ERRATA

Correction to

SPINOR NORMS OF LOCAL INTEGRAL ROTATIONS, II

A. G. EARNEST AND J. S. HSIA

Volume 61 (1975), 71-86

One consequence of the 2 -adic spinor norm calculations in [3] is an improvement of a theorem of Kneser [5; Satz 5] giving bounds on the power of two dividing the reduced discriminant of an indefinite quadratic Z-lattice having class number exceeding one (see also [6; p. 111] for a weaker version, and [$\mathbf{2}$; Thm. 1.3, Chap. 11] for a restatement of Kneser's theorem).

Contrary to the claim made in [3], the bounds obtained in Theorem 4.2 of that paper are not best possible. The example $L \cong\left\langle-7,2^{2}, 2^{4}, \ldots, 2^{2(n-1)}\right\rangle$ (see Remark 4.5) which purports to demonstrate that bounds attained are best possible in fact has class number one, not two as claimed. This can be seen by observing that $\theta\left(O^{+}\left(L_{2}\right)\right) \supseteq \dot{\mathbf{Q}}_{2}^{2} \cup 5 \dot{\mathbf{Q}}_{2}^{2}$ (by Proposition 1.8) and applying the argument in the last paragraph of Lemma 4.3.

We became aware of this error in reading a preliminary draft of Brzezinski's paper [$\mathbf{1}$], where a bound better than that appearing in our Theorem 4.2 is obtained for a special class of indefinite ternary quadratic Z-lattices. In fact, the methods of our paper apply directly to yield this improved bound for all indefinite ternary Z-lattices.

Lemma 4.4 and, consequently, Theorem 4.2 of [3] can be improved to produce the correct best possible bounds for all ranks. The appropriate strengthened version of that lemma is:

Lemma 4.4'. Let L be as in $\left[\mathbf{3} ;\right.$ Thm. 4.2]. If $s_{p}<n(n-1) / 2$ whenever p is odd and if $h^{+}(L) \neq 1$, then $s_{2} \geq b_{2}^{\prime}$, where

$$
b_{2}^{\prime}= \begin{cases}(3 n-2)(n-1) / 2 & \text { if } n \text { is odd } \\ n(3 n-5) / 2 & \text { if } n \text { is even. } .\end{cases}
$$

Proof. As in the proof of Lemma 4.4,

$$
2^{-k} L \cong\left\langle\varepsilon_{1}, 2^{r_{2}} \varepsilon_{2}, \ldots, 2^{r_{n}} \varepsilon_{n}\right\rangle
$$

$0<r_{2}<\cdots<r_{n}$. It suffices to verify that $r_{3} \geq 6, r_{n} \geq 3 n-3$ for $n>3$ odd, and $r_{n} \geq 3 n-5$ for $n>2$ even. Note first that if $r_{s}-r_{t}=4$ for any s, t, then $\theta\left(O^{+}\left(L_{2}\right)\right) \supseteq \dot{\mathbf{Q}}_{2}^{2} \cup 5 \dot{\mathbf{Q}}_{2}^{2}$ (by Proposition 1.8) and $h^{+}(L)=1$ follows as in the proof of Lemma 4.3. From this fact and Theorem 2.2, it can be seen that $r_{2} \geq 1$ implies that $r_{3} \geq 6$ under our assumption that $h(L) \neq 1$. Assume the above inequalities on $r_{j}, j=1,2, \ldots, k$. If $k+1$ is even and greater than 4, then $r_{k+1} \geq r_{k}+1 \geq(3 k-3)+1=3 k-2=3(k+1)-5$ as desired
$\left(r_{4} \geq 7\right.$ holds since $r_{3} \geq 6$). If $k+1$ is odd, then, arguing as for r_{3} above, $r_{k+1} \geq(3 k-5)+5=3(k+1)-3$.

Theorem 4.2 remains valid with the values of b_{2}^{\prime} given as above. Moreover, the examples $L \cong\left\langle 1,-2^{6}, 2^{7}\right\rangle, L \cong\left\langle 1,-2^{6}, 2^{7}, \ldots, 2^{3 n-3}\right\rangle$ if n is odd, $n \geq 5$, and $L \cong\left\langle 1,-2^{6}, 2^{7}, \ldots,-2^{3 n-5}\right\rangle$ if n is even, $n \geq 4$, show that the new bounds b_{2}^{\prime} are best possible for all $n \geq 3$. For small values of n, the last column of Table 4.8 should show the best possible bounds b_{2}^{\prime} to be 7, 14, 26, 39, 57, 76, 100 and 125 for $n=3, \ldots, 10$, respectively. The bounds shown for $b_{2}^{\prime \prime}$ in the third column of that table are indeed best possible (note that the final exponent in the example L of Remark 4.7 should read " $4 k$ ", not " $2 k$ ".

Finally, for completeness we note that in Theorem 3.14, (i) should read "If all $2^{r_{2}} L_{i} \ldots$ ", (ii) should read " $\ldots 2^{r_{3}} L_{j} \ldots 2^{r_{k}} L_{k} \ldots$ ", and the Hilbert symbol appearing in (ivb) should read " $\left(2^{r_{k}-r_{2_{0}}} a_{\imath_{0}} \varepsilon_{k}\right.$, - det $\left.L_{i_{0}}\right)$ ". These modifications were noted in [4].

References

[1] J. Brzezinski, Spinor class groups of orders, J. Algebra, 84 (1983), 468-481.
[2] J. W. S. Cassels, Rational Quadratic Forms, London Mathematical Society monographs, No. 13, Academic Press, 1978.
[3] A. G. Earnest and J. S. Hsia, Spinor norms of local integral rotations, II, Pacific J. Math., 61 (1975), 71-86.
[4] , Spinor genera under field extensions, II, Amer. J. Math., 100 (1978), 523-538.
[5] M. Kneser, Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veranderlichen, Arch. Math., 7 (1956), 323-332.
[6] G. L. Watson, Integral Quadratic Forms, Cambridge tracts in mathematics and mathematical physics, No. 51, Cambridge University Press, 1960.

