $\delta > 0$ let

$$F_{\delta} = \{ z \in S^n : d(z, F) < \delta \} \text{ and } |||s|||_{\delta} = \sup_{z \in F_{\delta}} |s(z)|,$$

where s: $S^n \to \mathbb{C}^m$ is a continuous map. Observe that there exist constants A_1, A_2 such that for every $0 < r < \sqrt{2}$,

(4)
$$A_1 r^{2n-1} \le A(r) \le A_2 r^{2n-1},$$

where $A(r) = \sigma_n(B(z, r))$ for any $z \in S^n$.

Let $S \subset S^n$ be any closed subset of S^n , $\sigma_n(S) > 0$. Assume that for some number r > 0,

(5)
$$\sigma_n(S_r) \le 2\sigma_n(S),$$

where $S_r = \{z \in S^n : d(z, S) < r\}$. Let $\{B(z^j, r)\}_{j=1}^{N(r)}$ be a maximal family of disjoint balls with centers $z^j \in S$. Since $S_r \supset \bigcup_{j=1}^{N(r)} B(z^j, r)$ and $S \subset \bigcup_{j=1}^{N(r)} B(z^j, 2r)$, applying inequalities (4) and (5), we get

$$2\sigma_n(S) \ge \sigma_n(S_r) \ge \sigma_n\left(\bigcup_{j=1}^{N(r)} B(z^j, r)\right) = \sum_{j=1}^{N(r)} \sigma_n(B(z^j, r))$$
$$= N(r) \cdot A(r) \ge A_1 r^{2n-1} \cdot N(r)$$

and

$$\sigma_n(S) \le \sigma_n\left(\bigcup_{j=1}^{N(r)} B(z^j, 2r)\right) = \sum_{j=1}^{N(r)} A(2r) = N(r) \cdot A(2r)$$

$$\le N(r) \cdot A_2 \cdot (2r)^{2n-1} = N(r) \cdot A_2 \cdot 2^{2n-1} \cdot r^{2n-1}.$$

So we have proved the existence of positive constants C_1 and C_2 ($C_1 = 1/2^{2n-1}$, $C_2 = 2/A_1$) such that

(6)
$$\frac{C_1}{r^{2n-1}} \cdot \sigma_n(S) \leq N(r) \leq \frac{C_2}{r^{2n-1}} \cdot \sigma_n(S).$$

Let us assume now that r > 0, $z \in B^n$, k is a natural number and M_k is the maximal number of disjoint balls of radius r and with centers in B(z, (k + 1)r). Because these balls are included in B(z, (k + 2)r), an argument similar to the above gives the estimate

$$(7) M_k \le C_3 k^{2n-1}$$

for some constant C_3 . Let $\varphi: (0,1) \to R$ be the continuous, positive function defined by

$$\varphi(a) = \frac{1}{4\pi} \cdot C_1 \cdot A_1 \cdot \arccos(a) \cdot \left[\log \frac{1}{a}\right]^{(2n-1)/2}.$$

LEMMA 1. Let $0 < 2\varepsilon < a < b$, $0 < \delta < 2C_3 \cdot a$, $\varepsilon < C_3e^{-2n}$, R < 1. Let P be a closed subset of F_{δ} and let v be a continuous map v: $S^n \to \mathbb{C}^m$ such that |v(z)| > a for $z \in P$. There exists a closed subset K of F_{δ} and a holomorphic map u: $\mathbb{C}^n \to \mathbb{C}^m$ such that:

(a)
$$|||v + h \cdot u||_{\delta/2} \le \max(1, |||f|||_{\delta/2}) + 3\varepsilon;$$

(b)
$$||u||_R = \sup_{|z| \le R} |u(z)| \le \varepsilon;$$

(c)
$$|v(z) + h(z) \cdot u(z)| > a - 3\varepsilon$$
 for $z \in K \cup P$;

(d)
$$K \subset F_{\delta}, \quad K \cap P = 0$$
 and

$$\sigma_n(K) \geq \varphi(a) \cdot \left[\log(4C_3/\delta\varepsilon)\right]^{-(2n-1)/2} \cdot \sigma_n(F_{\delta} - P);$$

(e)
$$|g(z)| < \varepsilon \text{ for } z \in B^n - F_{\delta/2};$$

(f)
$$u_j \equiv 0$$
 for $j = 1, 2, ..., m - 1$, where $u = (u_1, u_2, ..., u_m)$.

Proof. If $\sigma_n(P) = \sigma_n(F_{\delta})$ then the map u = (0, 0, ..., 0) and the set $K = \emptyset$ satisfy conditions (a)-(e). Let us assume that $\sigma_n(P) < \sigma_n(F_{\delta})$.

206

There exists a positive number γ such that $\gamma < \delta/2$ and

(8)
$$\sigma_n(S) \ge \frac{1}{2} \cdot \sigma_n(F_{\delta} - P),$$

where $S = S^n - [(S^n - F_{\delta}) \cup P]_{\gamma}$.

Since v, h are uniformly continuous maps and S is a closed subset, there exists a positive number γ^* such that

(9)
$$|g(z) - g(z')| < \epsilon \delta$$
, $|v(z) - v(z')| < \epsilon$, $\sigma_n(S_r) \le 2 \cdot \sigma_n(S)$
for $z, z' \in S^n$, $d(z, z') < \gamma^*$ and $r < \gamma^*$.

Let r, m be positive numbers such that $r \leq \frac{1}{2} \min(\gamma, \gamma^*)$, m is an integer and $mr^2 = \log(2C_3/\delta\epsilon)$. Moreover we assume m is large so that

(10)
$$C_2 \cdot m^{(2n-1)/2} \cdot e^{-m(1-R)} < \varepsilon.$$

Choose a maximal family $\{B(z^j, r)\}_{j=1}^{N(r)}$ of pairwise disjoint balls with centers $z^j \in S^n$. Because of (9), condition (5) is satisfied, so inequalities (6) also hold. For $k = 1, 2, ..., [\sqrt{2}/r]$ and $z \in S^n$ let

$$V_k(z) = \{ z^j : kr \le d(z, z^j) < (k+1)r \}$$

and let $N_k(z)$ be the number of elements of the set V_k . Since $V_k(z) \subset B(z, (k + 1)r)$, from the definition of M_k , we have $N_k(z) \leq M_k$ and (7) gives us

(11)
$$N_k(z) \le C_3 k^{2n-1}.$$

Let $g(z) = \sum_{j=1}^{N(r)} \beta_j e^{-m(1-(\langle z, z^j \rangle))}$, where $\beta_j = (0, 0, \dots, 0, \alpha_j) \in \mathbb{C}^m$ is defined by $\beta_j = (0, 0, \dots, 0, 0)$ if $|f(z^j)| \ge b$. If $|f(z^j)| < b$, then let β_j be of the previous form, such that

$$|f(z^{j}) + h(z) \cdot \beta_{j}| = b$$
 and $|f(z^{j}) + \alpha \cdot h(z) \cdot \beta_{j}| \le b$

for every $\alpha \in \mathbb{C}$, $|\alpha| = 1$. Let us notice that for every j, $|\beta_j| \le 1/|h(z^j)| \le 1/\delta$ and that

$$g(z) = \vec{k} \cdot \sum_{j=1}^{N(r)} |\beta_j| \cdot e^{-md^2(z, z^j)} \cdot e^{iQ_{m,j}(z)}$$
$$= \vec{k} \cdot \sum_{k=0}^{[\sqrt{2}/r]} \sum_{z^j \in V_k(z)} |\beta_j| e^{-md^2(z, z^j)} e^{iQ_{m,j}(z)}$$

for some real functions $Q_{m,j}$ and $\vec{k} = (0, 0, \dots, 0, 1) \in \mathbb{C}^{m}$.

If $V_0(z) = \emptyset$ or $z \in B(z^j, r)$ with $\beta_j = 0$ then, because of (11) and the inequality $mr^2 > 2n$, we have

$$(12) |g(z)| \leq \sum_{k=1}^{\lfloor \sqrt{2}/r \rfloor} \sum_{z' \in V_k(z)} \frac{1}{\delta} e^{-md^2(z,z')} \sum_{k=1}^{\lfloor \sqrt{2}/r \rfloor} \frac{1}{\delta} |V_k(z)| e^{-mk^2 r^2}$$
$$\leq \sum_{k=1}^{\infty} \frac{C_3}{\delta} k^{2n-1} e^{-k^2 m r^2} \leq \frac{C_3}{\delta} \sum_{k=1}^{\infty} e^{-kmr^2} \leq 2\frac{C_3}{\delta} e^{-mr^2} = \varepsilon.$$

This proves part (e) of Lemma 1. If $z \in B(z^{j}, r)$ with $\beta_{j} \neq 0$ then

(13)
$$|v(z) + h(z) \cdot u(z)|$$

 $\leq |v(z^{j}) + h(z^{j}) \cdot \beta_{j} \cdot e^{-md^{2}(z, z^{j})} \cdot e^{iQ_{m,j}(z)}|$
 $+ |[h(z) - h(z^{j})] \cdot \beta_{j} \cdot e^{-md^{2}(z, z^{j})} \cdot e^{iQ_{m,j}(z)}| + |v(z) - v(z^{j})|$
 $+ |h(z) \cdot \sum_{z^{j} \notin V_{0}(z)} \beta_{j} \cdot e^{-md^{2}(z, z^{j})} \cdot e^{iQ_{m,m}(z)}|$
 $= I + II + III + IV.$

Because of (9)

III
$$\leq \varepsilon$$
 and II $\leq |h(z) - h(z^j)| \cdot |\beta_j| < \delta \cdot \varepsilon \cdot \frac{1}{\delta} = \varepsilon.$

By the same argument as in (12) we can prove that $IV \le \varepsilon$. Moreover, we have $I \le |v(z^j)| + |h(z^j) \cdot \beta_j| = b$. This altogether gives us

(14)
$$|v(z) + h(z) \cdot u(z)| \le b + 3\varepsilon.$$

Inequalities (12) and (14) prove part (a) of Lemma 1. Now we shall determine a certain subset V of $W = \bigcup_{j=1}^{N(r)} B(z^j, r)$. To do this let us fix j, $1 \le j \le N(r)$, and let us take $\alpha = |v(z_j)|$, $s(z) = e^{-md^2(z, z')}$, $Q(z) = \arg(e^{-m(1-(\langle z, z' \rangle))}) = m \cdot \operatorname{Im}\langle z, z^j \rangle$.

Let us assume at first that $\alpha < 1$. We define

$$V_j = \left\{ z \in B(z^j, r) : s(z) \ge a \text{ and } \cos Q(z) \ge a \right\}.$$

Using the same notation as in (13) we can write

(15)
$$|v(z) + h(z) \cdot u(z)| \ge I - II - III - IV.$$

208

As before, II $\leq \varepsilon$, III $\leq \varepsilon$ and IV $\leq \varepsilon$. Assuming $z \in V_j$, we have

(16)
$$\mathbf{I} = \left| v(z^{j}) + h(z^{j}) \cdot \beta_{j} \cdot e^{-m \cdot d^{2}(z, z^{j})} \cdot e^{i\mathcal{Q}(z)} \right|$$
$$\geq \left| \alpha + (1 - \alpha) \cdot s(z) \cdot e^{i\mathcal{Q}(z)} \right|$$
$$= \sqrt{\alpha^{2} + 2\alpha(1 - \alpha) \cdot s(z) \cdot \cos Q(z) + (1 - \alpha)^{2}} \geq a$$

because of our assumption about s(z) and $\cos Q(z)$, the definition of β_j and simple geometry.

Combining (15) and (16) we get

(17)
$$|v(z) + h(z) \cdot u(z)| > a - 3\varepsilon \quad \text{for } z \in V_j.$$

Let $\rho > 0$ be defined by $m\rho^2 = \log(1/a)$. Then $\rho \le r$ because $mr^2 = 2C_3/\delta\varepsilon$ and $2C_3/\delta \ge 1/a$. So $B(z^j, \rho) \subset B(z^j, r)$, and if $z \in B(z^j, \rho)$ then $s(z) \ge a$. The set $\{z \in B(z^j, \rho) : \cos Q \ge a\}$ consists of certain strips in the ball $B(z^j, \rho)$. An easy geometric argument shows that these strips have a total area at least

$$\frac{1}{2\pi} \cdot \arccos a \cdot \sigma_n(B(z^j,\rho)) = \frac{1}{2\pi} \cdot \arccos a \cdot A(\rho).$$

Moreover $V_j \subset B(z^j, r) \subset F_{\delta}$. Using inequality (4) and the fact that the above strips are included in V_j , we get

(18)
$$\sigma_n(V_j) \ge \frac{1}{2\pi} \cdot \arccos a \cdot A(\rho) \ge \frac{1}{2\pi} \cdot A_1 \cdot \arccos a \cdot \rho^{2n-1}.$$

If $\alpha \ge 1$, we define $V_j = B(z^j, \rho)$. Because $\beta_j = 0$, it follows from (12) that

(19)
$$|v(z) + h(z) \cdot u(z)| \ge |v(z^{j})| - |v(z) - v(z^{j})| - |h(z) \cdot u(z)|$$
$$\ge a - \varepsilon - |u(z)| \ge a - 2\varepsilon$$

for $z \in V_i$.

Finally, we define $K = \bigcup_{j=1}^{N(r)} \overline{V_j}$. We observe that inequality (17) holds for $z \in K$. If $z \in P$, then $V_0(z) = \emptyset$ and inequality (12) gives us

$$|v(z) + h(z) \cdot u(z)| \ge |v(z)| - |u(z)| \ge a - \varepsilon.$$

This altogether proves part (c) of Lemma 1. It is easy to check that $K \cap P = \emptyset$. Inequalities (18), (6), (9) and the definitions of ρ and mr^2 yield

$$\begin{split} \sigma_n(K) &\geq \sigma_n \left(\bigcup_{j=1}^{N(r)} V_j \right) = \sum_{j=1}^{N(r)} \sigma_n(V_j) \\ &\geq N(r) \cdot \frac{1}{2\pi} \cdot A_1 \cdot \arccos a \cdot \rho^{2n-1} \\ &\geq \frac{C_1}{r^{2n-1}} \cdot \sigma_n(S) \cdot \frac{1}{2\pi} \cdot A_1 \cdot \arccos a \cdot \rho^{2n-1} \\ &\geq \frac{1}{4\pi} \cdot C_1 \cdot A_1 \cdot \arccos a \cdot (mr^2)^{-(2n-1)/2} \cdot (m\rho^2)^{2n-1} \cdot \sigma_n(F_{\delta} - P) \\ &= \varphi(a) \cdot \log(4C_3/(\delta\epsilon))^{-(2n-1)/2} \cdot \sigma_n(F_{\delta} - P). \end{split}$$

This proves part (d) of Lemma 1. Finally, if $|z| \le R$ then $\operatorname{Re}(1 - \langle z, z^j \rangle) \le 1 - R$ for j = 1, 2, ..., N(r). Because of the inequalities $mr^2 \ge 1$, (10) and (6), we have

$$\begin{aligned} |u(z)| &\leq N(r) \cdot e^{-m(1-R)} \leq C_2 \cdot \frac{1}{r^{2n-1}} \cdot e^{-m(1-R)} \\ &= C_2 \cdot m^{(2n-1)/2} \cdot e^{-m(1-R)} \cdot (mr^2)^{-(2n-1)/2} \\ &\leq C_2 \cdot m^{(2n-1)/2} \cdot e^{-m(1-R)} \leq \varepsilon. \end{aligned}$$

This proves part (d) of Lemma 1 and ends the proof.

LEMMA 2. Let v be a continuous map v: $S^n \to \mathbb{C}^m$ such that $|||v|||_{\delta} < b < 1$ for some $\delta < C_3$. Let $\frac{1}{4} > \varepsilon > 0$, R < 1. Then there exists a holomorphic map u: $\mathbb{C}^n \to \mathbb{C}^m$ and a closed set $K \subset F_{\delta}$ such that:

 $\begin{array}{ll} (a)' & |||v+h \cdot u|||_{\delta} < b+\varepsilon; \\ (b)' & ||u||_{R} \le \varepsilon; \\ (c)' & |v(z)+h(z) \cdot u(z)| > b-\varepsilon; \\ (d)' & \sigma_{n}(K) \ge \sigma_{n}(F_{\delta})-\varepsilon; \\ (e)' & |u(z)| \le \varepsilon \quad for \ z \in S^{n}-F_{\delta}; \end{array}$

(f)'
$$u_j \equiv 0$$
 for $j = 1, 2, ..., m - 1$, where $u = (u_1, u_2, ..., u_m)$.

Proof. Let $a = b - \frac{1}{2}\varepsilon$ and choose a sequence $\{\varepsilon_j\}$ satisfying the assumptions of Lemma 1 and such that $6\sum_{j=1}^{\infty} \varepsilon_j < \varepsilon$. We can assume $\varepsilon_j = A \cdot \exp\{-(\tau \cdot j)^{2/(2n-1)}\}, A = 2C_3/\delta$ and τ is some large number.

Apply Lemma 1 to the data $a, \varepsilon_1, R, v, P = \emptyset$ to produce a holomorphic map $u_1: \mathbb{C}^n \to \mathbb{C}^m$ and a closed set $K_1 \subset F_{\delta}$ such that:

$$\begin{array}{ll} (a)_{1} & |||v+h \cdot u_{1}|||_{\delta} \leq b+3\epsilon_{1}; \\ (b)_{1} & ||v_{1}||_{R} \leq \epsilon_{1}; \\ (c)_{1} & |v(z)+h(z) \cdot u_{1}(z)| \geq a-3\epsilon_{1} \quad \text{for } z \in K_{1}; \\ (d)_{1} & \alpha_{1} = \sigma_{n}(K_{1}) \geq \varphi(a) \cdot \left[\log(A/\epsilon_{1})\right]^{-(2n-1)/2} \cdot \sigma_{n}(F_{\delta}); \\ (e)_{1} & |u_{1}(z)| \leq \epsilon_{1} \quad \text{for } z \in S^{n} - F_{\delta}; \\ (f)_{1} & u_{j}^{1} \equiv 0 \quad \text{for } j = 1, 2, \dots, m-1, \text{ where } u_{1} = \left(u_{1}^{1}, u_{2}^{1}, \dots, u_{m}^{1}\right). \end{array}$$

Suppose that holomorphic maps $u_1, u_2, \ldots, u_{p-1}$ $(u_j: \mathbb{C}^n \to \mathbb{C}^m$ for $j = 1, 2, \ldots, p-1$) have been chosen together with closed sets $K_1, K_2, \ldots, K_{p-1}$ such that if $W_i = \bigcup_{j=1}^i K_j$ then $K_{i+1} \cap W_i = \emptyset$ and $\sigma_n(K_i) = \alpha_i, K_i \subset F_{\delta}$. A map $u_p: \mathbb{C}^n \to \mathbb{C}^m$ and a closed set K_p is then obtained by applying Lemma 1 to the data $a - 3\sum_{i=1}^{p-1} \varepsilon_i, \varepsilon_p, R, v + h(z) \cdot (u_1 + u_2 + \cdots + u_{p-1}), W_{p-1}$. This produces a sequence $\{v_k\}$ of holomorphic maps $(v_k: \mathbb{C}^n \to \mathbb{C}^m$ for $k = 1, 2, \ldots$) and a sequence $\{K_k\}$ of disjoint closed sets such that $K_k \subset F_{\delta}, \sigma_n(K_k) = \alpha_k$ and:

(a)_p
$$|||v + h \cdot \sum_{k=1}^{p} u_k |||_{\delta} \le b + 3 \cdot \sum_{k=1}^{p} \varepsilon_k < b + \varepsilon;$$

(b)_p
$$\left\|\sum_{k=1}^{p} u_{k}\right\|_{R} \leq \sum_{k=1}^{p} \|u_{k}\|_{R} \leq \sum_{k=1}^{p} \varepsilon_{k} < \varepsilon;$$

$$(c)_{p} \quad \left| v(z) + h(z) \cdot \sum_{k=1}^{p} u_{k}(z) \right| \ge a - 3 \cdot \sum_{k=1}^{p} \varepsilon_{k}$$
$$\ge a - \frac{1}{2}\varepsilon = b - \varepsilon \quad \text{for } z \in W_{p};$$

$$\begin{aligned} (\mathbf{d})_{p} \quad \alpha_{p} &= \sigma_{n}(K_{p}) \\ &\geq \varphi \left(a - 3 \cdot \sum_{k=1}^{p-1} \varepsilon_{i} \right) \cdot \left[\log \frac{A}{\varepsilon_{p}} \right]^{-(2n-1)/2} \cdot \left(\sigma_{n}(F_{\delta}) - \sum_{k=1}^{p-1} \alpha_{k} \right) \\ &\geq \varphi(a) \cdot \left[\log \frac{A}{\varepsilon_{p}} \right]^{-(2n-1)/2} \cdot \left(\sigma_{n}(F_{\delta}) - \sum_{k=1}^{p-1} \alpha_{k} \right); \\ (\mathbf{e})_{p} \quad \left| \sum_{k=1}^{p} u_{k}(z) \right| &\leq \sum_{k=1}^{p} |u_{k}(z)| \leq \sum_{k=1}^{p} \varepsilon_{k} < \varepsilon \quad \text{for } z \in S^{n} - F_{\delta}; \end{aligned}$$

(f)_p
$$u_j^k \equiv 0$$
 for $k = 1, 2, ..., p$ and $j = 1, 2, ..., m - 1$,
where $u_k = (u_1^k, u_2^k, ..., u_m^k)$.

If $\sum_{k=1}^{\infty} \alpha_k < \sigma_n(F_{\delta})$, (d) shows that there is a constant C_4 such that for every positive integer k,

$$\alpha_p \ge C_4 \cdot \left[\log \frac{A}{\epsilon_p} \right]^{-(2n-1)/2} = \left[C_4 \cdot (\tau p)^{2/(2n-1)} \right]^{-(2n-1)/2} = \frac{C_4}{\tau p}.$$

This is impossible, because then $\sum_{p=1}^{\infty} \alpha_p = \infty$ and α_p are the measures of the disjoint sets. Hence, we may assume that $\sum_{k=1}^{\infty} \alpha_k = \sigma_n(F_{\delta})$. It follows that for p sufficiently large and $P = W_p$ we have $\sigma_n(P) = \sum_{k=1}^{p} \alpha_k > 1 - \varepsilon$, which is part (d)' of Lemma 2. Letting $h = \sum_{k=1}^{p} u_k$, parts (a)', (b)', (c)', (e)', (f)' are just (a)_p, (b)_p, (c)_p, (e)_p, (f)_p. So we have proved the assertion of Lemma 2.

Assume now that g and h satisfy the assumptions of the Theorem. Then $|||g|||_{\delta} \le 1 - \delta$. To prove the Theorem, take a sequence $\delta_1, \delta_2, \ldots$ of positive numbers such that $\delta_1 < C_3$ and $\delta_{i+1} < \delta_i/2$ and let $a_1 = b_1 = 1 - \frac{1}{2}\delta_1$, $\varepsilon_1 = \min(\frac{1}{16}, \frac{1}{4}\delta_1)$, $R_1 = \frac{1}{2}$. Apply Lemma 2 to the data $g_1 = g$, b_1, δ_1 , R_1 to get a map u_1 and a set $K_1 \subset F_{\delta_1}$ such that, for p = 1 and $g_1 = g$:

(i)_p
$$|||g_p + h \cdot u_p|||_{\delta_p} < b_p + \varepsilon_p < 1;$$

$$(\mathrm{ii})_p \qquad \|u_p\|_{R_p} \le \varepsilon_p$$

(iii)_p
$$|g_p(z) + h(z) \cdot u_p(z)| \ge b_p - \varepsilon_p$$
 for $z \in K_p$;

$$(\mathrm{in})_{p} \qquad |g_{p}(2)| + n(2) \quad u_{p}(2)| + (1)$$
$$(\mathrm{iv})_{p} \qquad \sigma_{n}(K_{p}) \geq \sigma_{n}(F_{\delta_{p}}) - \varepsilon_{p};$$

$$\begin{aligned} (\mathbf{v})_p & 1 - \left| g_p(z) + h(z) \cdot u_p(z) \right| \\ & \geq \left(1 - \sum_{i=1}^p \varepsilon_i \right) |h(z)| \quad \text{for } z \in S^n - F_{\delta_p}; \\ (\text{vi})_p & u_j^p \equiv 0 \quad \text{for } j = 1, 2, \dots, m-1 \text{ where } u_p = (u_1^p, u_2^p, \dots, u_m^p). \end{aligned}$$

Inequality (v) follows from (e)' of Lemma 2, because for $z \in S^n - F_{\delta_1}$, we have $|u_1(z)| < \epsilon_1$, so

$$1 - |v(z) + h(z) \cdot u_1(z)| \ge 1 - |v(z)| - |u_1(z) \cdot h(z)|$$
$$\ge |h(z)| - \varepsilon_1 \cdot |h(z)| = (1 - \varepsilon_1) \cdot |h(z)|.$$

Since $g_1 + h \cdot u_1$ is a continuous map on \overline{B}^n , there exists an R_2 such that $\frac{1}{2} + \frac{1}{2}R_1 < R_2 < 1$ and, for p = 1,

$$(\text{vii})_p \quad \left| g_p(R_{p+1} \cdot z) + h(R_{p+1} \cdot z) \cdot u_p(R_{p+1} \cdot z) \right| > b_p - 2\varepsilon_p$$

for $z \in K_p$.

Suppose we have inductively found holomorphic maps u_1, u_2, \ldots, u_p , closed sets K_1, K_2, \ldots, K_p , real numbers $R_1, R_2, \ldots, R_{p+1}, b_1, b_2, \ldots, b_p$, $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_p$ such that $\frac{1}{2} + \frac{1}{2}R_i < R_{i+1}, \varepsilon_i > 0$ for $i = 1, 2, \ldots, p$ and $\sum_{i=1}^{p} \varepsilon_i < 1/8$. Let us assume $g_{j+1} = g + h \cdot \sum_{i=1}^{j} u_i$ and conditions (i) $_j$ -(vii) $_j$ are satisfied for $j = 1, 2, \ldots, p$. We also assume that $1 - 1/j \le b_j < b_j + \varepsilon_j < 1$. If $z \in (F_{\delta_{p+1}} - F_{\delta_p})$ then according to (v) $_p$, we have

$$1 - \left|g_{p+1}(z)\right| \ge \left(1 - \sum_{i=1}^{p} \varepsilon_{i}\right) \cdot \left|h(z)\right| \ge \frac{1}{2} \cdot \delta_{p+1}$$

since $|h(z)| \ge \delta_{p+1}$. This, together with (i)_p, shows that $|||g_{p+1}|||_{\delta_{p+1}} < 1$. Take any $b_{p+1} > 1 - 1/(p+1)$ and ε_{p+1} satisfying the inequalities $1 > b_{p+1} + \varepsilon_{p+1} > b_{p+1} > |||g_{p+1}|||_{\delta_{p+1}}$ and $\sum_{i=1}^{p+1} \varepsilon_i < 1/8$. Since the map g_{p+1} is continuous on \overline{B}^n , we can find a number R_{p+2} such that $\frac{1}{2} + \frac{1}{2}R_{p+1} < R_{p+2} < 1$ and such that condition $(\text{vii})_{p+1}$ is satisfied. Now we can apply Lemma 2 to the data $g_{p+1}, b_{p+1}, \varepsilon_{p+1}, R_{p+1}$. We get some map u_{p+1} and a set K_{p+1} . It follows from Lemma 2 that conditions (i)_{p+1}-(iv)_{p+1} and (vi)_{p+1} are satisfied. For $z \in S^n - F_{\delta_{p+1}}$, by the virtue of (e)' and (v)_p, we have

$$1 - |g_{p+1}(z) + h(z) \cdot u_{p+1}(z)|$$

$$\geq 1 - |g_p(z) + h(z) \cdot u_p(z)| - |h(z) \cdot u_{p+1}(z)|$$

$$\geq \left(1 - \sum_{i=1}^{p} \varepsilon_i\right) \cdot |h(z)| - |h(z)| \cdot \varepsilon_{p+1}$$

$$= \left(1 - \sum_{i=1}^{p+1} \varepsilon_i\right) \cdot |h(z)|.$$

So we have also proved that condition $(v)_{p+1}$ is satisfied. Conditions $(ii)_p$ (p = 1, 2, 3...) and the definition of g_p say that the sequence $\{g_p\}$ is convergent uniformly on every ball $R_p \cdot B^n$, and since $\lim_{p \to 1} R_p = 1$, this sequence is pointwise convergent to some holomorphic map f on the ball B^n . From conditions $(i)_p$ and $(v)_p$ it follows that each map g_p is bounded by 1 on B^n . So, also $||f||_{\infty} \le 1$. For $\delta > 0$ let $L_p = F_{\delta} \cap \bigcap_{j > p} K_j$. Then, for q large enough, $F_{\delta} \subset F_{\delta_p}$ for p > q. We have

$$\begin{split} \sigma_n(F_{\delta}) &- \sigma_n(L_q) = \sigma_n\bigg(\bigcup_{j>q} \big(F_{\delta} - \big(F_{\delta} \cap K_q\big)\big)\bigg) \\ &\leq \sum_{j>q} \sigma_n\big(F_{\delta} - \big(F_{\delta} \cap K_j\big)\big) \leq \sum_{j>q} \sigma_n\big(F_{\delta_j} - K_j\big) < \sum_{j>q} \varepsilon_j. \end{split}$$

Hence $\lim_{q\to\infty} \sigma_n(L_q) = \sigma_n(F_{\delta})$. It is obvious from (iii)_p and the equality $\lim_{p\to\infty} b_p = 1$ that $\lim_{R\to 1} f(Rz) = 1$ for $z \in L_q$, provided this limit exists. Since δ was arbitrary, this proves that the map f is inner, since $\sigma_n(\bigcap_p (S^n - F_{\delta_n})) = 0$. Now it is easy to check that f satisfies the Theorem.

COROLLARY 3. Let m < n and let $g \in A_m(B^m)$, $||g||_{\infty} \le 1$. There exists an inner map $f: B^n \to B^m$ such that

$$f(z_1, z_2, \dots, z_m, 0, 0, \dots, 0) = g(z_1, z_2, \dots, z_m).$$

Proof. Let $\Phi: B^m \to B^m$ be an automorphism of B^m such that $\Phi(g(0,\ldots,0)) = (0,\ldots,0)$. Take $\tilde{g}: B^m \to B^m$, $\tilde{g}(z) = \Phi(g(z_1, z_2,\ldots,z_m))$, $h(z) = \frac{1}{2} \cdot z_n^2$. By virtue of Schwartz's lemma,

$$\tilde{g}(z) \leq (|z_1|^2 + |z_2|^2 + \cdots + |z_m|^2)^{1/2}.$$

So we have

$$|\tilde{g}(z)| + |h(z)| \le (1 - |z_n|^2)^{1/2} + \frac{1}{2} \cdot |z_n|^2 \le 1.$$

We can apply the Theorem for g and h to get an inner map \tilde{f} . The inner map $f = \Phi^{-1}(\tilde{f})$ will satisfy Corollary 3.

COROLLARY 4. There exists an inner function $f: B^n \to D$ such that

$$\frac{\partial f}{\partial z_1}(0,0,\ldots,0)=1.$$

Proof. Take m = 1 in Corollary 3 and a function $g: B^1 \to D, g(z) = z$.

REMARK. The assumption $g \in A_m(B^m)$ in Corollary 3 is not necessary: we can take any holomorphic map $g: B^m \to B^m$. Then the map \tilde{g} , defined as before, can be prolonged to a continuous map on $\overline{B}^n - A$, where $A \subset S^n$ and $\sigma_n(A) = 0$. One can check that the Theorem is still valid for such maps.

CONSTRUCTION OF INNER MAPS

References

- [1] A. B. Aleksandrov, *The existence of inner functions on the unit ball*, Mat. Sb. 1982, v. 118 (160) N2(6), 147–163 (in Russian).
- [2] E. Löw, A construction of inner functions on the unit ball of C^p, Invent. Math., 67 (1982), 223-229.
- [3] W. Rudin, Inner functions in the unit ball, preprint.
- [4] _____, Function Theory in the Unit Ball of $\hat{\mathbf{C}}^n$, Springer, New York, 1980.

Received February 11, 1983.

University of Wisconsin Madison, WI 53706