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EXTENDING LEBESGUE MEASURE
BY INFINITELY MANY SETS

TM CARLSON

Consider the following question: under what conditions on a collec-
tion of subsets of the unit interval can the existence of an extension of
Lebesgue measure defined on each element of the collection be guaran-
teed? The main purpose of this paper is to find conditions on the
cardinality of the collection whose sufficiency can be shown consistent
without the use of large cardinals. For example, if ZFC is consistent so is
ZFC + “Lebesgue measure can be extended to any countable collection
of sets”.

The results of this paper complement work of earlier researchers.
Banach and Kuratowski showed that assuming the continuum hypothesis
there is a countable collection of sets of reals for which no extension
exists. Solovay proved that an extension of Lebesgue measure to all sets
is equiconsistent with the existence of a measurable cardinal.

1. Definitions and notation. Almost all definitions and notations
are standard but I will make a few remarks in hopes of avoiding any
problems.

XY denotes the collection of functions from X into Y. The concatena-
tion of two sequences s and ¢ is written as s~ ¢. (a,: i € I) denotes the
function i — a;, with domain I. CBA is short for complete Boolean
algebra. If T is a tree then subtrees are always intended to be closed
downward (trees grow upward). A tree 7'is < p branching for a cardinal p
if the collection of immediate successors of an element in 7 always has
cardinality less than p. If €is a complete subalgebra of a CBA # and G is
a V-generic ultrafilter on €, I use #/G for the quotient of Z by the ideal
generated in 4 by the dual of G.

Jech [4] is a good reference for the set theoretic aspects of this paper.

Given a set X and a cardinal p, a p-algebra on X is an algebra of
subsets of X which is closed under unions of size less than p. o-algebra
means the same as w;-algebra as usual. Measures are only assumed to be
finitely additive and with a domain consisting of an algebra of sets (not
necessarily a g-algebra). Suppose £7is an algebra of subsets of X and » is a
measure defined on 7. I will always tacitly assume that the measure of
each element in &7is in [0,1] and »(X) = 1. » is p-additive if whenever
A, € o/ for i € I are pairwise disjoint with U,.; 4, = X and || < p then
e v(4,)=1

Halmos [3] may be used for the basic facts on product measures.
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2. Codes and measure theoretic preliminaries. We will often want
to discuss the p-algebra generated by a collection of sets. For this the
notion of code is useful. Fix a list v, (kK € On) of variables.

DEFINITION 1. Assume p is an infinite cardinal. A p-code is a pair
(T, e) where T is a well-founded subtree of p=“ which is < p branching
and e is a function which assigns variables to the maximal nodes of 7.
(T, e) is a code if (T, e) is a p-code for some p. The rank of (T,e) is
defined to be the rank of T in the usual sense.

Note that if p is regular then |T| < p and (7, e) has fewer than p
variables.

DEFINITION 2. Suppose ¢ = (T, e) is a code. If s € T define ¢, = ({t:
s~ t€ T}, f) where f(¢) =e(s"t). If 4, € X for kK € a and all the
variables of ¢ are among v, (k € @) then ¢({A,: k € a)) is defined by
induction of the rank of c. If the rank of c is O then { ) is the only element
of Tand e({ )) = v, for some i € a. In this case define ¢({ 4,: k € a)) =
A,. If the rank of C is not 0 define ¢({ 4,: k € &)) to be

U{X = ¢y (A k€ a)): (i) e T}.
Similarly, if Zis a CBA and b, € Z for k € a define ¢({b,: k € a)).

Fact 1. Suppose #/is a nonempty collection of subsets of a fixed set X
and p is a regular cardinal. The p-algebra on X generated by &/ consists
exactly of the sets obtained by evaluating p-codes at sequences from 2.

Fact2. If cisa code, Zisa CBA, x, A € V¥ A, € V¥ for k € a and
V¥ =“4, C A” then

Ix € c({4s k€ a))|=c((lx € 4,]: k € a)).

All the forcing done in this paper uses measure algebras. The basic
facts needed are discussed next. The reader is assumed to have some
familiarity with the usual product measure on *2 where both 0 and 1 are
given probability 1 /2. This measure is defined on the o-algebra of Baire
sets which is the o-algebra generated by the basic open sets in the product
topology where {0, 1} is given the discrete topology.

DEFINITION 3. Fix a set X. Let p  be the usual product measure on *2
and define &/( X) to be the collection of Baire sets, Z( X) is the corre-
sponding measure algebra, i.e. Z( X) is the quotient of &Z( X) by the ideal
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of measure zero sets. For x € X define the canonical generator at x to be
the element of Z( X) represented by { f €*2: f(x) =.1}.

Each canonical generator has measure 1/2. The collection of canoni-
cal generators is independent and countably generates #( X).

DEFINITION 4. Assume s C Y. A set B € &Z( X) has support s pro-
vided whether f is in 4 depends only on f I 5. b € #(X) has support s if
some element in b does.

Clearly, all Baire sets have countable support implying that all
elements of #( X) have countable support.

Notice that if Y C X there’s a canonical complete embedding of
#(Y) into #(X). This embedding also preserves measure. Henceforth, I
identify #(Y) with a complete subalgebra of #( X) in this way. Moreover,
I will write u rather than p , since no confusion is likely and will reserve u
only for product measures.

Fact 3. Assume X C Y and G C #(X) is V-generic. #(Y)/G is a
measure algebra in V[G] as witnessed by » where

v(b/G) = lim (p(b - ¢)/n(c)).

In fact, if b, is the canonical generator at y in #(Y) for y € Y then
v(b,/G) = 1/2 for y € Y — X and the collection b/G(yeY—-X)is
independent and countably generates Z(Y)/G in V[G].

Fact 3 shows that #(Y)/G is isomorphic to (Y — X)"°! by a
unique isomorphism which sends b,/G to the canonical generator at y in
B(Y — X)'%forye Y - X.

I will need a generalization of Fact 2.

Fact 4. Assume X C Y and G C #(X) is V-generic. If c € V¥® jsa
name for a code and 4, € V¥ is a name for a subset of 4 € V*™ for
k € a then for any name x

lx € c((4,: k€ a))/G=c((lx € 4,l/G: k € a))

where c is the interpretation of c.
Fact 4 is proved in V'[G] by induction on the rank of c.
Finally, I will need

Fact 5. Assume X C YC Z and G € #(Y) is V-generic. Set H =
GNAX).Ifbe B(XU(Z~-Y)) thenu(b/G) = u(b/H).
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Sketch the proof. Note that this is trivial if X is empty since

plb-c) . pb) - ple)

u(b/G) = lim a0 lm == = u(b)

(n(b - ¢) = u(b) - p(c) since ¢ and b have disjoint supports). Although a
proof for X # @ can be given along these lines and this is the basic
intuition, a modification is more economical. Namely, working in V[G]
show that the collection of b for which the theorem holds contains
all finite Boolean combinations of the canonical generator of
B(XU(Z—-7Y)) and is closed under complements and increasing
unions of sequences in V. O

Suppose G C #(0) is V-generic and define x: § — 2 by x(i) = 1 iff
the canonical generator at i is in G. In this case V[G] = V[x]. If § = w
then x is called a random real over V. #(w) is often referred to as the
CBA for adding a random real and #(6) as the CBA for adding § random
reals if 0 > w.

The main theorem of this paper is in §4. It involves defining a
measure in V#® for some 6. Often the measure will be essentially on a
cardinal k below @, but to illustrate a point suppose the measure to be
defined is on 6. The problem is how to choose the measure of some subset
A of § in V*®_ Consider the canonical name x for the generic subset of ¢
described above. ||« € x|| (a € 8) all have measure 1/2 and they are
independent. A reasonable attempt would be to assign measure 1/2 to x.
This is precisely the main idea for defining the measure in V#%): choose a
“large” subset E of 6 and force with a small subalgebra to get the reduced
values of ||a € 4| (« € E) to be independent and so that they all have the
same measure. This method is equivalent to the usual technique (see [4],
pp. 423-425 for example). Although the modifications made here lengthen
the proofs slightly, I think they result in a better understanding of the
resulting measure.

3. A lemma concerning normal filters. The following lemma will be
used to generate measures in the next section.

LEMMA. Assume k is a regular uncountable cardinal, D is a normal filter
on k, A is a cardinal below «, p is regular cardinal below k, x~P < «k for each
cardinal x < k and S is positive mod D where S C {a € k: cof(a) = p}. If
fe: S — K is regressive for £ € \ then there’s a nontrivial p-complete filter
D* extending D such that each f, is constant on an element of D*.
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Proof. For each a € § define h,: A = a by h,(£) = f;(a) and let D,
be the filter generated by D along with the sets { # € S: hg[ 4 = h, | A}
where A ranges over [A]~f. Evidently, D, is p-complete. Moreover, if
§ € A then f; is constant on {B € S: hg(§) = h,(§)} which is in D,.
Therefore, if D, is non-trivial for some « the lemma is proved.

Assume D, is trivial for all « € S. This means that for « € S there
exists A, € [A]** such that {8 € S: hy| A, = h, | A,} is measure zero
mod D. Define a regressive function F: S — « by

F(a) =sup{h,(¢)+1:£€4,}.

By the normality of D, choose S, C S which is positive such that F is
constant on S,. Let x be the constant value of F on S,. If a € §, then
h, A, is a subset of A X x of size < p. There are fewer than k such
functions. Since D is k-complete, there’s a positive subset S; of S, such
thath, [ A, = hg | Ap for a, B € §,. This contradicts the choice of 4, for
each a € §;. a

For the purpose of this paper only the case p = w and D is the closed
unbounded filter on k is necessary.

4. The consistency of measure extension principles. For the sake of
readability, I will simplify cardinal arithmetic in this section by assuming
GCH. I invite the reader to draw diagrams of the systems of supports in
k X 6 as they arise in the proof.

LEMMA. Assume GCH. If @ is an infinite cardinal then V¥ & “if
w < p = cof(A) and A < 0 then whenever €is a collection of subsets of °2 of
size N there is a p-additive extension of the usual product measure to a
p-algebra containing €.

Proof. Assume GCH and that 6 is an infinite cardinal. Suppose also
that w < p = cof(A) and A is a cardinal below 6. Set k = A*. Since
B(x X @) is isomorphic to 2(#), it suffices to show V¥ “if ¥ is a
collection of subsets of ?2 of size A there is a p-additive extension of the
usual product measure to a p-algebra containing ¢ where & = %(k X 0).

Assume € V% and V¥ =“%is a collection of subsets of ?2 of size
A”. Choose C, € V forn € A such that V¥ =“€ = {C,:n € A}”.

The first step to extending the measure in V¥ is to cut down to a set
of size k which has outer measure 1. For a € k define x, € V¥ such that
V¥ E“x,: § > 2” by taking the a column of the generic set, i.e. V%
F“x,(i) = 1 iff the canonical generator corresponding to (a, /) isin G .
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For a € k and n € A define b,, € # to be ||x, € G|l and choose a
countable support s,, for b,,. We may assume that all the s,, are subsets
of k X k since the ordering of @ is irrelevant to the hypothesis. Set
S = {a€«k: cof(a) = p, A < a and a is closed under the Godel pairing
function} and let D be the club filter on k. Let B, (§ € A\) enumerate
[A]=".

I now want to define “regressive” functions f; on § for § € A so that
f:(a) codes the structure of the collection of b,, (7 € B;) along with
llx, (i) = 1|| (i € @). Set s¥ = U{s,,: 1 € B;}. Choose B minimal such
that 53, N ((a + 1) X ) is contained in (B X B) U ({a} X B). Now col-
lapse s7; as follows. Let 7 = |53, — (@ + 1) X @)| and choose a bijection :
(B+1)xB)ur—>(BXB)U({a} X B)Usy such that 4 is the iden-
tity on 8 X B and A((B, i)) = (a, i). h induces a complete embedding of
BB+ 1) X B)Urinto 4. For n € B; let b,, be the preimage of b,,
under this embedding. Define f;(a) = (B, 7, <b;,,: nE B£>). f:(a) can be
coded by an ordinal below «a so that the lemma of the previous section
applies. So let D* be a p-complete filter extending D such that each f; is
constant on an element of D.

Now to define the measure ». Assume G C Z is V-generic. Since % is
ccc, D* generates a p-complete filter in V[G] which I also call D*.

Work in V[G] from now on.

The letters X and Y will always denote subsets of k X  in V' which
have cardinality at most A. Define G( X) to be G N Z( X). If 4 is a name
for a subset of 2 define v, (A4) to be

Jim inf{p(|x, € 4)/G(X)): a € E}.

Let o7 be the p-algebra generated by the collection of C, (n € A) along
with the Baire sets where C, is the interpretation of the name C,. If 4 € &
choose a name A4 for A and define »(A4) = lim, vy (A4). Clearly, if »(A4) is
defined then it is independent of the choice of 4.

Claim 1. If A € &/is a name for A then there exist X, a real number r
and E € D* such that for all Y containing X, u(||x, € 4||/G(Y)) = r on
atailofa € E.

Assume A € &/ and A4 is a name for A. For i € 6 define N, = {x:
x(i) = 1}. The p-algebra & is generated from C, (n € A) along with N,
(i € #). However, A is generated by fewer than p elements among these.
There exist £ € A and B C 0 in V of size less than p such that 4 is in the
p-algebra generated by C, (n € B;) and N, (i € B). Leth: p - B, U B be
in V such that the even ordinals map onto B, and the odd ordinals map
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onto B. Now define a sequence a with domain p by a(k) = C,, if k is
even and a(k) = Ny, if k is odd and let g be the name

{Cyy: k € pand k even) U (N, ,,: k € p and k odd)

for a where N, is the canonical name for N,. Choose a p-code ¢ such that
c(a) = A.

There is a set E € D* on which f, is constant with value
(B, T, <d,,: n € B§>) say. Choose X such that ¢ has a name ¢ in V¥,
there’s a condition in G( X) forcing “4 = ¢(a)” and B X B C X.

Suppose Y contains X. It will suffice to show that u(]|x, € 4||/G(Y))
= u(|lx, € 4||/G(X)) for a tail of « and a’ in E. Choose § large enough
sothat YT o X0, YN(kXk)CdXdand BN k C 8. Assume o, &’ €
Fandd < a, o'.

Ix, € 4] /G(X) =||x, € c(a)]/G(X)
= ¢((lx, € a(K)|/G(X): k € p))

by Fact 4 of §2. ||x, € a(k)|| has one of two forms: [[x, € C || for some
n € B; or ||x, € N|| for some i € B. In ecither case, ||x, € a(k)]|| is in
HB(Z) where Z =X U ((k X 8) — Y). So each ||x, € a(k)||/G(X) is in
#(Z)/G(X) implying ||x, € A||/G(X) is also. By Fact 5 of §2

n(lx, € 4l/G(X)) = u(lx, € 4]l/G(Y)).

On the other hand, by the definition of f; and the choices of E and & there
is an automorphism ¢ of # induced by a permutation k X 6 which fixes
#(X) and interchanges ||x, € C|| (= b,,) with [x, € C || (= b,,) for
n € B and |lx, € N (= [|x,(/) = 1) with [|x, € Nl (= llx,(i) = 1)
for i € B. This automorphism of % is measure preserving since it is
induced by a permutation. ¢ induces a measure preserving automorphism
y* of Z/G(X) given by y*(b/G( X)) = ¥(b)/G(X). Since

1%, € 4ll/G(X) = ¢((llx, € a(k)Il/G(X): k € p))
and similar for «’ by Fact 4 of §2, it follows that y* interchanges
lx, € 4ll/G(X) and ||x, € 4||/G(X) verifying that they have the
same measure. Combining this with the above,
pllx. € 4l/G(Y)) = p(lx. € 41/6(X)).
This finishes the proof of the claim.

Claim 2. v is defined on every element of 4.
This follows immediately from Claim 1.
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Claim 3. v is p-additive.

Suppose 4; € & (j € v) are pairwise disjoint and y < p. Choose a
sequence of names 4, (j € y) which are forced outright to be disjoint and
choose a name A for the union. Chose X;, E; and r; for 4, and 4, by Claim
1. Let E be the intersection of the E; and suppose X contains all the X,.
For sufficiently large a in E,

pllx, € 41/6(X)) = p(|x. € U{4,:) € v}|/G(x))
= u(Z{lx.€4):jev})/6(x))
= (Tl € 4)l/6(0):) )
=Y {nllx. € 4)/6(X)jev) =T {rjev)
=2 {r(4,):jev}

Therefore,
y(4) = limvy (4) = ¥ (#(4,):) € 1)

where A4 is the union of the A e

Claim 4. v extends the usual product measure.

It suffices to show that » agrees with the usual product measure on
finite joins of the canonical generators. This is straightforward by the
definition of p on the #/G( X) (Fact 3 of §2). O

THEOREM. Assume GCH and that 0 is an infinite cardinal of uncounta-
ble cofinality.

(1) If 6 is singular then V#® =“if p is a regular cardinal below 8 and €
is a collection of subsets of 2 with fewer than 0 elements then there is a
p-additive extension of the usual product measure on °2 to a p-algebra
containing €.

(2) If § =\" and p = cof(\) then VO =“if € is a collection of
subsets of °2 of size N there is a p-additive extension of the usual product
measure on °2 to a p-algebra containing €.

(3) If 6 is regular and X\ is an infinite cardinal with A\*< @ then
V#O =<“if €is a collection of subsets of °2 of size \ there is a 0-additive
extension of the usual product measure on °2 to a 6-algebra containing €.

Proof. (1) follows immediately from the previous lemma as does (2)
provided w < p. (2) with w = p follows from a well-known result of Horn
and Tarski concerning finitely additive measures on Boolean algebras.
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(3) is proved by an argument similar yet simpler than that used to
prove the previous lemma. I will indicate the modifications leaving details
to the reader. Work with the CBA #(6 X 6) rather than %#(0); in other
words, replace the choice of Kk = A™ in the proof of the lemma by k = 6.
Suppose G C % is V-generic and in V[G] %is a collection of subsets of 72
of size A where A" < §. Redefine S to be { « € 6: cof(a) = A™}. Instead of
a collection of regressive functions there will be a single regressive
function f which codes up the behavior of all the elements of % (more
precisely, the behavior of names chosen for the elements of %). p is
replaced everywhere by 6. In particular, %/ is now the #-algebra generated
by €. v, is defined as before except that X (and Y) are now allowed to
vary over subsets of @ X @ of size less than 6. The use of the lemma from
§3 is replaced by an application of Fodor’s Lemma to the function f which
results in a stationary set £ which will work uniformly for all 4 and 4 in
claim 1. The rest of the proof is essentially the same. 0

Notice that if for any collection .« of subsets of 2 of size A there’s a
p-additive measure extending the usual product measure which is defined
on a p-algebra containing .2/ then the same statement is true replacing 6 by
any smaller cardinal.

5. The normal Moore space conjecture. The Normal Moore Space
Conjecture is that all Normal Moore Spaces are metrizable. The indepen-
dence of NMSC was discovered by Silver in 1967 using a result of Bing.
The consistency of NMSC was proved only recently by Nyikos [6] using a
theorem of Kunen. Nyikos’ proof used the consistency of strongly com-
pact cardinals and the question remained whether one might obtain the
consistency of NMSC from the consistency of ZFC alone. This section
shows that a fragment of NMSC can be obtained without the use of large
cardinals. After the results of this paper were obtained, Fleissner showed
that if there are nonmetrizable normal Moore spaces then there’s an inner
model with a measurable cardinal. See Tall [10] and Fleissner [2] for a
more detailed account of the history of the problem along with proofs.

Nyikos’ contribution to settling the NMSC is largely contained in the
following theorem.

THEOREM (Nyikos [6]). If the usual product measure on "2 can be
extended to a countably additive measure defined on all members of & for
any collection 5/ of subsets of *2 of size \ then every normal Moore space of
size N is metrizable.
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Nyikos’ theorem and the theorem of the previous section give

THEOREM. Assume GCH. If 0 is a cardinal of uncountable cofinality
then V¥ =0 =2 and every normal Moore space of size < 2° is
metrizable”.

Proof. This follows immediately from Nyikos’ theorem and the theo-
rem of §4 if € isn’t the successor of a cardinal of cofinality w.

So suppose # = A" where A is a cardinal and cof(A) = w. As above
V#® =“every normal Moore space of size < A is metrizable”. The
problem is with spaces of size A. Assume V#® =X is a normal Moore
space of size A\”. We will use the absoluteness arguments between V¥
and V¥,

Claim 1. V) =X is a normal Moore space”. (In V2", X is given
the topology generated by its open sets in V#())

That V2" =« X is a Moore space” is trivial. We may suppose that X
has universe A. Choose ® € V¥ such that V*® =D is a basis for X
of size A”. We may assume that ® is actually in F"*® since it consists of A
sets each of which has size at most A. If ¥¥¢) =«C and D are disjoint
closed sets of X which can’t be separated”, then for some a € [#,67) ,
C, D € V#®_ By downward absoluteness V¥® =“C and D are closed
sets in the topology generated by © which can’t be separated”. However
there’s a bijection between 6 and a which is the identity below A giving an
isomorphism between #(6) and #(«) which is the identity on #(A). This
isomorphism extends to an isomorphism from V¥ to 1#(® which sends
® to D. This is a contradiction since V#® |=“the topology generated by
® is normal” while V¥ =“the topology generated by D is not normal”.
Therefore V2" = “X is normal”.

Claim 2. V#©® =X is metrizable”.

V#@ =“X is metrizable” by the easy case of this proof. By an
argument similar to that in Claim 1, the metric on X can be pulled down
to V¥, O

6. Measure extension axioms and small large cardinals. The proofs
of this section use standard techniques or are modifications of proofs of
well-known theorems so I will only sketch the arguments.

In some directions the theorem of §4 is best possible. For example, if
2® = w, then there is a collection &7 of subsets of the unit interval of size
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w, such that Lebesgue measure has no w,-additive extension to a o-algebra
containing & while the corollary of §3 shows it is consistent there will
always be such a measure which is countably additive instead of w,-addi-
tive. To verify the first part of the previous statement, consider an
(w,, wy)-Ulam matrix (see [4]). Since 2“ = w, each row (of size w,) can be
countably generated by a countable collection of sets. So the entire matrix
can be countable generated by w; sets. By the usual arguments, this
provides a collection of sets of reals with the desired properties.

One of the simplest ways one might hope to improve the result of
section 3 would be to show the consistency of “Lebesgue measure can be
extended to a countably additive measure on any 2“ new sets” without
using large cardinals. The next theorem and corollary show this is impos-
sible.

For convenience let P(k) abbreviate the statement “if .27 is a collec-
tion of subsets of k of size k there is a countably additive measure which is
defined on each element of .»and which vanishes on points.”

THEOREM 1. If k is the least infinite cardinal such that P(«x) holds then k
is weakly inaccessible and k has the tree property (i.e., there is no k-Aronszajn
tree).

Proof. Suppose k is singular. I will describe a collection of k sets
which will contradict the definition of k. First partition x into cof(x)
many sets each of size less than k and by the definition of k¥ choose a
collection of subsets of k which guarantee that some element of the
partition must be given positive measure. Now for each element of the
partition add a collection of fewer than k sets which guarantee it must
have measure zero if all its elements are assigned zero mass.

Suppose k = A*. Consider a (A, A)-Ulam matrix. Choose sets which
guarantee no bounded initial segment of k can have positive measure
unless some point does. For each of the columns of the matrix choose a
family of subsets of the union of the column which guarantees that if the
column has positive measure one of its elements must. The usual argu-
ment shows this contradicts the definition of «.

Assume T is a k-Aronszajn tree with universe k. Pick a collection of
sets which guarantee that no bounded subset of 7" may have positive
measure unless some point has positive mass. Since each level has fewer
than « elements there’s a collection of sets that guarantees, along with the
sets already chosen, that each level contains an element whose successors
form a set of positive measure. Let » be a countably additive measure on
this collection of sets. For some ¢ > 0 the set of nodes whose successors
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form a set of measure at least ¢ has size k. The tree consisting of these
nodes has no infinite antichain so it must have a branch of length . o

k can in fact be shown to be Mahlo and beyond using matrices
designed by Hajnal. Devlin had noticed that « has the tree property if for
every collection & of subsets of k of size k there is a k-additive measure
which is defined on all of &7and vanishes on points.

Silver showed that if a regular cardinal has the tree property then it is
weakly compact in L. Prikry and I noticed that if k is weakly compact
then by adding « random reals a model is obtained where Lebesgue
measure can be extended to any 2“ sets.

COROLLARY. ZFC + “Lebesgue measure can be extended to a counta-
bly additive measure on any collection of 2° sets” is equiconsistent with the
existence of a weakly compact cardinal.

Theorem 3 of this section is a modification of the argument used to
prove the following theorem. A proof is given in [5], page 220. Also see
Prikry [8].

THEOREM 2 ( Prikry). If A < k are regular cardinals and there is a
uniform A-indecomposible ultrafilter over k then every stationary set con-
sisting of points of cofinality N reflects, i.e. has an initial segment which is
Stationary in its sup.

THEOREM 3. If k is minimal such that P(k) holds then every stationary
subset of k consisting of points of cofinality w reflects.

Proof. Assume A C k has no stationary initial segments and consists
of points of cofinality w. For each a € 4 fix a set F, of order type w
which is cofinal in a. A function f with domain 4 N A is called a disjointer
for A N A if [f(«), @) N F, has empty intersection with [f(B),8) N F;
whenever a, 8 € A N A are distinct. As in [4], for every A < k there’s a
disjointer f, for A N A. To show 4 is nonstationary it suffices to construct
a disjointer for 4.

Choose a collection of subsets of k which guarantees that no bounded
part of k can have positive measure and that for each a € A4 there’s§ € F,
such that {A: f(«) < £) has measure > 1/2. Choose a countably addi-
tive measure » on this family and define a disjointer f for 4 by f(«) = the
least ¢ € F, such that {A: fy(a) < £) has measure > 1/2. ]
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