A CONSTRUCTION OF INNER MAPS PRESERVING THE HAAR MEASURE ON SPHERES

Boguslaw Tomaszewski

Abstract

We show, for $n \geq m$, the existence of non-trivial inner maps f : $B^{n} \rightarrow B^{m}$ with boundary values $f_{*}: S^{n} \rightarrow S^{m}$ such that $f_{*}^{-1}(A)$ has a positive Haar measure for every Borel subset A of S^{m} which has a positive Haar measure. Moreover, if $n=m$, the equality $\sigma\left(f_{*}^{-1}(A)\right)=$ $\sigma(A)$ holds, where σ is the Haar measure of S^{m}.

In this paper \mathbf{C}^{n} is an n-dimensional complex space with inner product defined by $\left\langle z^{1}, z^{2}\right\rangle=\sum z_{i}^{1} \bar{z}_{i}^{2}$, where $z^{j}=\left(z_{1}^{\prime}, z_{2}^{j}, \ldots, z_{n}^{j}\right)$ for $j=$ 1,2 , and the norm $|z|=\langle z, z\rangle^{1 / 2}$. Let us introduce some notation:

$$
B^{n}=\left\{z \in \mathbf{C}^{n}:|z|<1\right\}, \quad S^{n}=\partial B^{n} ;
$$

let d be the metric on S^{n} :

$$
d\left(z, z^{*}\right)=\left(1-\operatorname{Re}\left\langle z, z^{*}\right\rangle\right)^{1 / 2}=\frac{1}{\sqrt{2}}\left|z-z^{*}\right| \quad \text { for } z, z^{*} \in S^{n},
$$

and finally

$$
B(z, r)=\left\{z^{*} \in S^{n}: d\left(z, z^{*}\right)<r\right\} \quad \text { for } z \in S^{n} \text { and } r>0 .
$$

For every complex function $h: X \rightarrow \mathbf{C}$ we define $Z(h)=h^{-1}(0)$. A holomorphic map $f: B^{n} \rightarrow B^{m}$ is called inner if

$$
f_{*}(z)=\lim _{r \rightarrow 1} f(r z) \in S^{m} \quad \text { for almost every } z \in S^{n}
$$

with respect to the unique, rotation-invariant Borel measure σ_{n} on S^{n} such that $\sigma_{n}\left(S^{n}\right)=1$. If a continuous function $g: \bar{B}^{n} \rightarrow \mathbf{C}^{m}$, defined on the closure of B^{n}, is holomorphic on B^{n}, we write $g \in A_{m}\left(B^{n}\right)$ or $g \in A\left(B^{n}\right)$ when $m=1$. The theorem stated below is a generalization of the result of Aleksandrov [1]. Corollary 1 answers the problem given by Rudin [3]. Corollary 4 is a result of Aleksandrov obtained independently by the author.

Theorem. Let $n \geq m$ and let $g=\left(g_{1}, \ldots, g_{m}\right) \in A_{m}\left(B^{n}\right), h \in A\left(B^{n}\right)$ be maps such that $|g(z)|+|h(z)| \leq 1$ and $h(z) \neq 0$ for some $z \in B^{n}$. Then there exists an inner map $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right): B^{n} \rightarrow B^{m}$ such that $f(z)=$ $g(z)$ for every $z \in Z(h)$ and $f_{i}(z)=g_{i}(z)$ for every $z \in B^{n}$ and $i=$ $1,2, \ldots, m-1$.

Corollary 1. For every $n \geq m$ there exist inner maps $f: B^{n} \rightarrow B^{m}$ such that for every Borel subset $A \subset S^{m}$ the inequality $\sigma_{n}\left(f_{*}^{-1}(A)\right)>0$ holds provided $\sigma_{m}(A)>0$. Moreover, if $m=n$, the equality $\sigma_{n}\left(f_{*}^{-1}(A)\right)=\sigma_{n}(A)$ holds and f is not an automorphism of B^{n}.

Corollary 2. For every $n \geq 1$ there exist inner maps $f: B^{n} \rightarrow B^{m}$, not automorphisms of B^{n}, such that

$$
\int_{S^{n}}\left(h \circ f_{*}\right) d \sigma_{n}=\int_{S^{n}} h d \sigma_{n}
$$

for every continuous function h on S^{n}.

Corollary 2 is an immediate consequence of Corollary 1. Let us assume that $n \geq m$ and $n \geq 2$. To deduce the assertion of Corollary 1 from the Theorem let us take a holomorphic function $k \in A\left(B^{1}\right)$ and the map $g \in A_{m}\left(B^{n}\right), g(z)=p(z)+\frac{1}{4} z_{n}^{2} r\left(z_{n}\right)$, where $p(z)=\left(z_{1}, z_{2}, \ldots\right.$, $\left.z_{m-1}, 0\right), r(z)=\left(0, \ldots, 0, k\left(z_{n}\right)\right)$ for $z \in B^{n}$. Define $h(z)=\frac{1}{4} z_{1} z_{n}^{2}$. Then

$$
|g(z)|+|h(z)| \leq|p(z)|+\frac{1}{4}\left|z_{n}^{2}\right|+\frac{1}{4}\left|z_{n}^{2}\right| \leq \sqrt{1-z_{n}^{2}}+\frac{1}{2}\left|z_{n}^{2}\right| \leq 1
$$

By virtue of the Theorem there exists an inner map $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$: $B^{n} \rightarrow B^{m}$ such that

$$
\begin{align*}
& f_{j}\left(z_{1}, z_{2}, \ldots, z_{n}\right)=z_{j} \text { for } j=1,2, \ldots, m-1, \tag{1}\\
& f_{m}\left(0,0, \ldots, 0, z_{n}\right)=\frac{1}{4} z_{n}^{2} r\left(z_{n}\right) \tag{2}\\
& f\left(z_{1}, z_{2}, \ldots, z_{n-1}, 0\right)=\left(z_{1}, z_{2}, \ldots, z_{m-1}, 0\right) \tag{3}
\end{align*}
$$

For any $z \in B^{m-1}$ and $l \geq m$ let

$$
\begin{aligned}
B_{z}^{l} & =\left\{z^{*} \in B^{l}: z_{j}^{*}=z_{j} \text { for } j=1,2, \ldots, m-1\right\} \\
S_{z}^{l} & =\left\{z^{*} \in S^{l}: z_{j}^{*}=z_{j} \text { for } j=1,2, \ldots, m-1\right\},
\end{aligned}
$$

let σ_{z}^{l} be the rotation-invariant measure on the sphere S_{z}^{l} such that $\sigma_{z}^{l}\left(S_{z}^{l}\right)=1$ and let f_{z}, f_{z}^{*} be the restrictions of f, f_{*} to the sets B_{z}^{n} and S_{z}^{n} respectively. From (1) it follows that $f_{z}: B_{z}^{n} \rightarrow B_{z}^{m}$ and (2) says that $f_{z}\left(w_{1}\right)=w_{2}$, where w_{1}, w_{2} are the centers of the balls B_{z}^{n}, B_{z}^{m} respectively. Since B_{z}^{m} is a one-dimensional complex ball, the equality $\sigma_{z}^{n}\left(\left(f_{z}^{*}\right)^{-1}(C)\right)$ $=\sigma_{z}^{m}(C)$ holds for every Borel subset C of S_{z}^{m} and every z for which f_{z} is an inner map (see [4] p. 405). The function f_{z} is inner for almost every $z \in B^{m-1}$ (with respect to the usual Lebesgue measure λ on B^{m-1}) because the map f is inner. Let us notice that there are positive functions
$s_{1}, s_{2}: B^{m-1} \rightarrow R_{+}$such that for all Borel subsets $C^{1} \subset S^{n}, C^{2} \subset S^{m}$ we have

$$
\begin{aligned}
& \sigma_{n}\left(C^{1}\right)=\int_{B^{m-1}} s_{1}(z) \cdot \sigma_{z}^{1}\left(C_{z}^{1}\right) d \lambda(z) \\
& \sigma_{m}\left(C_{2}\right)=\int_{B^{m-1}} s_{2}(z) \cdot \sigma_{z}^{m}\left(C_{z}^{2}\right) d \lambda(z)
\end{aligned}
$$

where $C_{z}^{1}=C^{1} \cap S^{n}, C_{z}^{2}=C^{2} \cap S^{m}$. Substituting $C_{1}=\left(f^{*}\right)^{-1}\left(C_{2}\right)$ and using the equality $\sigma_{z}^{n}\left(C_{z}^{1}\right)=\sigma_{z}^{m}\left(C_{z}^{2}\right)$ (which holds for almost every z), it is easy to see that both of the above integrals are positive or equal to 0 . If $n=m$ then $s_{1}=s_{2}$ and the equality holds. This ends the proof of Corollary 1.

The following proof of the assertion of the Theorem is based on Löw's construction of inner functions [3]. Let g and h be maps satisfying the assumptions of the Theorem. Then $\sigma_{n}(F)=0$, where $F=Z(h) \cap S^{n}$. (This fact can be proved by induction. For $n=1$ it is well-known theorem.) For $\delta>0$ let

$$
F_{\delta}=\left\{z \in S^{n}: d(z, F)<\delta\right\} \quad \text { and } \quad\|s\|_{\delta}=\sup _{z \in F_{\delta}}|s(z)|
$$

where $s: S^{n} \rightarrow \mathbf{C}^{m}$ is a continuous map. Observe that there exist constants A_{1}, A_{2} such that for every $0<r<\sqrt{2}$,

$$
\begin{equation*}
A_{1} r^{2 n-1} \leq A(r) \leq A_{2} r^{2 n-1} \tag{4}
\end{equation*}
$$

where $A(r)=\sigma_{n}(B(z, r))$ for any $z \in S^{n}$.
Let $S \subset S^{n}$ be any closed subset of $S^{n}, \sigma_{n}(S)>0$. Assume that for some number $r>0$,

$$
\begin{equation*}
\sigma_{n}\left(S_{r}\right) \leq 2 \sigma_{n}(S) \tag{5}
\end{equation*}
$$

where $S_{r}=\left\{z \in S^{n}: d(z, S)<r\right\}$. Let $\left\{B\left(z^{J}, r\right)\right\}_{J=1}^{N(r)}$ be a maximal family of disjoint balls with centers $z^{J} \in S$. Since $S_{r} \supset \bigcup_{j=1}^{N(r)} B\left(z^{J}, r\right)$ and $S \subset \bigcup_{j=1}^{N(r)} B\left(z^{J}, 2 r\right)$, applying inequalities (4) and (5), we get

$$
\begin{aligned}
2 \sigma_{n}(S) & \geq \sigma_{n}\left(S_{r}\right) \geq \sigma_{n}\left(\bigcup_{j=1}^{N(r)} B\left(z^{j}, r\right)\right)=\sum_{j=1}^{N(r)} \sigma_{n}\left(B\left(z^{j}, r\right)\right) \\
& =N(r) \cdot A(r) \geq A_{1} r^{2 n-1} \cdot N(r)
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma_{n}(S) & \leq \sigma_{n}\left(\bigcup_{j=1}^{N(r)} B\left(z^{j}, 2 r\right)\right)=\sum_{j=1}^{N(r)} A(2 r)=N(r) \cdot A(2 r) \\
& \leq N(r) \cdot A_{2} \cdot(2 r)^{2 n-1}=N(r) \cdot A_{2} \cdot 2^{2 n-1} \cdot r^{2 n-1}
\end{aligned}
$$

So we have proved the existence of positive constants C_{1} and $C_{2}\left(C_{1}=\right.$ $1 / 2^{2 n-1}, C_{2}=2 / A_{1}$) such that

$$
\begin{equation*}
\frac{C_{1}}{r^{2 n-1}} \cdot \sigma_{n}(S) \leq N(r) \leq \frac{C_{2}}{r^{2 n-1}} \cdot \sigma_{n}(S) . \tag{6}
\end{equation*}
$$

Let us assume now that $r>0, z \in B^{n}, k$ is a natural number and M_{k} is the maximal number of disjoint balls of radius r and with centers in $B(z,(k+1) r)$. Because these balls are included in $B(z,(k+2) r)$, an argument similar to the above gives the estimate

$$
\begin{equation*}
M_{k} \leq C_{3} k^{2 n-1} \tag{7}
\end{equation*}
$$

for some constant C_{3}. Let $\varphi:(0,1) \rightarrow R$ be the continuous, positive function defined by

$$
\varphi(a)=\frac{1}{4 \pi} \cdot C_{1} \cdot A_{1} \cdot \arccos (a) \cdot\left[\log \frac{1}{a}\right]^{(2 n-1) / 2} .
$$

Lemma 1. Let $0<2 \varepsilon<a<b, 0<\delta<2 C_{3} \cdot a, \varepsilon<C_{3} e^{-2 n}, R<1$. Let P be a closed subset of F_{δ} and let v be a continuous map v: $S^{n} \rightarrow \mathbf{C}^{m}$ such that $|v(z)|>a$ for $z \in P$. There exists a closed subset K of F_{δ} and a holomorphic map $u: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}$ such that:

$$
\begin{equation*}
\|v+h \cdot u\|_{\delta / 2} \leq \max \left(1,\|f\|_{\delta / 2}\right)+3 \varepsilon ; \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\|u\|_{R}=\sup _{|z| \leq R}|u(z)| \leq \varepsilon ; \tag{b}
\end{equation*}
$$

(c)

$$
|v(z)+h(z) \cdot u(z)|>a-3 \varepsilon \quad \text { for } z \in K \cup P
$$

(d)

$$
K \subset F_{\delta}, \quad K \cap P=0 \quad \text { and }
$$

$$
\sigma_{n}(K) \geq \varphi(a) \cdot\left[\log \left(4 C_{3} / \delta \varepsilon\right)\right]^{-(2 n-1) / 2} \cdot \sigma_{n}\left(F_{\delta}-P\right) ;
$$

(e)

$$
|g(z)|<\varepsilon \quad \text { for } z \in B^{n}-F_{\delta / 2} ;
$$

$$
\begin{equation*}
u_{j} \equiv 0 \quad \text { for } j=1,2, \ldots, m-1, \text { where } u=\left(u_{1}, u_{2}, \ldots, u_{m}\right) . \tag{f}
\end{equation*}
$$

Proof. If $\sigma_{n}(P)=\sigma_{n}\left(F_{\delta}\right)$ then the map $u=(0,0, \ldots, 0)$ and the set $K=\varnothing$ satisfy conditions (a)-(e). Let us assume that $\sigma_{n}(P)<\sigma_{n}\left(F_{\delta}\right)$.

There exists a positive number γ such that $\gamma<\delta / 2$ and

$$
\begin{equation*}
\sigma_{n}(S) \geq \frac{1}{2} \cdot \sigma_{n}\left(F_{\delta}-P\right) \tag{8}
\end{equation*}
$$

where $S=S^{n}-\left[\left(S^{n}-F_{\delta}\right) \cup P\right]_{\gamma}$.
Since v, h are uniformly continuous maps and S is a closed subset, there exists a positive number γ^{*} such that

$$
\begin{align*}
\left|g(z)-g\left(z^{\prime}\right)\right|<\varepsilon \delta, \quad\left|v(z)-v\left(z^{\prime}\right)\right|<\varepsilon, \quad \sigma_{n}\left(S_{r}\right) & \leq 2 \cdot \sigma_{n}(S) \tag{9}\\
\text { for } z, z^{\prime} \in S^{n}, d\left(z, z^{\prime}\right) & <\gamma^{*} \text { and } r<\gamma^{*}
\end{align*}
$$

Let r, m be positive numbers such that $r \leq \frac{1}{2} \min \left(\gamma, \gamma^{*}\right), m$ is an integer and $m r^{2}=\log \left(2 C_{3} / \delta \varepsilon\right)$. Moreover we assume m is large so that

$$
\begin{equation*}
C_{2} \cdot m^{(2 n-1) / 2} \cdot e^{-m(1-R)}<\varepsilon \tag{10}
\end{equation*}
$$

Choose a maximal family $\left\{B\left(z^{j}, r\right)\right\}_{J=1}^{N(r)}$ of pairwise disjoint balls with centers $z^{j} \in S^{n}$. Because of (9), condition (5) is satisfied, so inequalities (6) also hold. For $k=1,2, \ldots,[\sqrt{2} / r]$ and $z \in S^{n}$ let

$$
V_{k}(z)=\left\{z^{\prime}: k r \leq d\left(z, z^{\prime}\right)<(k+1) r\right\}
$$

and let $N_{k}(z)$ be the number of elements of the set V_{k}. Since $V_{k}(z) \subset$ $B(z,(k+1) r)$, from the definition of M_{k}, we have $N_{k}(z) \leq M_{k}$ and (7) gives us

$$
\begin{equation*}
N_{k}(z) \leq C_{3} k^{2 n-1} \tag{11}
\end{equation*}
$$

Let $g(z)=\sum_{j=1}^{N(r)} \beta_{j} e^{-m\left(1-\left(\left\langle z, z^{\prime}\right\rangle\right)\right)}$, where $\beta_{j}=\left(0,0, \ldots, 0, \alpha_{j}\right) \in \mathbf{C}^{m}$ is defined by $\beta_{J}=(0,0, \ldots, 0,0)$ if $\left|f\left(z^{J}\right)\right| \geq b$. If $\left|f\left(z^{J}\right)\right|<b$, then let β, be of the previous form, such that

$$
\left|f\left(z^{j}\right)+h(z) \cdot \beta_{j}\right|=b \quad \text { and } \quad\left|f\left(z^{J}\right)+\alpha \cdot h(z) \cdot \beta_{J}\right| \leq b
$$

for every $\alpha \in \mathbf{C},|\alpha|=1$. Let us notice that for every $j,\left|\beta,\left|\leq 1 /\left|h\left(z^{j}\right)\right| \leq\right.\right.$ $1 / \delta$ and that

$$
\begin{aligned}
g(z) & =\vec{k} \cdot \sum_{j=1}^{N(r)}\left|\beta_{j}\right| \cdot e^{-m d^{2}\left(z, z^{\prime}\right)} \cdot e^{i Q_{m, J}(z)} \\
& =\vec{k} \cdot \sum_{k=0}^{[\sqrt{2} / r]} \sum_{z^{J} \in V_{k}(z)}\left|\beta_{j}\right| e^{-m d^{2}\left(z, z^{\prime}\right)} e^{i Q_{m, J}(z)}
\end{aligned}
$$

for some real functions $Q_{m, j}$ and $\vec{k}=(0,0, \ldots, 0,1) \in \mathbf{C}^{m}$.

If $V_{0}(z)=\varnothing$ or $z \in B\left(z^{j}, r\right)$ with $\beta_{J}=0$ then, because of (11) and the inequality $m r^{2}>2 n$, we have

$$
\begin{align*}
|g(z)| & \leq \sum_{k=1}^{[\sqrt{2} / r]} \sum_{z^{\prime} \in V_{k}(z)} \frac{1}{\delta} e^{-m d^{2}\left(z, z^{\prime}\right)} \sum_{k=1}^{[\sqrt{2} / r]} \frac{1}{\delta}\left|V_{k}(z)\right| e^{-m k^{2} r^{2}} \tag{12}\\
& \leq \sum_{k=1}^{\infty} \frac{C_{3}}{\delta} k^{2 n-1} e^{-k^{2} m r^{2}} \leq \frac{C_{3}}{\delta} \sum_{k=1}^{\infty} e^{-k m r^{2}} \leq 2 \frac{C_{3}}{\delta} e^{-m r^{2}}=\varepsilon .
\end{align*}
$$

This proves part (e) of Lemma 1.If $z \in B\left(z^{j}, r\right)$ with $\beta_{j} \neq 0$ then

$$
\begin{align*}
& |v(z)+h(z) \cdot u(z)| \tag{13}\\
& \leq\left|v\left(z^{j}\right)+h\left(z^{j}\right) \cdot \beta_{j} \cdot e^{-m d^{2}\left(z, z^{\prime}\right)} \cdot e^{i Q_{m, J}(z)}\right| \\
& \quad+\left|\left[h(z)-h\left(z^{j}\right)\right] \cdot \beta_{j} \cdot e^{-m d^{2}\left(z, z^{\prime}\right)} \cdot e^{i Q_{m,(}(z)}\right|+\left|v(z)-v\left(z^{j}\right)\right| \\
& \quad+\left|h(z) \cdot \sum_{z^{\prime} \notin V_{0}(z)} \beta_{j} \cdot e^{-m d^{2}\left(z, z^{\prime}\right)} \cdot e^{i Q_{m, m}(z)}\right| \\
& =\mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV} .
\end{align*}
$$

Because of (9)

$$
\mathrm{III} \leq \varepsilon \quad \text { and } \quad \mathrm{II} \leq\left|h(z)-h\left(z^{j}\right)\right| \cdot\left|\beta_{j}\right|<\delta \cdot \varepsilon \cdot \frac{1}{\delta}=\varepsilon .
$$

By the same argument as in (12) we can prove that IV $\leq \varepsilon$. Moreover, we have $\mathrm{I} \leq\left|v\left(z^{j}\right)\right|+\left|h\left(z^{j}\right) \cdot \beta_{j}\right|=b$. This altogether gives us

$$
\begin{equation*}
|v(z)+h(z) \cdot u(z)| \leq b+3 \varepsilon . \tag{14}
\end{equation*}
$$

Inequalities (12) and (14) prove part (a) of Lemma 1. Now we shall determine a certain subset V of $W=\bigcup_{j=1}^{N(r)} B\left(z^{j}, r\right)$. To do this let us fix j, $1 \leq j \leq N(r)$, and let us take $\alpha=\left|v\left(z_{j}\right)\right|, s(z)=e^{-m d^{2}\left(z, z^{\prime}\right)}, Q(z)=$ $\arg \left(e^{-m\left(1-\left(\left\langle z, z^{\prime}\right\rangle\right)\right)}\right)=m \cdot \operatorname{Im}\left\langle z, z^{j}\right\rangle$.

Let us assume at first that $\alpha<1$. We define

$$
V_{j}=\left\{z \in B\left(z^{\prime}, r\right): s(z) \geq a \text { and } \cos Q(z) \geq a\right\} .
$$

Using the same notation as in (13) we can write

$$
\begin{equation*}
|v(z)+h(z) \cdot u(z)| \geq \mathrm{I}-\mathrm{II}-\mathrm{III}-\mathrm{IV} . \tag{15}
\end{equation*}
$$

As before, II $\leq \varepsilon$, III $\leq \varepsilon$ and IV $\leq \varepsilon$. Assuming $z \in V_{J}$, we have

$$
\begin{align*}
\mathrm{I} & =\left|v\left(z^{j}\right)+h\left(z^{J}\right) \cdot \beta_{j} \cdot e^{-m \cdot d^{2}\left(z, z^{J}\right)} \cdot e^{\iota Q(z)}\right| \tag{16}\\
& \geq\left|\alpha+(1-\alpha) \cdot s(z) \cdot e^{\iota Q(z)}\right| \\
& =\sqrt{\alpha^{2}+2 \alpha(1-\alpha) \cdot s(z) \cdot \cos Q(z)+(1-\alpha)^{2}} \geq a
\end{align*}
$$

because of our assumption about $s(z)$ and $\cos Q(z)$, the definition of β_{J} and simple geometry.

Combining (15) and (16) we get

$$
\begin{equation*}
|v(z)+h(z) \cdot u(z)|>a-3 \varepsilon \quad \text { for } z \in V_{j} \tag{17}
\end{equation*}
$$

Let $\rho>0$ be defined by $m \rho^{2}=\log (1 / a)$. Then $\rho \leq r$ because $m r^{2}=$ $2 C_{3} / \delta \varepsilon$ and $2 C_{3} / \delta \geq 1 / a$. So $B\left(z^{J}, \rho\right) \subset B\left(z^{j}, r\right)$, and if $z \in B\left(z^{J}, \rho\right)$ then $s(z) \geq a$. The set $\left\{z \in B\left(z^{j}, \rho\right): \cos Q \geq a\right\}$ consists of certain strips in the ball $B\left(z^{\prime}, \rho\right)$. An easy geometric argument shows that these strips have a total area at least

$$
\frac{1}{2 \pi} \cdot \arccos a \cdot \sigma_{n}\left(B\left(z^{j}, \rho\right)\right)=\frac{1}{2 \pi} \cdot \arccos a \cdot A(\rho)
$$

Moreover $V_{j} \subset B\left(z^{J}, r\right) \subset F_{\delta}$. Using inequality (4) and the fact that the above strips are included in V_{J}, we get

$$
\begin{equation*}
\sigma_{n}\left(V_{j}\right) \geq \frac{1}{2 \pi} \cdot \arccos a \cdot A(\rho) \geq \frac{1}{2 \pi} \cdot A_{1} \cdot \arccos a \cdot \rho^{2 n-1} \tag{18}
\end{equation*}
$$

If $\alpha \geq 1$, we define $V_{j}=B\left(z^{J}, \rho\right)$. Because $\beta_{j}=0$, it follows from (12) that

$$
\begin{align*}
|v(z)+h(z) \cdot u(z)| & \geq\left|v\left(z^{\jmath}\right)\right|-\left|v(z)-v\left(z^{j}\right)\right|-|h(z) \cdot u(z)| \tag{19}\\
& \geq a-\varepsilon-|u(z)| \geq a-2 \varepsilon
\end{align*}
$$

for $z \in V_{j}$.
Finally, we define $K=\bigcup_{j=1}^{N(r)} \bar{V}_{j}$. We observe that inequality (17) holds for $z \in K$. If $z \in P$, then $V_{0}(z)=\varnothing$ and inequality (12) gives us

$$
|v(z)+h(z) \cdot u(z)| \geq|v(z)|-|u(z)| \geq a-\varepsilon
$$

This altogether proves part (c) of Lemma 1. It is easy to check that $K \cap P=\varnothing$. Inequalities (18), (6), (9) and the definitions of ρ and $m r^{2}$ yield

$$
\begin{aligned}
\sigma_{n}(& K) \geq \sigma_{n}\left(\bigcup_{j=1}^{N(r)} V_{j}\right)=\sum_{j=1}^{N(r)} \sigma_{n}\left(V_{j}\right) \\
& \geq N(r) \cdot \frac{1}{2 \pi} \cdot A_{1} \cdot \arccos a \cdot \rho^{2 n-1} \\
& \geq \frac{C_{1}}{r^{2 n-1}} \cdot \sigma_{n}(S) \cdot \frac{1}{2 \pi} \cdot A_{1} \cdot \arccos a \cdot \rho^{2 n-1} \\
& \geq \frac{1}{4 \pi} \cdot C_{1} \cdot A_{1} \cdot \arccos a \cdot\left(m r^{2}\right)^{-(2 n-1) / 2} \cdot\left(m \rho^{2}\right)^{2 n-1} \cdot \sigma_{n}\left(F_{\delta}-P\right) \\
& =\varphi(a) \cdot \log \left(4 C_{3} /(\delta \varepsilon)\right)^{-(2 n-1) / 2} \cdot \sigma_{n}\left(F_{\delta}-P\right)
\end{aligned}
$$

This proves part (d) of Lemma 1. Finally, if $|z| \leq R$ then $\operatorname{Re}\left(1-\left\langle z, z^{j}\right\rangle\right)$ $\leq 1-R$ for $j=1,2, \ldots, N(r)$. Because of the inequalities $m r^{2} \geq 1$, (10) and (6), we have

$$
\begin{aligned}
|u(z)| & \leq N(r) \cdot e^{-m(1-R)} \leq C_{2} \cdot \frac{1}{r^{2 n-1}} \cdot e^{-m(1-R)} \\
& =C_{2} \cdot m^{(2 n-1) / 2} \cdot e^{-m(1-R)} \cdot\left(m r^{2}\right)^{-(2 n-1) / 2} \\
& \leq C_{2} \cdot m^{(2 n-1) / 2} \cdot e^{-m(1-R)} \leq \varepsilon
\end{aligned}
$$

This proves part (d) of Lemma 1 and ends the proof.
Lemma 2. Let v be a continuous map $v: S^{n} \rightarrow \mathbf{C}^{m}$ such that $\left\|\|v\|_{\delta}<b\right.$ <1 for some $\delta<C_{3}$. Let $\frac{1}{4}>\varepsilon>0, R<1$. Then there exists a holomorphic map $u: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}$ and a closed set $K \subset F_{\delta}$ such that:
(a) $\quad\|v+h \cdot u\| \|_{\delta}<b+\varepsilon ;$
(b) $\quad\|u\|_{R} \leq \varepsilon$;
(c) $\quad|v(z)+h(z) \cdot u(z)|>b-\varepsilon$;
(d) $\quad \sigma_{n}(K) \geq \sigma_{n}\left(F_{\delta}\right)-\varepsilon ;$
(e)' $\quad|u(z)| \leq \varepsilon \quad$ for $z \in S^{n}-F_{\delta}$;
$(\mathrm{f})^{\prime} \quad u_{j} \equiv 0 \quad$ for $j=1,2, \ldots, m-1$, where $u=\left(u_{1}, u_{2}, \ldots, u_{m}\right)$.

Proof. Let $a=b-\frac{1}{2} \varepsilon$ and choose a sequence $\left\{\varepsilon_{j}\right\}$ satisfying the assumptions of Lemma 1 and such that $6 \sum_{j=1}^{\infty} \varepsilon_{j}<\varepsilon$. We can assume $\varepsilon_{j}=A \cdot \exp \left\{-(\tau \cdot j)^{2 /(2 n-1)}\right\}, A=2 C_{3} / \delta$ and τ is some large number.

Apply Lemma 1 to the data $a, \varepsilon_{1}, R, v, P=\varnothing$ to produce a holomorphic map $u_{1}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}$ and a closed set $K_{1} \subset F_{\delta}$ such that:
(a) ${ }_{1} \quad\left\|\left|v+h \cdot u_{1}\right|\right\|_{\delta} \leq b+3 \varepsilon_{1} ;$
(b) ${ }_{1} \quad\left\|v_{1}\right\|_{R} \leq \varepsilon_{1}$;
(c) ${ }_{1} \quad\left|v(z)+h(z) \cdot u_{1}(z)\right| \geq a-3 \varepsilon_{1} \quad$ for $z \in K_{1}$;
(d) $\alpha_{1} \quad \alpha_{1}=\sigma_{n}\left(K_{1}\right) \geq \varphi(a) \cdot\left[\log \left(A / \varepsilon_{1}\right)\right]^{-(2 n-1) / 2} \cdot \sigma_{n}\left(F_{\delta}\right) ;$
(e) ${ }_{1} \quad\left|u_{1}(z)\right| \leq \varepsilon_{1} \quad$ for $z \in S^{n}-F_{\delta}$;
$(\mathrm{f})_{1} \quad u_{j}^{1} \equiv 0 \quad$ for $j=1,2, \ldots, m-1$, where $u_{1}=\left(u_{1}^{1}, u_{2}^{1}, \ldots, u_{m}^{1}\right)$.
Suppose that holomorphic maps $u_{1}, u_{2}, \ldots, u_{p-1}\left(u_{j}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}\right.$ for $j=$ $1,2, \ldots, p-1$) have been chosen together with closed sets $K_{1}, K_{2}, \ldots, K_{p-1}$ such that if $W_{i}=\bigcup_{j=1}^{i} K_{j}$ then $K_{i+1} \cap W_{i}=\varnothing$ and $\sigma_{n}\left(K_{i}\right)=\alpha_{i}, K_{i} \subset F_{\delta}$. A map $u_{p}: \mathbf{C}^{n} \rightarrow \mathbf{C}^{m}$ and a closed set K_{p} is then obtained by applying Lemma 1 to the data $a-3 \sum_{i=1}^{p-1} \varepsilon_{i}, \varepsilon_{p}, R, v+h(z) \cdot\left(u_{1}+u_{2}+\cdots+\right.$ $\left.u_{p-1}\right), W_{p-1}$. This produces a sequence $\left\{v_{k}\right\}$ of holomorphic maps (v_{k} : $\mathbf{C}^{n} \rightarrow \mathbf{C}^{m}$ for $k=1,2, \ldots$) and a sequence $\left\{K_{k}\right\}$ of disjoint closed sets such that $K_{k} \subset F_{\delta}, \sigma_{n}\left(K_{k}\right)=\alpha_{k}$ and:
$(\mathrm{a})_{p}$

$$
\left\|\left\|v+h \cdot \sum_{k=1}^{p} u_{k}\right\|_{\delta} \leq b+3 \cdot \sum_{k=1}^{p} \varepsilon_{k}<b+\varepsilon\right.
$$

(b) ${ }_{p}$

$$
\left\|\sum_{k=1}^{p} u_{k}\right\|_{R} \leq \sum_{k=1}^{p}\left\|u_{k}\right\|_{R} \leq \sum_{k=1}^{p} \varepsilon_{k}<\varepsilon
$$

(c) $p_{p}\left|v(z)+h(z) \cdot \sum_{k=1}^{p} u_{k}(z)\right| \geq a-3 \cdot \sum_{k=1}^{p} \varepsilon_{k}$

$$
\geq a-\frac{1}{2} \varepsilon=b-\varepsilon \quad \text { for } z \in W_{p}
$$

$(\mathrm{d})_{p} \quad \alpha_{p}=\sigma_{n}\left(K_{p}\right)$

$$
\begin{aligned}
& \geq \varphi\left(a-3 \cdot \sum_{k=1}^{p-1} \varepsilon_{i}\right) \cdot\left[\log \frac{A}{\varepsilon_{p}}\right]^{-(2 n-1) / 2} \cdot\left(\sigma_{n}\left(F_{\delta}\right)-\sum_{k=1}^{p-1} \alpha_{k}\right) \\
& \geq \varphi(a) \cdot\left[\log \frac{A}{\varepsilon_{p}}\right]^{-(2 n-1) / 2} \cdot\left(\sigma_{n}\left(F_{\delta}\right)-\sum_{k=1}^{p-1} \alpha_{k}\right)
\end{aligned}
$$

(e) $)_{p} \quad\left|\sum_{k=1}^{p} u_{k}(z)\right| \leq \sum_{k=1}^{p}\left|u_{k}(z)\right| \leq \sum_{k=1}^{p} \varepsilon_{k}<\varepsilon \quad$ for $z \in S^{n}-F_{\delta} ;$
$(\mathrm{f})_{p} \quad u_{j}^{k} \equiv 0 \quad$ for $k=1,2, \ldots, p$ and $j=1,2, \ldots, m-1$, where $u_{k}=\left(u_{1}^{k}, u_{2}^{k}, \ldots, u_{m}^{k}\right)$.

If $\sum_{k=1}^{\infty} \alpha_{k}<\sigma_{n}\left(F_{\delta}\right)$, (d) shows that there is a constant C_{4} such that for every positive integer k,

$$
\alpha_{p} \geq C_{4} \cdot\left[\log \frac{A}{\varepsilon_{p}}\right]^{-(2 n-1) / 2}=\left[C_{4} \cdot(\tau p)^{2 /(2 n-1)}\right]^{-(2 n-1) / 2}=\frac{C_{4}}{\tau p}
$$

This is impossible, because then $\sum_{p=1}^{\infty} \alpha_{p}=\infty$ and α_{p} are the measures of the disjoint sets. Hence, we may assume that $\sum_{k=1}^{\infty} \alpha_{k}=\sigma_{n}\left(F_{\delta}\right)$. It follows that for p sufficiently large and $P=W_{p}$ we have $\sigma_{n}(P)=\sum_{k=1}^{p} \alpha_{k}>1-\varepsilon$, which is part (d)' of Lemma 2. Letting $h=\sum_{k=1}^{p} u_{k}$, parts (a)', (b)', (c)', $(\mathrm{e})^{\prime},(\mathrm{f})^{\prime}$ are just $(\mathrm{a})_{p},(\mathrm{~b})_{p},(\mathrm{c})_{p},(\mathrm{e})_{p},(\mathrm{f})_{p}$. So we have proved the assertion of Lemma 2.

Assume now that g and h satisfy the assumptions of the Theorem. Then $\|\|g\|\|_{\delta} \leq 1-\delta$. To prove the Theorem, take a sequence $\delta_{1}, \delta_{2}, \ldots$ of positive numbers such that $\delta_{1}<C_{3}$ and $\delta_{i+1}<\delta_{l} / 2$ and let $a_{1}=b_{1}=1$ $\frac{1}{2} \delta_{1}, \varepsilon_{1}=\min \left(\frac{1}{16}, \frac{1}{4} \delta_{1}\right), R_{1}=\frac{1}{2}$. Apply Lemma 2 to the data $g_{1}=g, b_{1}, \delta_{1}$, R_{1} to get a map u_{1} and a set $K_{1} \subset F_{\delta_{1}}$ such that, for $p=1$ and $g_{1}=g$:
(i) $p_{p} \quad| |\left|g_{p}+h \cdot u_{p}\right|\| \|_{\delta_{p}}<b_{p}+\varepsilon_{p}<1$;
$\left(\right.$ (ii) ${ }_{p} \quad\left\|u_{p}\right\|_{R_{p}} \leq \varepsilon_{p} ;$
(iii) ${ }_{p} \quad\left|g_{p}(z)+h(z) \cdot u_{p}(z)\right| \geqslant b_{p}-\varepsilon_{p} \quad$ for $z \in K_{p}$;
(iv) $p_{p} \quad \sigma_{n}\left(K_{p}\right) \geq \sigma_{n}\left(F_{\delta_{p}}\right)-\varepsilon_{p} ;$
$(\mathrm{v})_{p} \quad 1-\left|g_{p}(z)+h(z) \cdot u_{p}(z)\right|$

$$
\geq\left(1-\sum_{i=1}^{p} \varepsilon_{i}\right)|h(z)| \quad \text { for } z \in S^{n}-F_{\delta_{p}}
$$

$(\mathrm{vi})_{p} \quad u_{j}^{p} \equiv 0 \quad$ for $j=1,2, \ldots, m-1$ where $u_{p}=\left(u_{1}^{p}, u_{2}^{p}, \ldots, u_{m}^{p}\right)$.
Inequality (v) follows from (e)' of Lemma 2, because for $z \in S^{n}-F_{\delta_{1}}$, we have $\left|u_{1}(z)\right|<\varepsilon_{1}$, so

$$
\begin{aligned}
1-\left|v(z)+h(z) \cdot u_{1}(z)\right| & \geq 1-|v(z)|-\left|u_{1}(z) \cdot h(z)\right| \\
& \geq|h(z)|-\varepsilon_{1} \cdot|h(z)|=\left(1-\varepsilon_{1}\right) \cdot|h(z)|
\end{aligned}
$$

Since $g_{1}+h \cdot u_{1}$ is a continuous map on \bar{B}^{n}, there exists an R_{2} such that $\frac{1}{2}+\frac{1}{2} R_{1}<R_{2}<1$ and, for $p=1$,
(vii) $)_{p} \quad\left|g_{p}\left(R_{p+1} \cdot z\right)+h\left(R_{p+1} \cdot z\right) \cdot u_{p}\left(R_{p+1} \cdot z\right)\right|>b_{p}-2 \varepsilon_{p}$

$$
\text { for } z \in K_{p}
$$

Suppose we have inductively found holomorphic maps $u_{1}, u_{2}, \ldots, u_{p}$, closed sets $K_{1}, K_{2}, \ldots, K_{p}$, real numbers $R_{1}, R_{2}, \ldots, R_{p+1}, b_{1}, b_{2}, \ldots, b_{p}$, $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p}$ such that $\frac{1}{2}+\frac{1}{2} R_{l}<R_{i+1}, \varepsilon_{t}>0$ for $i=1,2, \ldots, p$ and $\sum_{i=1}^{p} \varepsilon_{i}<1 / 8$. Let us assume $g_{j+1}=g+h \cdot \sum_{i=1}^{J} u_{i}$ and conditions (i) $j_{j}-(\text { vii })_{j}$ are satisfied for $j=1,2, \ldots, p$. We also assume that $1-1 / j \leq$ $b_{J}<b_{J}+\varepsilon_{J}<1$. If $z \in\left(F_{\delta_{p+1}}-F_{\delta_{p}}\right)$ then according to (v) p_{p}, we have

$$
1-\left|g_{p+1}(z)\right| \geq\left(1-\sum_{i=1}^{p} \varepsilon_{l}\right) \cdot|h(z)| \geq \frac{1}{2} \cdot \delta_{p+1}
$$

since $|h(z)| \geq \delta_{p+1}$. This, together with (i) $)_{p}$, shows that $\left|\left\|g_{p+1} \mid\right\|_{\delta_{p+1}}<1\right.$. Take any $b_{p+1}>1-1 /(p+1)$ and ε_{p+1} satisfying the inequalities $1>$ $b_{p+1}+\varepsilon_{p+1}>b_{p+1}>\| \| g_{p+1}\| \|_{\delta_{p+1}}$ and $\sum_{i=1}^{p+1} \varepsilon_{i}<1 / 8$. Since the map g_{p+1} is continuous on \bar{B}^{n}, we can find a number R_{p+2} such that $\frac{1}{2}+\frac{1}{2} R_{p+1}<$ $R_{p+2}<1$ and such that condition (vii) p_{p+1} is satisfied. Now we can apply Lemma 2 to the data $g_{p+1}, b_{p+1}, \varepsilon_{p+1}, R_{p+1}$. We get some map u_{p+1} and a set K_{p+1}. It follows from Lemma 2 that conditions (i) $p_{p+1}-(\mathrm{iv})_{p+1}$ and (vi) ${ }_{p+1}$ are satisfied. For $z \in S^{n}-F_{\delta_{p+1}}$, by the virtue of (e)' and (v) $)_{p}$, we have

$$
\begin{aligned}
1-\mid g_{p+1}(z) & +h(z) \cdot u_{p+1}(z) \mid \\
\geq & 1-\left|g_{p}(z)+h(z) \cdot u_{p}(z)\right|-\left|h(z) \cdot u_{p+1}(z)\right| \\
\geq & \left(1-\sum_{i=1}^{p} \varepsilon_{i}\right) \cdot|h(z)|-|h(z)| \cdot \varepsilon_{p+1} \\
= & \left(1-\sum_{i=1}^{p+1} \varepsilon_{i}\right) \cdot|h(z)| .
\end{aligned}
$$

So we have also proved that condition (v) $)_{p+1}$ is satisfied. Conditions (ii) p_{p} $(p=1,2,3 \ldots)$ and the definition of g_{p} say that the sequence $\left\{g_{p}\right\}$ is convergent uniformly on every ball $R_{p} \cdot B^{n}$, and since $\lim _{p \rightarrow 1} R_{p}=1$, this sequence is pointwise convergent to some holomorphic map f on the ball B^{n}. From conditions $(\mathrm{i})_{p}$ and $(\mathrm{v})_{p}$ it follows that each map g_{p} is bounded by 1 on B^{n}. So, also $\|f\|_{\infty} \leq 1$. For $\delta>0$ let $L_{p}=F_{\delta} \cap \cap_{f>p} K_{J}$. Then, for q large enough, $F_{\delta} \subset F_{\delta_{p}}$ for $p>q$. We have

$$
\begin{aligned}
\sigma_{n}\left(F_{\delta}\right)-\sigma_{n}\left(L_{q}\right) & =\sigma_{n}\left(\bigcup_{j>q}\left(F_{\delta}-\left(F_{\delta} \cap K_{q}\right)\right)\right) \\
& \leq \sum_{j>q} \sigma_{n}\left(F_{\delta}-\left(F_{\delta} \cap K_{j}\right)\right) \leq \sum_{j>q} \sigma_{n}\left(F_{\delta_{j}}-K_{J}\right)<\sum_{j>q} \varepsilon_{j}
\end{aligned}
$$

Hence $\lim _{q \rightarrow \infty} \sigma_{n}\left(L_{q}\right)=\sigma_{n}\left(F_{\delta}\right)$. It is obvious from (iii) ${ }_{p}$ and the equality $\lim _{p \rightarrow \infty} b_{p}=1$ that $\lim _{R \rightarrow 1} f(R z)=1$ for $z \in L_{q}$, provided this limit exists. Since δ was arbitrary, this proves that the map f is inner, since $\sigma_{n}\left(\cap_{p}\left(S^{n}-F_{\delta_{p}}\right)\right)=0$. Now it is easy to check that f satisfies the Theorem.

Corollary 3. Let $m<n$ and let $g \in A_{m}\left(B^{m}\right),\|g\|_{\infty} \leq 1$. There exists an inner map $f: B^{n} \rightarrow B^{m}$ such that

$$
f\left(z_{1}, z_{2}, \ldots, z_{m}, 0,0, \ldots, 0\right)=g\left(z_{1}, z_{2}, \ldots, z_{m}\right) .
$$

Proof. Let $\Phi: B^{m} \rightarrow B^{m}$ be an automorphism of B^{m} such that $\Phi(g(0, \ldots, 0))=(0, \ldots, 0)$. Take $\tilde{g}: B^{m} \rightarrow B^{m}, \tilde{g}(z)=\Phi\left(g\left(z_{1}, z_{2}, \ldots, z_{m}\right)\right)$, $h(z)=\frac{1}{2} \cdot z_{n}^{2}$. By virtue of Schwartz's lemma,

$$
\tilde{g}(z) \leq\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\cdots+\left|z_{m}\right|^{2}\right)^{1 / 2}
$$

So we have

$$
|\tilde{g}(z)|+|h(z)| \leq\left(1-\left|z_{n}\right|^{2}\right)^{1 / 2}+\frac{1}{2} \cdot\left|z_{n}\right|^{2} \leq 1 .
$$

We can apply the Theorem for g and h to get an inner map \tilde{f}. The inner $\operatorname{map} f=\Phi^{-1}(\tilde{f})$ will satisfy Corollary 3 .

Corollary 4. There exists an inner function $f: B^{n} \rightarrow D$ such that

$$
\frac{\partial f}{\partial z_{1}}(0,0, \ldots, 0)=1
$$

Proof. Take $m=1$ in Corollary 3 and a function $g: B^{1} \rightarrow D, g(z)=z$.
Remark. The assumption $g \in A_{m}\left(B^{m}\right)$ in Corollary 3 is not necessary: we can take any holomorphic map $g: B^{m} \rightarrow B^{m}$. Then the map \tilde{g}, defined as before, can be prolonged to a continuous map on $\bar{B}^{n}-A$, where $A \subset S^{n}$ and $\sigma_{n}(A)=0$. One can check that the Theorem is still valid for such maps.

References

[1] A. B. Aleksandrov, The existence of inner functions on the unit ball, Mat. Sb. 1982, v. 118 (160) N2(6), 147-163 (in Russian).
[2] E. Löw, A construction of inner functions on the unit ball of \mathbf{C}^{p}, Invent. Math., 67 (1982), 223-229.
[3] W. Rudin, Inner functions in the unit ball, preprint.
[4] , Function Theory in the Unit Ball of \mathbf{C}^{n}, Springer, New York, 1980.
Received February 11, 1983.

University of Wisconsin
Madison, WI 53706

