ERRATA

Correction to

SPINOR NORMS OF LOCAL INTEGRAL ROTATIONS, II

A. G. EARNEST AND J. S. HSIA

Volume 61 (1975), 71-86

One consequence of the 2-adic spinor norm calculations in [3] is an improvement of a theorem of Kneser [5; Satz 5] giving bounds on the power of two dividing the reduced discriminant of an indefinite quadratic **Z**-lattice having class number exceeding one (see also [6; p. 111] for a weaker version, and [2;Thm. 1.3, Chap. 11] for a restatement of Kneser's theorem).

Contrary to the claim made in [3], the bounds obtained in Theorem 4.2 of that paper are not best possible. The example $L \cong \langle -7, 2^2, 2^4, \ldots, 2^{2(n-1)} \rangle$ (see Remark 4.5) which purports to demonstrate that bounds attained are best possible in fact has class number one, not two as claimed. This can be seen by observing that $\theta(O^+(L_2)) \supseteq \dot{\mathbf{Q}}_2^2 \cup 5\dot{\mathbf{Q}}_2^2$ (by Proposition 1.8) and applying the argument in the last paragraph of Lemma 4.3.

We became aware of this error in reading a preliminary draft of Brzezinski's paper [1], where a bound better than that appearing in our Theorem 4.2 is obtained for a special class of indefinite ternary quadratic Z-lattices. In fact, the methods of our paper apply directly to yield this improved bound for all indefinite ternary Z-lattices.

Lemma 4.4 and, consequently, Theorem 4.2 of [3] can be improved to produce the correct best possible bounds for all ranks. The appropriate strengthened version of that lemma is:

LEMMA 4.4'. Let L be as in [3; Thm. 4.2]. If $s_p < n(n-1)/2$ whenever p is odd and if $h^+(L) \neq 1$, then $s_2 \geq b'_2$, where

$$b_2' = \left\{ egin{array}{ccc} (3n-2)(n-1)/2 & {\it if n is odd,} \ n(3n-5)/2 & {\it if n is even} \end{array}
ight.$$

Proof. As in the proof of Lemma 4.4,

$$2^{-k}L \cong \langle \varepsilon_1, 2^{r_2} \varepsilon_2, \dots, 2^{r_n} \varepsilon_n \rangle,$$

 $0 < r_2 < \cdots < r_n$. It suffices to verify that $r_3 \ge 6$, $r_n \ge 3n-3$ for n > 3 odd, and $r_n \ge 3n-5$ for n > 2 even. Note first that if $r_s - r_t = 4$ for any s, t, then $\theta(O^+(L_2)) \supseteq \dot{\mathbf{Q}}_2^2 \cup 5\dot{\mathbf{Q}}_2^2$ (by Proposition 1.8) and $h^+(L) = 1$ follows as in the proof of Lemma 4.3. From this fact and Theorem 2.2, it can be seen that $r_2 \ge 1$ implies that $r_3 \ge 6$ under our assumption that $h(L) \ne 1$. Assume the above inequalities on $r_j, j = 1, 2, \ldots, k$. If k + 1 is even and greater than 4, then $r_{k+1} \ge r_k + 1 \ge (3k-3) + 1 = 3k - 2 = 3(k+1) - 5$ as desired

 $(r_4 \ge 7 \text{ holds since } r_3 \ge 6)$. If k+1 is odd, then, arguing as for r_3 above, $r_{k+1} \ge (3k-5)+5=3(k+1)-3$.

Theorem 4.2 remains valid with the values of b'_2 given as above. Moreover, the examples $L \cong \langle 1, -2^6, 2^7 \rangle$, $L \cong \langle 1, -2^6, 2^7, \ldots, 2^{3n-3} \rangle$ if n is odd, $n \ge 5$, and $L \cong \langle 1, -2^6, 2^7, \ldots, -2^{3n-5} \rangle$ if n is even, $n \ge 4$, show that the new bounds b'_2 are best possible for all $n \ge 3$. For small values of n, the last column of Table 4.8 should show the best possible bounds b'_2 to be 7, 14, 26, 39, 57, 76, 100 and 125 for $n = 3, \ldots, 10$, respectively. The bounds shown for b''_2 in the third column of that table are indeed best possible (note that the final exponent in the example L of Remark 4.7 should read "4k", not "2k".

Finally, for completeness we note that in Theorem 3.14, (i) should read "If all $2^{r_i}L_i\ldots$ ", (ii) should read " $\ldots 2^{r_j}L_j\ldots 2^{r_k}L_k\ldots$ ", and the Hilbert symbol appearing in (ivb) should read " $(2^{r_k-r_{i_0}}a_{i_0}\varepsilon_k, -\det L_{i_0})$ ". These modifications were noted in [4].

References

- [1] J. Brzezinski, Spinor class groups of orders, J. Algebra, 84 (1983), 468-481.
- [2] J. W. S. Cassels, *Rational Quadratic Forms*, London Mathematical Society monographs, No. 13, Academic Press, 1978.
- [3] A. G. Earnest and J. S. Hsia, Spinor norms of local integral rotations, II, Pacific J. Math., 61 (1975), 71-86.
- [4] ____, Spinor genera under field extensions, II, Amer. J. Math., 100 (1978), 523-538.
- [5] M. Kneser, Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veranderlichen, Arch. Math., 7 (1956), 323–332.
- [6] G. L. Watson, Integral Quadratic Forms, Cambridge tracts in mathematics and mathematical physics, No. 51, Cambridge University Press, 1960.