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A NOTE ON PROJECTIONS OF REAL

ALGEBRAIC VARIETIES

C. ANDRADAS AND J. M. GAMBOA

We prove that any regularly closed semialgebraic set of R", where R
is any real closed field and regularly closed means that it is the closure of
its interior, is the projection under a finite map of an irreducible
algebraic variety in some Rn + k. We apply this result to show that any
clopen subset of the space of orders of the field of rational functions
K= R(X1,...iXn) is the image of the space of orders of a finite
extension of K.

1. Introduction. Motzkin shows in [M] that every semialgebraic
subset of Rn, R an arbitrary real closed field, is the projection of an
algebraic set of Rn+ι. However, this algebraic set is in general reducible,
and we ask whether it can be found irreducible.

This turns out to be closely related to the following problem, pro-
posed in [E-L-W]: let K = R(XX,... ,Xn), Xv...9Xn indeterminates, and
let Xκ be the space of orders of K with Harrison's topology. If E\K is an
ordered extension of K, let εE^κ be the restriction map between the space
of orders, ε£(AΓ: XE -> Xκ\ P -» P Π K. Which clopen subsets of XK9 that
is, closed and open in Harrison's topology, are images of ε ^ for suitable
finite extension of KΊ.

In this note we prove that every regularly closed semialgebraic subset
S c Rn — S is the closure in the order topology of its inner points — is
the projection of an irreducible algebraic set of Rn+k for some k > 1.
Actually we prove more: the central locus of the algebraic set, i.e., the
closure of its regular points, covers the whole semialgebraic S. This allows
us to prove that there exists an irreducible hypersurface in Rn+1 whose
central locus projects onto S. As a consequence we prove that for every
clopen subset Y a Xκ there is a finite extension E of K such that

^ ) = Y.

2. In what follows R will be a real closed field and π will always
denote the canonical projection of some Rn+k onto the first n coordinates.

Let S be a semialgebraic closed subset of Rn. Then S can be written in
the form (cf. [C-C] [R]):

S = U { * e Rn:fa(x) > 0 , . . . , / „ ( * ) > 0 } , /,, e R[Xl9...,Xn].
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Now, since if / = g h we have

{ / > o } = μ > o , g > o ) U { - Λ > O , - g > o } ,

by decomposing each ftJ in irreducible factors, we may assume that all of

the/2 7 are irreducible. Finally, by the distributive law, we write

Π [{/i/^oju •• u{/,,,>o}].

For the sake of simplicity, we order the set of ^-tuples (/\,... Jp) from
1 till m = rp. Thus we have

(2.0.1) s = sλn . . . n s m ,

w h e r e

S , = {/ l f > 0 } U •• U { / / , I > 0 } , / = l , . . . , m ,

a n d / ^ , i r r e d u c i b l e for al l k = 1,. . . , / ? ; / = 1 , . . . , ra .

2.1. PROPOSITION. Ler / 1 ?. . . ^ Z?e irreducible polynomials in

R[XV.. .,Xn]. Then there exists an irreducible polynomial F(T, Xi9... ,Xn)

e R[Xl9...9Xn9T]suchthatifV= {x G 7?" + 1 : ^ ( X ) = 0} ίΛeΛ

τ r ( F ) = { / 1 > 0 } U •••u{/ /,>0}.

2.2. REMARK. In particular if {/y > 0} Φ 0 for somey, then dim V =
dim S = « and therefore ΛfA^... , * „ , Γ ] / ( F ) is a real domain. Thus Kis
an irreducible hypersurface of /?" + 1 which projects onto S.

Proof of 2.1. Set S = {fλ > 0} U U {fp > 0}. The cases S = Rn,

S = 0 and p = 1 are trivial. So, we assume S proper and p > 2. Also, if

for some/z we have {/, > 0} c \JJΦl{fj > 0}, we just omit it, so that we

may suppose the expression of S irredundant in this sense. To prove the

proposition we shall exhibit an irreducible polynomial F(T9 Xv... 9Xn) G

R[Xv...,Xn, T] such that the set F = 0 projects onto S. Let us say a

single word about how this (rather messy) polynomial comes out. We first

seek an irreducible hypersurface in Rp + i which projects over { Xλ > 0} U

• U { Xp > 0}. The hypersurface defined by clearing denominators in

THT2X,)

" 2 X" T2 - X, T2 - X
p_γ
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verifies this property. Thus, we substitute the X^s by the/'s and we check
that we can modify a bit the equation above so that it keeps irreducible.

Precisely, consider the algebraic subset V of Rn+ι defined by the
polynomial F(T, Xl9. ..9Xn) obtained by clearing denominators in the
equation

T2JT2 - λj,) ψ T2JT2 - 2/,)
Jp

 T2-X2A h (τ2-ft)

where λ^ λ 2 e R, 0 < λ2 < λv That is, if we set:

Q(τ,x)=Π{τ2-fi),

Q,(T,X) = Q(T,X)/{T2-fi) (i = 2,...,p-l)

then

(2.1.1) F(T, X) = Qfp{T2 - λ2Λ) - QT2(T2 - λjλ)

i = 2

We claim that π(V) = S. Indeed, let a ^ S. If /•(?) = 0 for some
i = 1,...,/? - 1, then it is immediate that the point (α,0) e V. So we
restrict ourselves to the case^(tf) Φ 0 for all / = 1,...,/?- 1. Now notice
that the graph of the functions (in the plane)

T2-fXa)
as well as

v τ2(τ2 - λjM)

look like Figure 1 if f({a) < 0 (resp. fx{a) < 0) and like Figure 2 if

/•(α) > 0 (resp. fλ(a) > 0, where we have to change ^2ft(a) and (fja)

by ^ιfι(o) and y/λ2/1(α)).

Thus, the range of the function

(2 12) 7 = Γ 2 ( ^ 2 " λxΛfc)) + y Γ2(Γ2^2/z(α))
^ 2 -λ 2 Λ(α) fr2 r2-/;(^)

is either the whole line R if ft{a) > 0 for some i = 1,...,/? — 1, or Y > 0
if /7(α) < 0 for all / = 1,...,/? — 1. Since in this case we have fp(a) > 0
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(by the very definition of 5), it is clear that for any a ^ S there exists
t e R such that (t9 fp(a)) verifies (2.1.2). Obviously this means that the
point (a, t) e Kand soαG π(V). This shows S c π(V).

The converse is immediate, for, if a £ S then /j (fl) < 0 for all
ι = l,...,/?. But, by the definition of K, ( α , / ) e F and fλ(a) <
0,...,fp_λ(a) < 0, implyfp{a) > 0,andsoα ί ττ(F)if α ί S.

Finally, the following Lemma 2.3 shows that there exist λ1? λ2,
0 < λ2 < λ1? such that F(T, Xl9... 9Xn) is irreducible, what concludes the
proof of 2.1.

Y

FIGURE 2
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2.3. LEMMA. Let fλ,...jp, p>2 be irreducible polynomials in
R[Xl9...,Xn], such that S = [fλ > 0} U U{fp > 0} is irredundant
{i.e. {/z > 0} <£ UJΦι{fj > 0} for all i) and S is neither Rn nor empty.
Then there exist λl9 λ 2 e R, 0 < λ 2 < λ l 9 such that the polynomial F(T9 X)
defined in (2.1.1) is irreducible.

Proof. The result is a consequence of Bertini's theorem1. To see this,
we write F(T9 X) in the form

where

p-l

Po = QfpT
2 - QT4 -T4Σ {T2 ~ 2f,)Qi9fp

(2.3.1) ^ = QfλT\

p
i = 2

Now, if C = Rii^Λ), set

Z = { ( Ϊ , t) e C w + 1 : P 0 ( s , 0 = Λ(x, /) = P2(x91) = 0}

and consider φ: C" + 1 \ Z -^ P2(C) defined by

φ(x1,...,xn,0 = (^otaO^ΛtaO^ίί*'))-
Let Λ be the set of points (λ^ λ 2) e C2 such that {Po + λ ^ •+-

λ 2 P 2 = 0} is irreducible and non-singular (as a subvariety of Cn + 1\ Z).
Then Bertini's theorem (cf. [H], pag. 275) assures that Λ contains a Zariski
open subset of C2 provided that

(a) dim(imφ) = 2.
Furthermore, if

(b) Pθ9 Pλ and P2 are relatively prime, then Z has codimension > 2,
hence {Po + λλPλ + λ2P2 = 0} is irreducible in Cn + ι.

Thus since open intervals of R are Zariski-dense in C, the result
follows at once if we prove (a) and (b). Let us begin with the second:

(b) Assume that h(X,T) is an irreducible common factor of PQ, Px

andP 2 .
Then h\Px and so, we have h = T9 h = fx or h\Q. Since P2(0, X) =

( - 1 ) ^ " 1 ! ! ^ ! f Φ 0, it follows that T \ P2.

xWe want to thank Professor J. P. Serre who called our attention to Bertini's theorem in
order to prove 2.3.
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Now, suppose h = fv Since h\POt we have

Λ

In particular, setting T = 0, fλ\{{-l)p 2 Π f = 2 / Λ which implies, since/! is

irreducible, that there exist a e R and j e {2,...,/?} such that /x = α^ .

But α > 0 means { Λ > 0 } = {/)>0} , and S would not be irredundant,

while a < 0 implies S = Rn. Therefore h Φ fv

Finally, suppose h\Q. Then, we have h = T2 - /y for somey = 2,. . . ,

/? — 1. Since h\P09 we deduce

But Λ divides Qt for all / # y . Thus h\Qj(T2 — 2fj) which is absurd. This

ends the proof of (b).

(a) It is enough to check that there is no homogeneous polynomial

H(Y09 Yl9 Y2) e C[Y09 Yl9 Y2] ~ {0} such that H(P09 Pl9 P2) = 0. Suppose

the opposite and assume that H is of degree d. Then

a+b+c=d

We shall work on the lowest degree in T of the monomials PfiP^P^. From

(2.3.1) we get

(p-l \d

(2.3.3) PSPίPi =

+ T2{a+h)+ιG(X,T)

(where in the case/? = 2 the first product is taken to be 1).

We will prove that aabc = 0 for all α, b, c. Set h = a + b. We work by

induction on h.

If h = 0, then α = b = 0 and we have to prove that aOOd = 0. But the

independent term of H(P0, Pv P2) is aOOd (Πf=1fj)
d. t h e n aOOd = 0.

Suppose oLa.h,c, = 0 whenever af + bf <h. Then

, X).
a+b+c=d

a + b>h

Since we have seen that PfPfPj = τ2(a+h) R(T, X\ the term of degree

2h in //(P o , Pl9 P2) comes from those α, ά, c such that a + b = h and its
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coefficient is, after (2.3.3),

/ Oί I — I I

a -f* u = h

Thus, we obtain

h

Σ fd-ifd-h + ι = A

which implies

h

Σ ( £ / £ \ ^ f\

OL \ T / T ) — 11

But, if aι h_ι d_h Φ 0 for some /, this means th&l fp/fλ is algebraic over C,

hence fp = λ/ l5 λ G C. Moreover, since / l 5 /^ G i?[Ar

1,... ,A^J, we know

that λ G R. Repeating a foregoing argument, λ > 0 means [fλ > 0} =

{/̂  > 0} and λ < 0 means S = Rf\ Since both cases have been eliminated

it follows aahc = 0 whenever a + b = 0 and the proof of the lemma is

complete.

3. The main result. From now on, given an algebraic set K, Vc will

denote the set of central points of V, that is the closure of the regular

points of V. We start with:

3.1. DEFINITION. A semialgebraic subset S of R" is regularly closed if

£ is the closure of its inner points.

We are now ready to prove the following:

3.2. THEOREM. Let S c Rn be a closed semialgebraic set of dimension n.

There exists a positive integer m and an irreducible n-dimensional algebraic

set V c Rn + m such that

(l)τr: K-> Rn is finite,

(2)Sc τr(K)c S.

Moreover, if S is regularly closed then π(Vc) = ττ(F) = S.

Proof. We may assume S written in the form (2.0.1), i.e.

S = s , n n s B ) w i t h 5 , = { / 1 ( > 0 } u •• u { / , l > o }
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and fki G R[Xl9.. ,9Xn] irreducible for every (/, k) G {1,... 9m) X
{1,... ,/?}. We will find V a Rn+m.Ίo do that we work by induction on
m.

For m = 1, let F c i?"+ 1 be the hypersurface F(Γ, X) = 0 of Prop-
osition 2.1 if /? > 1 and Γ 2 - /x = 0 if p = 1. Notice that the leading
coefficient of F(T9 X) a s polynomial in Γ is 1 — p (see 2.1.1) and
consequently π: V -* Rn is finite. Since π(V) = S condition (2) is trivially
satisfied.

Assume now that there exists an irreducible algebraic set W c
βn+m-i of ( j i m e n s i o n n verifying:

(i) TΓ: W ^ Rn is finite
( 3 * 2 1 ) (ii) S'air(W')<zS\

where 5' = Sx Π Π 5m_1 (which has, of course, dimension «).
Let f(W) c /{[J^,...,*„, Γ! , . . . ,^. ! ] be the ideal of polynomials

vanishing on W and consider the variety W cz Rn+m defined by</(]¥')
R[Xl9...9Xn9Tl9...9Tm_l9 T]9 where Tis a new variable. Obviously ίFis
irreducible and verifies the condition (ii) of (3.2.1).

Now let F(T9 X) = Po + λ ^ + λ2P2 G R[XV.. . 9Xn9 T] be the
polynomial defined in (2.1.1) such that for any λ l5 λ2 G i?, 0 < λ2 < λ l9

the set V'm of zeros of ̂ (in Rn+1) projects onto Sm. Let Vm be the algebraic
set of Rn+m defined by F(T9 X) considered as a polynomial in

S a SmΠ S' cziτ(Vm DW)c:S.

Set Z={(x9tl9...9tm_ι,t)eRn+'n: PQ(x, t) = P^x, t) = P2(x, t)
= 0}. Since Po, P l 5 P2 have no common factors (see proof of 2.3), it is
codim(ττ(Z)) > 1. Let H = Sing(H^) U (Z n fF). Then codim(τr(//)) >
1, since by induction hypothesis dim Wr = n. Let C = Rtf — 1) be the
algebraic closure of R and consider φ: W\H -* P2(C) defined by

φ(x, ίχ, .. ,/m_1? 0 = (P0(ΐ» 0 , Pi(x, 0 , ̂ 2 ( ^ 5 0 )

Since W\H is non-singular, Bertini's theorem applies assuring that the
set of points (λl9 λ 2) G C2 such that

{(ί, /!,...,/„,-!, 0- ̂ >(ί, 0 + λiΛte, 0 + λ2p2(x, 0 = 0}

is irreducible and non-singular (as a sub variety of W\H) contains a
Zariski open subset of C2, provided that dim(im φ) = 2.

Since π(W) has non-empty interior, to prove that dim(imφ) = 2 it is
enough to show that Po, Pλ and P2 do not verify any homogeneous
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polynomial. But this was shown in the proof of Lemma 2.3. Therefore
there exist λ l5 λ2 G i?, 0 < λ2 < λ l5 such that Vm Π (W\H) is irreduci-
ble and nonsingular (in W\H). Let V be the irreducible component of
Vm Π W which coincides with VmΠ(W\H) on W\H. Thus dim V < n
and from codim(ττ(if)) > 1 it follows dim V = dim(PF C\ Vm) = n.

Since the morphisms π: W -> i?" and 77: P^ -> /?" are finite so is π:
VmΠ W -> R\ which implies the finiteness of ττ\ V -> /T. Whence π(V)
is closed in ϋ Λ . Obviously π(V) c S. Let us see that 5 c π(V). Let x G 5
and let U c S be a strong open neighborhood of x. Since codim(π(//)) >
1, we deduce that U D (S\v(H)) Φ 0.Takey e [/ n (S\π(H)). Then
j e τ r ( ^ ) Π 7r(KJ. Pick ( ί l 9 . . . ,^_ 1 ) = t' G i ? m - 1 and ί G i? such that
(y, /r) G FF' and (y, t) G F^. We have (.y, /r, ί) G (WΠ Vm)\H c K
Hence t/ Π ττ(K) ^ 0 and since 7τ(K) is closed we conclude that S c
τr(F), what proves the first part of the theorem.

Finally, assume that S is regularly closed. First of all notice that, since
ΊT is finite, π(Vc) is a closed semialgebraic subset of R" (see [B], page 170).
From S c π(V) it follows that 5 c π(KJ. For let x G .SX^F,.) and let
t/ c S be a strong open neighborhood of x such that U Γ) π(Vc) = 0 .
Thus J7 c π(V\ Vc)\ but dimτr(F\ Vc) < n = dimί/, contradiction.
Therefore we have 5 c ττ(Fc) c ττ(F) c S. Taking into account once
more that both π(Vc) and π{V) are closed and that S is regularly closed, it
follows at once by taking closures that π(Vc) = π(V) = S and Theorem
3.1 is complete.

3.3. COROLLARY. Let S c Rn be a regularly closed semialgebraic set.

Then there exists an irreducible algebraic hypersurface V c Rn + 1 such that

Proof. Let F c Rn+m be the irreducible algebraic variety constructed

in 3.2, and let C = i?[X l 5... ,^ίπ, x π + 1 , . . .,x t t + m ] be its coordinate ring.

Then τr(Fc) = ττ(F) = S and C is integral over A = Λ [ ^ , , . . . , Z J . Let

ί = λ1A
r

π + 1 + + λmXn+m, λz G /?, be a primitive element of 7?(F)

over i?( Jf 1 ?...,X n) and let F be the hypersurface of Rn+ι with coordinate

ring B = R[Xv... 9Xn91]. Then we have the following diagram,
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where all the morphisms are finite, π represents the projection on the first

n coordinates, and p induces a birational isomorphism. Therefore ρ(Vc) =

Vc (see [D-R], 2.9) and we get π(Vc) = S.

3.4. REMARK. We still do not know whether a regularly closed

semialgebraic subset of Rn is the projection of an irreducible hypersurface

of Rn + ι. In case the answer is negative, is there a bound of the integer m

which does not depend on S (i.e. an universal bound for all regularly

closed semialgebraic subsets of Rn)Ί.

4. Application to Harrison's topology. Throughout this section K =

R(Xv...,Xn) will be a pure transcendental extension of R of degree w,

and X(K) will denote its space of orders. If E is a formally real extension

of K, we will denote by eE^κ the induced morphism between X{E) and

X(K)9 namely

εE]K: X(E) -> X(K): P -> P Π K.

A clopen subset Y of X(K) is a subset which is open and closed in the

Harrison's topology of X{K), i.e. the topology whose basis consists of the

sets:

H ( f l 9 . . . J r ) = {P <Ξ X i K Y . Λ e P , . . . J r < Ξ P } 9

Since X(K) with Harrison's topology is compact ([P]), every clopen

set Y can be written as a finite union of open basic sets:

Y=HλU -"UHp9 where#,.

Theorem 3.2 will be used to prove the following:

4.1. THEOREM. Let Y be any clopen set of X(K). Then there exists a

finite extension E of K such that Y = im ε £ ^ .

Proof. Let Y= Hλ U • U Hp, H, = H(fu,. . . ,/„.), fki e

R[Xlt...,Xn] for all (Λ,/) e {1,...,/-} X {1,...,/?}. Define the semialge-

braic associated to Y by

7"= # i U U H~p

where H] = {x & R": fh(x) > 0,...,frl(x) > 0). In [D-R] it is shown

that the correspondence Y -> Y* verifies that Yx = Y2 if and only if Y\

= Y~2, where Y denotes the closure of Y in the strong topology of R".
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Since Y is open, Y is a regularly closed semialgebraic subset of Rn. Then

2.5 applies producing an /?-dimensional irreducible algebraic set F c Rn + ™

such that π(V) = π(Vc) = Y\ In particular, π(Vc) = Y. Since dim V = n9

the function field E of F is a finite extension of K and R[Xl9...,Xn] ->

i?[F] is integral since π: F -> i?" is finite.

It follows immediately from [D-R] (Prop. 2.7) that im εE]K = Y.

4.2. REMARK. In [E-L-W] is suggested that the characterization of

those clopen subsets of the space of orders Xκ of a field K which are the

image of εE^κ for some finite extension E\K could depend on topological

properties of ε for finite extensions. However, since there are examples

([E-L-W]) of clopen sets which are not im(ε£ (^) for any E, and after

Theorem 4.1, it follows that such a characterization is not intrinsic to ε but

depends on the base field K.

Acknowledgment. The authors wish to thank the referee who pointed
out several mistakes in the original version of the paper.
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