WEAK FACTORIZATION OF DISTRIBUTIONS IN H^p SPACES

Акініко Мічасні

The weak factorization theorem for real Hardy spaces $H^p(\mathbb{R}^n)$, previously obtained by Coifman, Rochberg and Weiss, and by Uchiyama for the case p > n/(n + 1), is extended to the case $p \le n/(n + 1)$.

1. Introduction. The purpose of this paper is to give an extension of the following

THEOREM A. (Coifman-Rochberg-Weiss [3; Theorem II], Uchiyama [7; Corollary to Theorem 1], [8].) Let K be a homogeneous singular integral operator of Calderón-Zygmund type on \mathbb{R}^n and K' its conjugate. Suppose p, q, r > 0 satisfy 1/p = 1/q + 1/r < 1 + 1/n. (i) If $h \in L^2 \cap H^q(\mathbb{R}^n)$, $g \in L^2 \cap H^r(\mathbb{R}^n)$ and

$$f = hKg - gK'h,$$

then $f \in H^p(\mathbf{R}^n)$ and

$$||f||_{H^p} \leq C_1 ||h||_{H^q} ||g||_{H^r}.$$

(ii) Conversely, if, furthermore, K is not a constant multiple of the identity operator and $p \leq 1$, every $f \in H^p(\mathbb{R}^n)$ can be written as

$$f = \sum_{j=1}^{\infty} \lambda_j (h_j K g_j - g_j K' h_j),$$

where λ_i are complex numbers, $h_i \in L^2 \cap H^q(\mathbf{R}^n)$, $g_i \in L^2 \cap H^r(\mathbf{R}^n)$ and

$$\|h_j\|_{H^q} \|g_j\|_{H'} \le C_2, \qquad \left(\sum_{j=1}^{\infty} |\lambda_j|^p\right)^{1/p} \le C_3.$$

The constants C_1 , C_2 and C_3 depend only on p, q, r, K and n.

As for the definition of $H^{p}(\mathbb{R}^{n})$, see Fefferman-Stein [4]; as for the operators K and K', see the definitions given in the next section.

An extension of part (i) to the case $1/p \ge 1 + 1/n$ is given in the following

THEOREM B. (Miyachi [6].) Let K_1, \ldots, K_N be homogeneous singular integral operators of Calderón-Zygmund type on \mathbb{R}^n and K'_j their conjugates.

Set, for $h \in L^2 \cap H^q(\mathbb{R}^n)$ and $g \in L^2 \cap H^r(\mathbb{R}^n)$,

$$P(K_1,\ldots,K_N;h,g)=\sum_J(-1)^{|J|}\left\{\left(\prod_{j\in J}K'_j\right)h\right\}\left\{\left(\prod_{j\in J^c}K_j\right)g\right\},\$$

where the summation ranges over all subsets J of $\{1, \ldots, N\}$, |J| denotes the number of elements of J, J^c is the complement of J, and Π is the product of operators; if J or J^c is the empty set, the corresponding product Π means the identity operator. Then, if p, q, r > 0 satisfy 1/p = 1/q + 1/r < 1 + N/n, there is a constant C depending only on K_1, \ldots, K_N , p, q, r and n such that, for all $h \in L^2 \cap H^q(\mathbb{R}^n)$ and all $g \in L^2 \cap H^r(\mathbb{R}^n)$,

$$\|P(K_1,\ldots,K_N;h,g)\|_{H^p} \leq C \|h\|_{H^q} \|g\|_{H^r}.$$

In this paper, we shall extend part (ii) of Theorem A to the case $1/p \ge 1 + 1/n$ by using the "product" given in Theorem B.

Throughout this paper, we use the following

NOTATION. For $x \in \mathbf{R}^n$ and r > 0, B(x, r) denotes the ball with respect to the usual metric with center x and radius r. If $\alpha_1, \ldots, \alpha_n$ are nonnegative integers and $\alpha = (\alpha_1, \ldots, \alpha_n)$, the differential operator ∂^{α} is defined by

$$\partial^{\alpha} f(x) = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n} f(x), \qquad x \in \mathbf{R}^n,$$

and $|\alpha|$ by $|\alpha| = \alpha_1 + \cdots + \alpha_n$. We shall also use the notation

$$(\partial/\partial x)^{\alpha}f(x) = \partial^{\alpha}f(x).$$

If s is a real number, [s] denotes the largest integer not greater than s. \mathcal{F} denotes the Fourier transform.

2. The result. Before we state our theorem, we shall explain the singular integral operators considered in this paper.

DEFINITION 1. We say that K is a homogeneous singular integral operator of Calderón-Zygmund type if it is defined by

(1)
$$Kf = \mathcal{F}^{-1}(m\mathcal{F}f)$$

with a bounded function *m* smooth in $\mathbb{R}^n \setminus \{0\}$ and homogeneous of degree zero, i.e. satisfying

$$m(t\xi)=m(\xi), \qquad t>0, \, \xi\neq 0.$$

We shall call *m* the *multiplier* corresponding to *K*.

DEFINITION 2. If K is a homogeneous singular integral operator of Calderón-Zygmund type defined by (1), the *conjugate operator* K' is defined by

$$K'f = \mathcal{F}^{-1}(\check{m}\mathcal{F}f),$$

where $\check{m}(\xi) = m(-\xi)$.

By using the Fourier transform, the "product" of Theorem B can be redefined by

$$\mathcal{F}P(K_1,\ldots,K_N;h,g)(\xi) = \int \mathcal{F}h(\eta)\mathcal{F}g(\xi-\eta)\prod_{j=1}^N (m_j(\xi-\eta)-m_j(-\eta)) d\eta,$$

where m_i is the multiplier corresponding to K_i .

The theorem of this paper reads as follows.

THEOREM. Let K_1, \ldots, K_N be homogeneous singular integral operators of Calderón-Zygmund type and m_j the multipliers corresponding to K_j . Suppose p, q, r > 0 satisfy $1 \le 1/p = 1/q + 1/r < 1 + N/n$ and the multipliers m_j satisfy the following condition: for any $\xi \ne 0$, there exists an $\eta \ne 0$ such that

$$\prod_{j=1}^{N} \left(m_j(\xi) - m_j(\eta) \right) \neq 0.$$

Then every $f \in H^p(\mathbf{R}^n)$ can be decomposed as

$$f = \sum_{j=1}^{\infty} \lambda_j P(K_1, \ldots, K_N; h_j, g_j),$$

where λ_i are complex numbers, $h_i \in L^2 \cap H^q(\mathbf{R}^n)$, $g_i \in L^2 \cap H^r(\mathbf{R}^n)$ and

$$\|h_j\|_{H^q}\|g_j\|_{H^r} \leq C, \qquad \left(\sum_{j=1}^{\infty} |\lambda_j|^p\right)^{1/p} \leq C\|f\|_{H^p}$$

with a constant C depending only on K_1, \ldots, K_N , p, q, r and n.

The rest of the paper will be devoted to the proof of this theorem.

AKIHIKO MIYACHI

3. Proof of Theorem. The proof will be based on the following

LEMMA 1. If $0 , every <math>f \in H^p(\mathbb{R}^n)$ can be decomposed as follows:

$$f=\sum_{j=1}^{\infty}\lambda_jf_j,$$

where λ_j are complex numbers, f_j are functions satisfying, for some balls $B(x_j, \rho_j)$,

(2)
$$\begin{cases} \text{support}(f_j) \subset B(x_j, \rho_j), \\ \|f_j\|_{L^{\infty}} \leq \rho_j^{-n/p}, \\ \int f_j(x) x^{\alpha} \, dx = 0 \quad \text{for } |\alpha| \leq [n/p - n] \end{cases}$$

and

$$\left(\sum_{j=1}^{\infty} |\lambda_j|^p\right)^{1/p} \leq A \|f\|_{H^p}.$$

The constant A depends only on p and n.

This lemma is given by Latter [5].

We shall introduce a class of functions: for p, t > 0 and a nonnegative integer M, we denote by $\mathcal{Q}_{p,M}(t)$ the set of all functions $f \in L^2(\mathbb{R}^n)$ such that

$$\mathfrak{F}f(\boldsymbol{\xi}) = 0 \quad \text{for } |\boldsymbol{\xi}| \le 1/t$$

and

$$\|\partial^{\alpha} \widetilde{\mathfrak{G}} f\|_{L^2} \leq t^{|\alpha|-n/p+n/2} \quad \text{for } |\alpha| \leq M.$$

LEMMA 2. If 0 and <math>M > n/p - n/2, then $\mathcal{Q}_{p,M}(t) \subset H^p(\mathbf{R}^n)$ and there is a constant C depending only on n and p such that

$$||f||_{H^p} \leq C \quad \text{for all } f \in \mathcal{Q}_{p,M}(t), \qquad t > 0.$$

Proof. We may assume M = [n/p - n/2] + 1. We shall prove that

$$\|\mathfrak{F}^{-1}(m\mathfrak{F}f)\|_{L^p} \leq C \text{ for all } f \in \mathfrak{A}_{p,M}(t), \quad t > 0,$$

whenever m is a bounded function satisfying

$$|\partial^{\alpha} m(\xi)| \leq |\xi|^{-|\alpha|}$$
 for $|\alpha| \leq M$.

168

This will prove the lemma by the singular integral characterization of $H^{p}(\mathbb{R}^{n})$ (see Fefferman-Stein [4; §8] or Coifman-Dahlberg [2]).

Now suppose $f \in \mathcal{A}_{p,M}(t)$, t > 0, and *m* is as above; we set $g = \mathcal{F}^{-1}(m\mathcal{F}f)$. Then

$$\|\partial^{\alpha} \mathfrak{F}g\|_{L^2} \leq Ct^{|\alpha|-n/p+n/2}, \qquad |\alpha| \leq M,$$

and hence, by Plancherel's theorem,

$$\||x|^k g(x)\|_{L^2} \leq Ct^{k-n/p+n/2}, \qquad k=0,1,\ldots,M.$$

From this we can derive the desired estimate by using Hölder's inequality. In fact, if 0 and <math>1/p = 1/2 + 1/q, we have

$$\left(\int_{|x| < t} |g(x)|^p dx\right)^{1/p} \le ||g||_{L^2} \left(\int_{|x| < t} dx\right)^{1/q} \le C$$

and

$$\left(\int_{|x|>t} |g(x)|^p dx\right)^{1/p} \leq \||x|^M g(x)\|_{L^2} \left(\int_{|x|>t} |x|^{-Mq} dx\right)^{1/q} \leq C,$$

where we used the fact that Mq > n; thus $||g||_{L^p} \le C$. This completes the proof.

LEMMA 3. If 0 and <math>M > n/p - n/2, every $f \in H^p(\mathbb{R}^n)$ can be decomposed as follows:

$$f=\sum_{j=1}^{\infty}\lambda_jf_j(\cdot-x_j),$$

where λ_j are complex numbers, $f_j \in \mathcal{Q}_{p,M}(t_j)$ with some $t_j > 0, x_j \in \mathbb{R}^n$ and

$$\left(\sum_{j=1}^{\infty} \left|\lambda_{j}\right|^{p}\right)^{1/p} \leq A' \|f\|_{H^{p}}$$

with a constant A' depending only on M, p and n.

Proof. We shall prove that if *f* satisfies

(3)
$$\begin{cases} \text{support}(f) \subset B(x_0, \rho), \\ \|f\|_{L^{\infty}} \leq \rho^{-n/p}, \\ \int f(x) x^{\alpha} dx = 0 \quad \text{for } |\alpha| \leq [n/p - n], \end{cases}$$

then we can take a constant A'' depending only on M, p and n and a function $g \in \mathcal{Q}_{p,M}(t), t > 0$, such that

(4)
$$||f - A''g(\cdot - x_0)||_{H^p} \le 1/2A$$
,

where A is the constant in Lemma 1.

For the moment we assume the approximation (3)-(4) and derive Lemma 3 from Lemma 1. Let f be an arbitrary element of $H^p(\mathbb{R}^n)$. Apply Lemma 1 to f to obtain

$$f = \sum_{j=1}^{\infty} \lambda_j f_j$$

with f_i satisfying (2) and λ_i satisfying

$$\left(\sum_{j=1}^{\infty} \left|\lambda_{j}\right|^{p}\right)^{1/p} \leq A \|f\|_{H^{p}};$$

then apply the approximation (3)-(4) to each f_i to obtain

$$f = \sum_{j=1}^{\infty} \lambda_j A'' g_j (\cdot - x_j) + f_{(1)}$$

with $g_j \in \mathcal{Q}_{p,M}(t_j), t_j > 0$, and

$$\left\|f_{(1)}\right\|_{H^{p}} \leq 2^{-1} \|f\|_{H^{p}}$$

Next apply the same process to $f_{(1)}$ to obtain a smaller error $f_{(2)}$, and then again apply the same process to $f_{(2)}$ to obtain $f_{(3)}, \ldots$; repeating this process, we obtain, for each N,

$$f = \sum_{k=0}^{N} \sum_{j=1}^{\infty} \lambda_{j}^{k} A^{\prime\prime} g_{j}^{k} (\cdot - x_{j}^{k}) + f_{(N+1)},$$

where $g_j^k \in \mathcal{Q}_{p,M}(t_j^k), t_j^k > 0$, and

$$\left(\sum_{j=1}^{\infty} \left|\lambda_{j}^{k}\right|^{p}\right)^{1/p} \leq 2^{-k} A \|f\|_{H^{p}},$$
$$\|f_{(N+1)}\|_{H^{p}} \leq 2^{-N-1} \|f\|_{H^{p}}$$

Now the decomposition of Lemma 3 can be obtained by letting $N \to \infty$ since

$$\left(\sum_{k=0}^{\infty}\sum_{j=1}^{\infty}\left|\lambda_{j}^{k}A''\right|^{p}\right)^{1/p} \leq \left(\sum_{k=0}^{\infty}2^{-kp}\right)^{1/p}A''A\|f\|_{H^{p}} = A'\|f\|_{H^{p}}.$$

Now we shall prove the approximation (3)–(4). We may assume $x_0 = 0$; suppose f satisfies (3) with $x_0 = 0$.

First observe that the Fourier transform of f has the following estimates:

(5)
$$\|\partial^{\alpha} \mathfrak{F}f\|_{L^2} \leq C_{\alpha} \rho^{|\alpha|-n/p+n/2},$$

(6)
$$|\partial^{\alpha} \mathfrak{F}f(\xi)| \leq C_{\alpha} \rho^{\lfloor n/p \rfloor + 1 - n/p} |\xi|^{\lfloor n/p \rfloor - n - |\alpha| + 1} \quad \text{if } |\xi| \leq \rho^{-1},$$

where the constant C_{α} depends only on p, n and α . Estimate (5) follows from

$$\|x^{\alpha}f(x)\|_{L^2} \leq C_{\alpha}\rho^{|\alpha|-n/p+n/2}$$

via Plancherel's theorem. Estimate (6) follows, if $|\alpha| \le [n/p - n]$, from the estimates

$$\partial^{\beta}\partial^{\alpha} \mathcal{F}f(0) = 0 \quad \text{for } |\beta| \le [n/p - n] - |\alpha|,$$
$$\|\partial^{\beta}\partial^{\alpha} \mathcal{F}f\|_{L^{\infty}} \le C\rho^{[n/p] + 1 - n/p} \quad \text{for } |\beta| = [n/p - n] - |\alpha| + 1$$

via Taylor's formula; if $|\alpha| \ge [n/p - n]$, (6) is a consequence of the stronger estimate

$$\|\partial^{\alpha} \mathcal{F} f\|_{L^{\infty}} \leq C_{\alpha} \rho^{|\alpha| - n/p + n}.$$

For T > 2, consider the function

$$h_T = \mathcal{F}^{-1}(\psi(T\rho \cdot)\mathcal{F}f(\cdot)),$$

where ψ is a fixed smooth function on \mathbb{R}^n such that $\psi(\xi) = 1$ for $|\xi| \ge 2$ and $\psi(\xi) = 0$ for $|\xi| \le 1$. From (5) and (6) we shall derive the estimates

(7)
$$\|\partial^{\alpha} \mathfrak{F}h_T\|_{L^2} \leq C'_{\alpha} T^{|\alpha|} \rho^{|\alpha|-n/p+n/2},$$

(8)
$$\|f - h_T\|_{H^p} \le CT^{-[n/p]-1+n/p},$$

where C'_{α} and C do not depend on f, ρ and T. Once these estimates are proved, the approximation (4) can be obtained by setting

$$g = A^{\prime\prime - 1} h_T \in \mathcal{Q}_{\rho, M}(T\rho)$$

with A'' and T sufficiently large; A'' and T can be taken depending only on M, p and n.

Thus the proof is reduced to that of (7) and (8). (7) follows directly from (5). In order to prove (8), decompose $f - h_T$ as

$$f - h_T = \sum_{j=0}^{\infty} \mathcal{F}^{-1} \big(\chi \big(2^j T \rho \cdot \big) \mathcal{F} f(\cdot) \big) = \sum_{j=0}^{\infty} f_j,$$

where $\chi(\xi) = \psi(2\xi) - \psi(\xi)$. As for f_j , we have

$$\operatorname{support}(\mathfrak{F}f_j) \subset \{\xi; 2^{-1} \leq 2^j T \rho \,|\, \xi| \leq 2\},\$$

and, from (6),

$$\left\|\partial^{\alpha}\mathfrak{F}_{j}\right\|_{L^{2}} \leq C_{\alpha}(2^{j}T)^{-[n/p]-1+n/p}(2^{j}T\rho)^{|\alpha|-n/p+n/2},$$

and, hence, by Lemma 2,

$$\|f_j\|_{H^p} \leq C(2^{j}T)^{-[n/p]-1+n/p}$$

Thus

$$\|f - h_T\|_{H^p} \le \left(\sum_{j=0}^{\infty} \|f_j\|_{H^p}^p\right)^{1/p} \le CT^{-[n/p]-1+n/p}.$$

This proves (8) and completes the proof of Lemma 3.

Proof of Theorem. Since $1/p = 1/q + 1/r \ge 1$, either q or r is less than or equal to 2; we assume $r \le 2$.

We shall prove that, for any $f \in \mathcal{R}_{p,M}(t)$, t > 0, $M = \lfloor n/p - n/2 \rfloor + 2$, we can take $h_j \in L^2 \cap H^q(\mathbb{R}^n)$, $g_j \in L^2 \cap H^r(\mathbb{R}^n)$ and complex numbers λ_j so that we have

$$\left\| f - \sum_{j=1}^{\infty} \lambda_{j} P(K_{1}, \dots, K_{N}; h_{j}, g_{j}) \right\|_{H^{p}} \leq \frac{1}{2A'},$$
$$\left\| h_{j} \right\|_{H^{q}} \left\| g_{j} \right\|_{H'} \leq C, \qquad \left(\sum_{j=1}^{\infty} \left| \lambda_{j} \right|^{p} \right)^{1/p} \leq C,$$

where A' is the constant in Lemma 3 corresponding to $M = \lfloor n/p - n/2 \rfloor + 2$ and C is a constant depending only on K_1, \ldots, K_N , p, q, r and n. Once this is proved, the Theorem is derived from Lemma 3 by the same argument as Lemma 3 was derived from Lemma 1.

Firstly, observe that our assumption on the multipliers means, via a compactness argument, that there exist a finite open covering $\{V_k; k = 1, 2, ..., m\}$ of $S^{n-1} = \{\xi \in \mathbb{R}^n; |\xi| = 1\}$, points $\{\eta_k; k = 1, 2, ..., m\} \subset S^{n-1}$, and a positive number c such that, for each k,

(9)
$$\inf_{\xi \in V_k} \left| \prod_{j=1}^N \left(m_j(\xi) - m_j(-\eta_k) \right) \right| \ge c.$$

172

Let $\{\varphi_k; k = 1, 2, ..., m\}$ be a smooth partition of unity on S^{n-1} subordinate to the covering $\{V_k; k = 1, 2, ..., m\}$. Take an arbitrary $f \in \mathcal{Q}_{p,M}(t), t > 0, M = \lfloor n/p - n/2 \rfloor + 2$. Decompose f as

$$f = \sum_{k=1}^{m} f_k, \qquad f_k = \mathfrak{F}^{-1}(\tilde{\varphi}_k \mathfrak{F} f),$$

where $\tilde{\varphi}_k(\xi) = \varphi_k(\xi/|\xi|)$. It is sufficient to show that for each k we can take $h_k \in L^2 \cap H^q(\mathbb{R}^n)$ and $g_k \in L^2 \cap H^r(\mathbb{R}^n)$ such that

(10)
$$\begin{cases} \|f_k - P(K_1, \dots, K_N; h_k, g_k)\|_{H^p} \le m^{-1/p} (2A')^{-1}, \\ \|h_k\|_{H^q} \|g_k\|_{H^r} \le C. \end{cases}$$

In order to prove (10), we set

$$g_k = \mathfrak{F}^{-1}\left(\left(\prod_{j=1}^N \left(m_j(\cdot) - m_j(-\eta_k)\right)\right)^{-1} \mathfrak{F}f_k\right).$$

As a candidate for h_k , we consider the following function. Take a smooth function θ satisfying support(θ) $\subset B(0, 1)$ and $\int \theta(x) dx = 1$, and set

$$h_{k,\delta,\varepsilon} = \mathscr{F}^{-1}((\varepsilon^{-1}t)^n \theta(\varepsilon^{-1}t(\cdot-\delta t^{-1}\eta_k)))),$$

where δ and ε are small positive numbers satisfying $\varepsilon < \delta/2$ and $\delta + \varepsilon < 1/2$. We shall prove the following estimates:

(11)
$$||g_k||_{H^r} \leq Ct^{-n/p+n/r},$$

(12)
$$\|h_{k,\delta,\varepsilon}\|_{H^q} \leq C(\varepsilon^{-1}t)^{n/q},$$

(13)
$$\|f_k - P(K_1,\ldots,K_N;h_{k,\delta,\varepsilon},g_k)\|_{H^p} \leq C(\delta+\delta^{-1}\varepsilon),$$

where C is a constant depending only on K_1, \ldots, K_N , p, q, r and n. If these estimates are established, (10) can be obtained by taking $h_k = h_{k,\delta,\varepsilon}$ with δ and ε sufficiently small; δ and ε can be taken depending only on K_1, \ldots, K_N , p, q, r and n.

Proof of (11). By (9) and by the homogeneity of m_i , the function

$$G(\boldsymbol{\xi}) = \left(\prod_{j=1}^{N} \left(m_j(\boldsymbol{\xi}) - m_j(-\eta_k)\right)\right)^{-1}$$

satisfies

$$\left|\partial^{\alpha}G(\xi)\right| \leq C_{\alpha} \left|\xi\right|^{-|\alpha|}$$

in an appropriate neighborhood of support($\mathcal{F}f_k$). Hence the well-known multiplier theorem for H^p spaces (see [4; Theorem 12] or [1; Theorems 4.6 and 4.7]) gives

$$\|g_k\|_{H^r} \le C \|f_k\|_{H^r} \le C \|f\|_{H^r} \le C t^{-n/p+n/r},$$

where the last inequality is due to Lemma 2.

Proof of (12). If q > 2, we have

$$\begin{aligned} \|h_{k,\delta,\varepsilon}\|_{H^q} \approx \|h_{k,\delta,\varepsilon}\|_{L^q} \\ = \|\mathscr{F}^{-1}\theta(\varepsilon t^{-1} \cdot)\|_{L^q} = C(\varepsilon t^{-1})^{-n/q}; \end{aligned}$$

if $q \leq 2$, then (12) is obtained by using Lemma 2 since

$$\|\partial^{\alpha} \widetilde{\mathcal{F}} h_{k,\delta,\varepsilon}\|_{L^2} \leq C_{\alpha} (\varepsilon^{-1} t)^{|\alpha|+n/2}$$

and $\mathcal{F}h_{k,\delta,\epsilon}(\xi) = 0$ for $|\xi| < \epsilon t^{-1}$.

Proof of (13). We shall again appeal to Lemma 2. We have

$$\begin{split} \mathfrak{F}(f_k - P(K_1, \dots, K_N; h_{k,\delta,\epsilon}, g_k))(\xi) \\ &= \int \mathfrak{F}h_{k,\delta,\epsilon}(\eta)(\mathfrak{F}f_k(\xi) - \mathfrak{F}f_k(\xi - \eta)) \, d\eta \\ &+ \int \mathfrak{F}h_{k,\delta,\epsilon}(\eta)\mathfrak{F}f_k(\xi - \eta) \\ &\times \left(1 - \prod_{j=1}^N \frac{m_j(\xi - \eta) - m_j(-\eta)}{m_j(\xi - \eta) - m_j(-\eta_k)}\right) \, d\eta \\ &= \mathrm{I}(\xi) + \mathrm{II}(\xi). \end{split}$$

Supports of the functions I and II are contained in

$$\{\boldsymbol{\xi} \in \mathbf{R}^n; \operatorname{dist}(\boldsymbol{\xi}, \operatorname{support}(\mathfrak{F}_k)) \leq (\delta + \varepsilon)t^{-1}\}$$

and, hence, in $\{|\xi| > (2t)^{-1}\}$. As for the function I, we have, if $|\alpha| \le M - 1 = [n/p - n/2] + 1$,

$$\|\partial^{\alpha}\mathbf{I}\|_{L^{2}} \leq \|\operatorname{grad} \partial^{\alpha} \mathfrak{F}f_{k}\|_{L^{2}} \int |\mathfrak{F}h_{k,\delta,\varepsilon}(\eta)| |\eta| d\eta$$
$$\leq C \delta t^{|\alpha|-n/p+n/2}.$$

In order to estimate II, observe the following inequalities: if $\xi - \eta \in$ support(\mathfrak{F}_k) and $\zeta \in B(\delta t^{-1}\eta_k, \epsilon t^{-1})$,

$$\left|\frac{\partial}{\partial \xi_i} \left(\frac{\partial}{\partial \xi}\right)^{\alpha} \prod_{j=1}^N \frac{m_j(\xi-\eta) - m_j(-\zeta)}{m_j(\xi-\eta) - m_j(-\eta_k)}\right| \leq C_{\alpha} \delta^{-1} t |\xi-\eta|^{-|\alpha|},$$

and, hence, if $\xi - \eta \in \text{support}(\mathfrak{F}f_k)$ and $\eta \in \text{support}(\mathfrak{F}h_{k,\delta,\epsilon})$,

$$\begin{split} \left| \left(\frac{\partial}{\partial \xi} \right)^{\alpha} \left(1 - \prod_{j=1}^{N} \frac{m_{j}(\xi - \eta) - m_{j}(-\eta)}{m_{j}(\xi - \eta) - m_{j}(-\eta_{k})} \right) \right| \\ &= \left| \left[\left(\frac{\partial}{\partial \xi} \right)^{\alpha} \prod_{j=1}^{N} \frac{m_{j}(\xi - \eta) - m_{j}(-\zeta)}{m_{j}(\xi - \eta) - m_{j}(-\eta_{k})} \right]_{\zeta = \delta t^{-1} \eta_{k}} - [\cdots]_{\zeta = \eta} \right| \\ &\leq C_{\alpha}' \delta^{-1} \varepsilon |\xi - \eta|^{-|\alpha|} \leq C_{\alpha}' \delta^{-1} \varepsilon t^{|\alpha|} \,. \end{split}$$

Using this inequality, we obtain, for $|\alpha| \leq M$,

$$\|\partial^{\alpha} \mathbf{II}\|_{L^2} \leq C \delta^{-1} \varepsilon t^{|\alpha| - n/p + n/2}.$$

Now we can utilize Lemma 2 to obtain

$$\|\mathfrak{F}^{-1}\mathbf{I}\|_{H^p} + \|\mathfrak{F}^{-1}\mathbf{I}\mathbf{I}\|_{H^p} \le C\delta + C\delta^{-1}\varepsilon,$$

which implies (13).

This completes the proof of the Theorem.

References

- [1] A. P. Calderón and A. Torchinsky, *Parabolic maximal functions associated with a distribution*, *II*, Advances in Math., **24** (1977), 101–171.
- [2] R. R. Coifman and B. Dahlberg, Singular integral characterizations of nonisotropic H^p spaces and the F. and M. Riesz theorem, Proc. Symp. Pure Math., Vol. 35, Part 1, pp. 231–234, Amer. Math. Soc., Providence, 1979.
- [3] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611–635.
- [4] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math., 129 (1972), 137-193.
- [5] R. H. Latter, A characterization of $H^{p}(\mathbb{R}^{n})$ in terms of atoms, Studia Math., 62 (1978), 93–101.
- [6] A. Miyachi, Products of distributions in H^p spaces, Tôhoku Math. J., 35 (1983), 483-498.
- [7] A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J., 30 (1978), 163-171.
- [8] _____, The factorization of H^p on the space of homogeneous type, Pacific J. Math., 92 (1981), 453–468.

Received January 26, 1983.

University of Tokyo Hongo 7-3-1, Tokyo 113 Japan

Present address: Department of Mathematics Hitotsubashi University Kunitachi, Tokyo 186 Japan