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WEAK FACTORIZATION OF DISTRIBUTIONS
IN Hp SPACES

AKIHIKO MIYACHI

The weak factorization theorem for real Hardy spaces Hp(Rn),
previously obtained by Coif man, Rochberg and Weiss, and by Uchiyama
for the casep > n/(n + 1), is extended to the casep < n/(n -f 1).

1. Introduction. The purpose of this paper is to give an extension
of the following

THEOREM A. (Coifman-Rochberg-Weiss [3; Theorem II], Uchiyama [7;
Corollary to Theorem 1], [8].) Let K be a homogeneous singular integral
operator of Colderδn-Zygmund type on R" and K' its conjugate. Suppose
p,q,r>0 satisfy \/p = \/q + 1/r < 1 + \/n. (i) If h E L2 Π H%Rn),
g E L2 ΓΊ Hr(Rn) and

f=hKg-gK'h,

then fEHp(Rn) and

(ii) Conversely, if, furthermore, K is not a constant multiple of the
identity operator andp < 1, every f E Hp(Rn) can be written as

00

where λj are complex numbers, h} E L2 Π H^R"), gj <Ξ L2 C\ Hr(R") and

'p

<C 3 .

The constants Cx, C2 and C3 depend only on p, q, r, K and n.

As for the definition of Hp{Rn), see Fefferman-Stein [4]; as for the
operators K and K\ see the definitions given in the next section.

An extension of part (i) to the case \/p > 1 + \/n is given in the
following

T H E O R E M B. (Miyachi [6].) Let KX,...,KN be homogeneous singular

integral operators of Calderόn-Zygmund type on R" and Kj their conjugates.
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Set, for h e L2 Π H%R") and g E L2 Π Hr(R"),

e summation ranges over all subsets Jof{l9...9N}9 \J\ denotes the
number of elements of J, Jc is the complement of J, and Π is the product of
operators', if J or Jc is the empty set, the corresponding product Π means the
identity operator. Then, ifp, q, r> 0 satisfy \/p — \/q + \/r < 1 + N/n,
there is a constant C depending only on K},...,KN,p, q, r andn such that,
for all h<ΞL2 Π H%Rn) and all g G L2 Π Hr(Rn),

In this paper, we shall extend part (ii) of Theorem A to the case
\/p > 1 + \/n by using the "product" given in Theorem B.

Throughout this paper, we use the following

NOTATION. For x 6 R " and r > 0, B(x, r) denotes the ball with
respect to the usual metric with center x and radius r. If aι,...,an are
nonnegative integers and a — (α l 5 . . . ,o Λ ), the differential operator 9" is
defined by

and I a \ by | a |= ax + - + α n . We shall also use the notation

(d/dx)af(x) = 3«/(x).

If s is a real number, [s] denotes the largest integer not greater than s. ψ
denotes the Fourier transform.

2. The result. Before we state our theorem, we shall explain the
singular integral operators considered in this paper.

DEFINITION 1. We say that K is a homogeneous singular integral
operator of Calderόn-Zygmund type if it is defined by

(1) Kf=φ-χ(m$f)

with a bounded function m smooth in R"\{0} and homogeneous of
degree zero, i.e. satisfying
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We shall call m the multiplier corresponding to K.

DEFINITION 2. If K is a homogeneous singular integral operator of
Calderόn-Zygmund type defined by (1), the conjugate operator Kf is
defined by

£P(X,,..

j

h,

Fg(£ ~ lϊ)
TV

π
7=1

where m(ξ) = m{—£).
By using the Fourier transform, the "product" of Theorem B can be

redefined by

~V)~ m^-η)) dη9

where my is the multiplier corresponding to Kj.
The theorem of this paper reads as follows.

THEOREM. Let Kl9... ,KN be homogeneous singular integral operators of
Calderόn-Zygmund type and my the multipliers corresponding to Ky Suppose
/?, q, r > 0 satisfy 1 < \/p = \/q + \/r < 1 + N/n and the multipliers
nij satisfy the following condition: for any £¥=0, there exists an η Φ 0 such
that

H K ({)^yW)^o.
7 = 1

Then every f E Hp(Rn) can be decomposed as

f= 2

,- are complex numbers, hjGL2 Π ff«(R"), gy ε L 2 Π H^R")

00

Σ
I/P

with a constant C depending only on Ku... 9KN9 p, q, r and n.

The rest of the paper will be devoted to the proof of this theorem.
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3. Proof of Theorem. The proof will be based on the following

LEMMA 1. // 0 < / ? < 1, every f E Hp(Rn) can be decomposed as
follows:

where λj are complex numbers, fj are functions satisfying, for some balls

(2)

and

support(/7)

.-n/p

711L00

jfj(x)xadx = Q for\a\<[n/p-n]

Σ M
\/p

constant A depends only on p and n.

This lemma is given by Latter [5].
We shall introduce a class of functions: for/?, t > 0 and a nonnegative

integer M, we denote by &PfM(t) the set of all functions / E L2(R") such
that

and

LEMMA 2. // 0 <p < 2 and M > n/p — n/29 then &p,M(t) C
there is a constant C depending only on n andp such that

Proof. We may assume M = [n/p — n/2] + 1. We shall prove that

P'\nι^f)\\LP<C forall/e<% i Λ /(ί), / > 0,

whenever m is a bounded function satisfying

£| iΓ w for |α|<M.
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This will prove the lemma by the singular integral characterization of
Hp(Rn) (see Fefferman-Stein [4; §8] or Coifman-Dahlberg [2]).

Now suppose / E &PtM(t)9 t > 0, and m is as above; we set g =
^ ) . Then

| | | | 2^ I α | < Aί,

and hence, by PlanchereΓs theorem,

|| \x fg(*)y ^ Ctk-""+n'29 * = 0,1,... ,M.

From this we can derive the desired estimate by using Holder's inequality.
In fact, if 0 < p < 2 and \/p = 1/2 + l/q9 we have

\g(x)fdx) ^\\g\\LAί dx\ <
/ \J\χ\<t I

and

/ \g(x)\ dx\ <\\x\Mg(x)\L2 / \x\~Mqdx\ < C,
V\χ\>t I \J\χ\>t I

where we used the fact that Mq > n\ thus \\g\\LP ^ C. This completes the
proof.

LEMMA 3.IfO<p<\andM> n/p - n/2, every / E HP(R") can be
decomposed as follows:

00

j=\

where λj are complex numbers, fj E & M^j) w^ s o m e tj > 0> χj £= RΛ

2|λ/J

with a constant A' depending only on M9 p and n.

Proof. We shall prove that if/satisfies

support(/) CB(x09ρ)9

(3)

ff{x)xadx = 0 toτ\a\<[n/p-n],
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then we can take a constant A" depending only on M, p and n and a
function g £ &pM(t), t > 0, such that

(4) \\f-A"g( -xo)\\H,<l/2A,

where A is the constant in Lemma 1.
For the moment we assume the approximation (3)-(4) and derive

Lemma 3 from Lemma 1. Let/be an arbitrary element of Hp(Rn). Apply
Lemma 1 to/to obtain

with fj satisfying (2) and λj satisfying

WP

then apply the approximation (3)-(4) to each^ to obtain
00

withg7.

Next apply the same process to^ 1 } to obtain a smaller error /(2), and then
again apply the same process to f(2) to obtain ^ 3 ) , . . . ; repeating this
process, we obtain, for each N,

/= 2 Σ\kjA"g*(—x*)+flff+l)t
k=0 j=\

where g j e &p>M(ή), ή > Q, and

j=\

Now the decomposition of Lemma 3 can be obtained by letting N -* oo
since

00 00 \ l/P I 00 \\/P

Σ Σ |λ^ ' f ^ 2 2"*' A"A\\f\\H, =
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Now we shall prove the approximation (3)-(4). We may assume
x0 = 0; suppose/satisfies (3) with x0 — 0.

First observe that the Fourier transform of / has the following

estimates:

(5)

(6) |a

where the constant Cα depends only on /?, n and a. Estimate (5) follows
from

via PlanchereΓs theorem. Estimate (6) follows, if | α | < [n/p — n\ from
the estimates

L<° < Cp[n/p]+λ~n/p ioτ\β\=[n/p - n] - | α | + 1

via Taylor's formula; if \a\>[n/p — n], (6) is a consequence of the
stronger estimate

For T > 2, consider the function

where ψ is a fixed smooth function on R" such that ψ(|) = 1 for | £ | > 2
and ψ(ξ) = 0 for | £ |< 1. From (5) and (6) we shall derive the estimates

(7) ||3β^Λr||^ ^

(8) 11/- hT\\HP <

where Q and C do not depend on /, p and T. Once these estimates are
proved, the approximation (4) can be obtained by setting

with A" and T sufficiently large; A" and T can be taken depending only
on M,p and n.

Thus the proof is reduced to that of (7) and (8). (7) follows directly
from (5). In order to prove (8), decompose/ — hτ as

f-hτ= 2 1
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where χ(£) = ψ(2£) — ψ(£) As for^, we have

s u p p o r t ^ ) C {£; I'1 < 2 ' T p | ξ | < 2 } ,

and, from (6),

and, hence, by Lemma 2,

Thus

11/-M*̂  Σ lit
\/p

This proves (8) and completes the proof of Lemma 3.

Proof of Theorem, Since \/p — \/q + \/r > 1, either q or r is less

than or equal to 2; we assume r < 2.

We shall prove that, for any / G &p%M{t\ t > 0, M = [Λ//? - n/2] +

2, we can take hj <Ξ L2 Γ) Hq(Rn), gj E L 2 Π ^ r ( R " ) and complex num-

bers λ, so that we have

Hp

I/P

2Af

Σ|λ

where ylr is the constant in Lemma 3 corresponding to M — [n/p — n/2]

+ 2 and C is a constant depending only on Kl9...,KN, p, q, r and n.

Once this is proved, the Theorem is derived from Lemma 3 by the same

argument as Lemma 3 was derived from Lemma 1.

Firstly, observe that our assumption on the multipliers means, via a

compactness argument, that there exist a finite open covering {Vk; k —

1,2 m} oΐS"-ι = {ζeΈr; \ξ\= 1}, points {ηk; k= 1,2,...,/n} C

Sn~\ and a positive number c such that, for each k,

(9) inf
N
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Let {φ ;̂ k — l,2,...,m) be a smooth partition of unity on Sn~λ sub-
ordinate to the covering {Vk\ k— l,2,...,m}. Take an arbitrary/E
& M(0> t > 0, M = [n/p — n/2] + 2. Decompose/as

m

/=ΣΛ, Λ =
k=\

where φΛ(£) = φk(ξ/\ξ\) It is sufficient to show that for each k we can
take hk<ΞL2n H%R") and gk £ L2 n /f(R") such that

(10) \\\fk-P(Kι,...,KN;hk,gk)\\ffP<m'^(2AT\

In order to prove (10), we set
1

As a candidate for A ,̂ we consider the following function. Take a smooth
function 0 satisfying support(0) C 2?(0,1) and / θ(x) dx — 1, and set

where δ and ε are small positive numbers satisfying e < 8/2 and δ + ε <
1/2. We shall prove the following estimates:

(ii)

(12) llAwJi^Cie-'O"*

(13) ||Λ - P(*,,. . .,K N ; hkXt, gk)\\Hf <

where C is a constant depending only onKl9... ,KN, p, q,r and n. If these
estimates are established, (10) can be obtained by taking hk — hk δ ε with δ
and ε sufficiently small; δ and ε can be taken depending only on
Kl9...9KN9p,q9randn.

Proof of^11). By (9) and by the homogeneity of mJ9 the function

satisfies

\d G{ξ)\<iCa\ξΓ»
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in an appropriate neighborhood of support(f/^). Hence the well-known
multiplier theorem for Hp spaces (see [4; Theorem 12] or [1; Theorems 4.6
and 4.7]) gives

ll&llir =s c\\fk\\Hr < c\\j\\Hr < o

where the last inequality is due to Lemma 2.

Proof of"(12). If ? > 2, we have

if # :< 2, then (12) is obtained by using Lemma 2 since

Proof of (\3). We shall again appeal to Lemma 2. We have

-JP(tfI,...,tf iV;ΛM,ε,gJ)U)

= f$hk<8tt{η){9fk(ξ) - $fk(t -

- Π —77—\ 1—\ d^

+ Htf).
Supports of the functions I and II are contained in

{ξ E R"; dist(|, support(^Λ)) < (δ + ε)/"1}

and, hence, in {|£|> (2t)~ι). As for the function I, we have, if | α | < M
1 = [n/p - n/2] + 1,

In order to estimate II, observe the following inequalities: if £ — η
support(^) and ξ E B(δΓ]ηk, εΓ]),

JL/JLΓπ mM~^\~mA~^
7\y \ xt ] II£ mj(ξ - η) - mji-i
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and, hence, if £ — η e supported) and η G support(37iMif),

175

d_\a

9£
_

-/w y (-η)

m y ( |-η)-m y (

8 \«£ w7(i-ij)-/wy(-?)

Using this inequality, we obtain, for | a | < M,

Now we can utilize Lemma 2 to obtain

which implies (13).

This completes the proof of the Theorem.
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