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ON SEMIGROUPS OF CONVOLUTION OPERATORS
IN HILBERT SPACE

JORGE D. SAMUR

Given an infinitely divisible probability measure on a real separable
Hilbert space H and the infinitesimal generator A of the associated
semigroup of convolution operators acting on the Banach space of
bounded uniformly continuous real functions on H9 we describe the
action of A on certain classes of differentiate functions.

1. Introduction. For every infinitely divisible probability measure μ
on a real separable Banach space E there is an associated strongly
continuous semigroup of convolution operators on the Banach space
CU(E), the class of bounded uniformly continuous real-valued functions
on E with the norm of uniform convergence. According to the general
theory of semigroups of operators, the domain of the infinitesimal genera-
tor of every such semigroup is dense in CU(E). As is well known, one of
the central aspects of the study of a specific semigroup of operators is the
description of the action of its infinitesimal generator on a class of
"smooth" functions which is large enough to characterize the semigroup.
In the case when E is finite-dimensional, a result of this kind was obtained
by Courrege [3], where the action of all generators of convolution semi-
groups on a natural class of differentiable functions is described. When E
is an infinite-dimensional Banach space, however, the scarcity of differen-
tiable functions (see [*] for a recent discussion) does not allow such a
description.

This difficulty can be surmounted in the case when E is a Hilbert
space; this is the object of the present paper. We consider the case in
which £ is a Hilbert space H and describe the action of the generators on
certain classes of differentiable functions. We exhibit a natural class of
differentiable functions — the class Cu

(2)(/ί), defined below — on which
all generators of convolution semigroups can be characterized (Theorem
3.1); our result generalizes the work of Courrege [3]. However, in contrast
to the situation in the finite-dimensional case, CM

(2)(/f) is not dense in
CU(H) when H is infinite-dimensional.

It is possible to prove a stronger result for convolution semigroups
without Gaussian component; in fact, in Theorem 3.6 we describe the
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action of the generator of any such semigroup on a dense class of
differentiate functions. Finally, an extension for the Hubert case of a
result of L. Gross ([4]) is stated (Corollary 3.7).

As a by-product, we obtain the well-known Levy-Khintchine repre-
sentation in Hubert space including limit formulas for the terms of the
representation which strengthen the known results.

At several points we use ideas and techniques of [2].
H will denote a real separable Hubert space with || || = ( , ) 1 / 2 ;

the norm of CU{H) (defined above) is also denoted || ||. If /: H -» R is a
continuous function which is Frechet differentiable at x e H we denote
by f\x) the point of H such that (/ ' (*) , ) is the derivative of / at x\
analogously, f"(x) will be the symmetric bounded operator on H such
that (f"(x)(')> •) is the second Frechet derivative of/at x9 if it exists.
CM

(2)(/f) will be the subspace of CU(H) of those twice Frechet differentia-
ble functions/such that

H/ΊI = sup| |/'(x)| | < oo, l l/l = sup| |/"(x) | | < oo
x<ΞH

and/" is uniformly continuous (again, we write || || for different norms).
All measures considered are defined on the Borel σ-algebra of H. We

refer to [6] for the definition and properties of weak convergence, sym-
bolized here by ->. N denotes the set of natural numbers greater than
zero.

2. Semigroups of measures. A probability measure μ on a separa-
ble Banach space E is infinitely divisible if for each n ^ N there exists a
probability measure μι/n on E such that (μι/n)

n = μ (vn denotes the nth
convolution power of a finite measure v). The characteristic functional μ
of μ never vanishes on Er (the topological dual of E) and, consequently
(see [2], §2), there exists a unique sequentially w*-continuous function /:
Ef -> C such that μ = exp / and 1(0) = 0. The nth root of μ is unique and
μι/n = exp((l/«)/).

Recall that a family {μt: t > 0} of probability measures on E is a
(weakly continuous) semigroup of measures if (1) μ0 = δ0, (2) μs * μt = μs+t

for s > 0, / > 0, and (3) μt -^ μ0 as t -> 0.

The following fact is well-known; we sketch a proof for the sake of
completeness.

PROPOSITION 2.1. For every infinitely divisible probability measure μ on

a separable Banach space E there exists a unique semigroup of measures

[μt\ t > 0} such thatμx = μ.
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Sketch of proof. We outline only the construction of {μr}. The
existence of /: Ef -> C as above such that μ = exp / implies that for a
positive rational r = k/n (k, n e N) we may define μr = (μx/J^ depend-
ing only on r; let μ0 = δ0. We have now a semigroup {μr} with non-nega-
tive rational parameter such that μx = μ.

In order to define μt for real positive t, observe that if {rn} is a
bounded sequence of positive rationals the semigroup property gives that
( μ r } is relatively shift compact (see Def. 2.1 and Th. 2.2 of Ch. Ill in [6])
and recall the following result: if {vn} is a sequence of probability
measures on E such that (1) {vn} is relatively shift compact and (2) {vn}
converges uniformly on the balls of E' to a certain function g, then there
exists a probability measure v on E such that vn -> v and v = g (this is
proved as Th. 4.5, Ch. VI in [6]). D

Given a semigroup of measures {μt\ t > 0} on H9 for each ? > 0 w e
define the point xt e /f, the bounded symmetric operator Tton H and the
finite positive measure vt on if by

« /

(1 +

and

/ ί)

The following two results may be proved along the lines of Theorem
4.1 of [2] (in [2] the converse Kolmogorov inequality for Banach spaces is
used; here we can use a similar inequality valid for the Hubert space case
due to Varadhan — see [6], Th. 3.3, Ch. VI).

LEMMA 2.2. Let F be a closed subspace of H and q(x) = d(x, F). If
t > 0 andot = (l/2)(μ/ + μt) then

'{x:q(x)<r}

holds for each r > 0 such that o}ι/t]+ι({x\ q(x) > r}) < 1/12. (μ, is the
measure defined by μt(B) = μt(-B) for Borel sets B\ [•] denotes the integer
part of a real number).
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THEOREM 2.3. {vt\ t > 0} is relatively {weakly) compact.

As in [6] (Ch. VI, Def. 2.3) we call S-operator a symmetric, positive,
bounded operator S on H with finite trace, i.e. tr(5) = Σy=ι(SeJ9 ey) < oo
for some (every) orthonormal basis {ey.j e N] of H. Recall that a class J /
of S-operators is compact ([6], Ch. VI, Def. 2.4) if: (I) sup5€Ξj/tr(S') < oo,
(II) l i m ^ ^ sup5€j/ΣjfL „(££,-, e^ = 0 for some orthonormal basis {ej} of
//.

Let (L ( 1 )(//), || Ih) be the ideal, in the algebra of all operators on //,
of trace class operators endowed with the trace norm and denote by ̂ t h e
class of all 5-operators on H. The following proposition will be useful. We
remark in passing that it proves in particular that the notion of compact
class does not depend on the choice of orthonormal basis.

PROPOSITION 2.4. Lets/a S?. Then J/is a compact class if and only ifjtf
is relatively compact in (L (1)(/f), || 1̂ ).

Proof. For the sufficiency part, fix an (arbitrary) orthonormal basis
{ey. j e N) of H, define for each n e N the function ψn: Sf-* R by
ψn(S) = LJ=n(Sej9 €j) and apply Dini's theorem.

Necessity. Let {ey. j e N} be the orthonormal basis of H for which
both conditions of the definition of compact class hold. Take a sequence
{ S n } c j / . W e write || || (|| ||2) for the (Hilbert-Schmidt) operator norm.

Observe that for S Ξ y its symmetric positive square root Sι/2 is of
Hilbert-Schmidt type and ||51 / 2 | |2 = tr(5). The hypothesis implies that
supJ|Srt

1//2||2 < oc hence by a standard procedure we may find a sequence
{nk} and a bounded operator T on H such that {S^2} converges to T in
the weak topology of operators.

Then Γis symmetric, positive and of Hilbert-Schmidt type:

Tejt = Σ(TeJt e,)2 < Km inf
k

t =
JJ

= lim inf llS'y2! < sup Xτ(S) < oo.
k

Next we prove that S^2 -> T strongly as k -> oo. For x e H,m e N
we have

m +1
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since the last term is bounded by

2W2 Σ

the weak convergence of {S^2} to T and the compact class property
imply that SYk

2x -> Tx.
Having proved the strong convergence of {SΛk} to T9 we can deduce

from the inequality

t f + 2 £ ((Sntej, e,) + ||7e

that H^Y2 - T\\2 -> 0 as A: -* oo. From this we obtain that T2 e L{l)(H)
and ||S,J - Γ 2 ^ -^ 0, because

k - ^2IL ΦΆΉ? - Ί]\2+\\syk> - 4 .|mι2.
We have thus proved that {Sn} contains a convergent subsequence in

REMARK. Let us recall that a probability measure γ on a Banach space
E is Gaussian if it induces a normal (possibly degenerate) distribution on
R via each/ e £ ' . Consider the set Γ of all Gaussian probability measures
on H with the topology of weak convergence and the set Sf with the
topology induced by || | | le Then the map which associates to every pair
(x, S) belonging to the topological product space H X Sf the unique
γ e Γ such that y(y) = exp(/(x, y) — \{Sy, y)) is a homeomorphism
(this follows from well-known facts — see [6], Ch. VI — together with
Proposition 2.4).

After these preliminaries, we return to the family of operators {Tt}
associated to {μ,}.

THEOREM 2.5. {Tt\ t > 0} is a compact class of S-operators.

Proof. Let {ey. j e N} be an orthonormal basis of H. We must prove:

(I) suptr(7;)< oo?
ί>0

00

(Π) lim sup Σ (Ttej9ej) = 0 .

Claim (I) follows from Theorem 2.3 since
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T o p r o v e (II) let Fn b e t h e s u b s p a c e s p a n n e d b y {el9...9en} a n d
qn(x) = d(x9 Fn). Observe that

(1) Urn s u p σ}^+1{{x: qn(x) > r}) = 0,

σ, being as in Lemma 2.2 and r > 0. Putting λt = σ/1//]+1, we obtain (1)
from the relations

λ,({*: <?„(*) > r}) < λ,({x: ί f i (x) > r ) n K) + λ f ( ^ )

(/ e (0,1]), the relative compactness of {λt: t e (0, l]} (see the proof of
Theorem 4.1 in [2]) and Dini's theorem (note that qni0 pointwise).

Next, Lemma 2.2 and (1) yield: for every r > 0 there exists n0 ^ N
such that

supf q2

n\--)dμt<9r2 ioxn>n0.

This fact, Theorem 2.3, Dini's theorem and the inequalities

J{x:qn(x)>r}ΠK \ l I

(t > 0) complete the proof through an easy argument. D

Next, we define some auxiliary functions; the proofs of their proper-
ties are omitted (use Taylor's formula).

LEMMA 2.6. (a) Given / e C£\H), define for every x e H

i + M 2

2 > y * o,
x ' 11/11 " ^ 1 - 1 - | |7|Γ j J 11/11

0, y = 0.

77zeπ the family {Bj(x, -): x ^ H) is uniformly bounded and equicontinuous
at each y e H.

(b)Fory^Hlet

K(v χ\ = / I^ΛFV'\ X> J/) - 1 - . o I—r~;—9 χ φ 0?

77*e« ^ ( j , •) w bounded and continuous on H — {0}.
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(c)Fory e Hlet

forx Φ 0, M(y,0) = 0. Then for every r > 0 the family {M(y, •): \\y\\ < r)
is uniformly bounded and equicontinuous at each x e ί f .

The proof of the next theorem requires the following uniqueness
result (see [6], Ch. IV, Th. 8.1):

LEMMA 2.7. Ifx0, x'o Ξ H, S, S' are S-operators, v, v' are positive finite
measures on H such that v({0}) = f'({0}) = 0 and

exp[/(x0, y) - \{Sy, y) + j K{y, •) d

= exp[/<4, y) - \{S'y, y) + fκ(y, •) dv'

holds for all y e H, then x0 = x'o, S = S\ v = v' (K is as in (b) of the
preceding lemma).

THEOREM 2.8. There exist x0 ̂  H, an S-operator To and a positive

finite measure v0 on H such that xt -> x 0, Tt -> TQ in \\ ||x and vt -> v0 as

t ->0.

Proof. Given t > 0, y e H and taking M( y9 •) as in Lemma 2.6(c) we
have

(1) (\)(μt(y) - 1) = i(xt, y)-[\){Tty, y) + JM(y, •) dvt.

Take a positive sequence {tn} such that tn -> 0. Theorems 2.3, 2.5 and
Proposition 2.4 imply that there exist a positive finite measure v0 on H
and an S-operator To such that

(2) T -+ To in || ||x and v ^ v0 (k -* oc).
ιnk

 v " " x ιnk

On the other hand, if /: H -> C is the sequentially w*-continuous
function such that jί̂  = exp / and 1(0) = 0, the inequality

\(l/t)(μt{y)-i)-l(y)\zt &φ\l(y)\

holds for t e (0, l ] , which shows that the left member of (1) converges to /
uniformly on the balls of H. Moreover { JM(y9 •) dvt } converges in the
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same manner to JM(y9 •) dv09 by Lemma 2.6(c) and a well known result
of R. Ranga Rao (see [6], Ch. II, Th. 6.8). The convergence of {{Ttn y9 y)}
to (Toy9 y) is also uniform on the balls of i/.

Then (1) gives that {(xtn , )} converges uniformly on the balls of H

and, consequently, there exists x0 e H such that xtn -> x0 in H. Hence

= exp\i(x0 9 y)-\^ )(Sy9 y) + / K(y9 •) d(v0 - ^o({°})δo)

for ally e H(K(y, •) is as in Lemma 2.6(b)) with S = Γo - U9 Ubeing
the symmetric operator defined by

(Uy, y) = j Q c 11^12(1'+Li2) yo(^)-

We prove now that S is an S'-operator. Observing that U is positive, it
suffices to show that S is positive; to this end, fix y e H and define u:

lo, x = o.
This function is lower semicontinuous and bounded; then

(Uy, y) = I udv0 < lim inf / udvtn

W

since vt -* v0. This gives the positiveness of 5.
Finally, we obtain the theorem by a standard argument involving

subsequences, the uniqueness Lemma 2.7 and the following remark: if v0

and S are obtained as above (from a sequence {tn}) then PO({O}) = tr(5);
in fact, putting v(x) = (1 + ||x||2)~\ (2) implies

^o({0}) = / v dv0 - f vdpo = limf v dv^ - tr(U)

= lim tr(7; ) - tr(ί/) = tr(Γ0) - tr(£/) = tr(5). D

COROLLARY 2.9. (a) (Levy-Khintchine representation) Let μ be a proba-
bility measure on H. Then μ is infinitely divisible if and only if there exist
xQ e H, an S-operator S and a positive finite measure v on H such that
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K{0}) = 0 which satisfy

μ(y) = rap[ι(x0, y) - \{Sy, y)[ \
if.

objects xQ9 S and v are uniquely determined by μ. {We will say that

[xQ, S, v] is the Lέvy-Khintchine representation of μ.)

(b) Given the semigroup {μt\ t > 0}, if[x0, S, v] is the Leυy-Khintchine

representation ofμl9 we have:

(i) xt -* xo;
(ii) Tt -> *S + U in \\ \\l9 U being the S-operator defined by

(vy.y)-f i, ,iΓi>l|

2

|l2/W'
w 11^11(1 + IWI)

(ii') ί/ίΛe S-operators Vιδ are defined by

(χ9y)2(\)μt(dχ)9

\ t I\\χ\\<δ

then

lim lim sup||^δ - S\\λ = 0;
δ-+o t ^ 0

(iii) vt -* ^ + tr(5) δ0 (δ 0 is the unit point mass at 0).

Proof of (ii'). Put Bδ = (x e 7/: ||JC|| < δ}. Let Γo, ̂ 0, U as in the

proof of Theorem 2.8 and for / > 0, δ > 0 consider the S-operators

defined by:

(Usy,y)=ί 2

{

(

X'y)2

 2.2*0(dχ), Us=U-Uδ.
JBS-{0) \\x\\2(l +| |x| |2)

Fix δ > 0 such that vQ({x: \\x\\ = δ}) = 0. Since S = TQ - U, for

every t > 0 we have

v,.»-s- (vtt,- τus)+{u- τ,δ) +(τt- τ0).
We know that lim f^,0 | |7; - 7 ^ = 0.

For each t > 0, since VtS - Tιδ is positive, one has

w2( ff)
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hence the choice made of δ gives

= f
1 + IUI

For the remaining term, observe first that {Tt

8\ t > 0} is relatively
^-compact. Next, consider a
> 0; again by the choice of δ,

^-limit Γo

δ of a sequence with

This shows that Tt* -> C/δ in || 1̂  as ί -»• 0. Then

The preceding argument proves that if δ > 0 satisfies

one has

r->0 1 + IIJCI

1 + be

ro(dx)

The finiteness of P0 implies the result. ϋ

REMARK. Part (a) is due to Varadhan (see [6]). (b) may be compared
with the statement of the Levy-Khintchine representation in Banach
spaces in [1] (Corollary 1.11); in particular, (ii') strengthens the limit
formula (2) in [1].

3. Semigroups of convolution operators. Given a probability mea-
sure μ on //, we define the convolution operator Pμ on CU(H) by Pμf{x) =
ff(x + y) μ(dy) ( / ^ Cu{H\x G H) and to every semigroup of mea-
sures { μ r : / > 0 } on H we associate the family [Pt: t > 0} such that
Pt = Pμ for each t. It is a strongly continuous semigroup of operators; in
other words: (1) Po = I (the identity operator), (2) PsPt = Ps+t for s > 0,
t > 0, and (3) lim,_0 | |P,/ — / 1 | = 0 for each / e CM(/ί). Let us remark
that every strongly continuous semigroup of convolution operators on
CU(H) may be obtained from a semigroup of measures as above.

Given such a semigroup [Pt\ t > 0} define At = (l/t)(Pt — I) for
t > 0 and the operator A by Af = l im^ 0 yl r /on the linear subspace D of



CONVOLUTION OPERATORS 473

those / e CU(H) for which the limit exists in CU(H). A is called the
infinitesimal generator of {Pt} and D its domain. Throughout this section
{μr}, {Pr}, D and 4̂ are related in this manner and [x0, S, v] is the
Levy-Khintchine representation of μv

THEOREM 3.1. C?\H) c D and for every f e CM

(2)(i/) β/κ/ eαcΛ x e i ί

f(χ+y)-f(χ)-
l +

i + \\y\2

2
•v(dy).

Proof. Fix/ e C^2)(H); for t > 0 and Λ; e i/ we have

(1) Atf(x)=(Xnf(x)) +

Bf(x, )dv,

(Bf as in Lemma 2.6(a)).
First, we prove that for every symmetric operator Δ on H

(2)

If Δ is an orthogonal projection P, taking orthonormal bases {e,:
/ e /} and {e :̂ y e /} of P(/ί) and P(H)X , respectively (with / Π / =
0), one has: (e,: / e / U /} is an orthonormal basis of H and for every

y e //

i e/,

Hence

/ Pi; iA / 1 \

= Σ {TtPeite^\x{TtP).

Given a symmetric operator Δ, the spectral theorem implies that there
exists a sequence {Δn} of operators which are finite linear combinations



474 JORGE D. SAMUR

of orthogonal projections such that ||ΔΠ — Δ|| —> 0 (/i —> oo). Since (2) is
true for each Δπ, we may apply Lebesgue's dominated convergence
theorem to the integrals and the inequality \tr(TtΔn) - tr(7^Δ)| < {{T^
||Δn — Δ|| in order to conclude that (2) holds for Δ.

Consequently, we can rewrite (1) as

ΛJ{x) = (xn Γ(x)) + \ tτ(Ttf"(x)) + j Bf(x9 ) dvt.

Let To = S + U (U as in Corollary 2.9(b)) and v0 = v + tr(S) δ0.
For every t > 0 and x G ί f w e have

\{xt, f'(x)) - (x0, f'(x))\ < \\xt - xo\\ • H/ΊI,

|tr(7;/"(x)) - tr(Γ0/"(x))| < \\Tt - Γdk | |/"| |;

moreover {£y(x, •): x ^ H} is uniformly bounded and equicontinuous
(Lemma 2.6 (a)). Then Corollary 2.9(b) and the result cited in the proof of
Theorem 2.8 imply that

ΛJ{x) - (*„./'(*)> + \ tτ(Tof"(x)) + J Bf(x, •) dp0

uniformly in x e H as t -* 0. This shows that/ e D.
But

Bf(x,-)dv0=j

-\s
i + \\y\\z J \\y\\'

(f"(χ)y, y)

\\y\\2{i + \\y\\
>(dy)

and the last integral equals tτ(Uf"(x)) (argue as in the proof of (2)). This
gives the announced expression for Af. D

Let us mention now without proof two corollaries of Theorem 3.1
which are generalizations of results in [3] (Lemmas 8 and 6).

COROLLARY 3.2. {Pt\ t > 0} is uniformly continuous on CU(H) (i.e. Pt

tends to I in the operator norm as t -» 0) if and only if there exists a positive
finite measure λ on H such that μt = exp[/(λ — ||λ||δ0)]. (For a finite
measure α, exp(α) is defined by the usual expansion, converging in the total
variation norm).

COROLLARY 3.3. The following conditions are equivalent:
(1) A is of local character on D (i.e. Af(x) = 0 when f ^ D vanishes in

a neighborhood of x G H).
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(2) μλ is Gaussian.

(3) l im,_ o ( l/Oμ,(K c ) = Ofor every neighborhood VofO.

REMARK. Theorem 3.1 includes results of Courrege for the finite-di-

mensional case ([3], Theoremes 1 and 2). In that situation C^\H) is

dense in CU{H), but this is no longer true when H has infinite dimension.

This fact was proved by D. Herrero (personal communication) who, using

arguments of [7] (§5, Th. 1), showed that Q ( 2 )(/2) is not dense in Cu(l2)

(explicitly: if A = {x e I2: xt < 0, ||JC|| < 1} and/(jc) = min{l, d(x9 A)}

then for all g e Q ( 2 )(/ 2) one has \\f - g\\ > 1/2).1

In view of this negative result it seems of interest to show that for a

special class of semigroups — namely, semigroups without Gaussian part

— there exists a dense subspace of CU(H) which is contained in the

domain of every generator. Again, the density result depends on [7].

Let us call C^L(H) the space of those functions/ e CU(H) which are

Frechet differentiable with a derivative / ' that satisfies: (i) | |/ ' | | =
suPjcetfll/'(*)ll < °°> (ϋ) f°Γ s o m e δ > 0 and M > 0 it holds \\f\x) -
f\y)\\<M\\x-y\\vten\\χ-y\\<δ.

PROPOSITION 3.4. C£l(H) is dense in CU(H).

Proof. It is proved in [7], §4, Corollary 4 that given closed subsets

A9 B of H at positive distance, there exists a continuous function /:

H —• [0,1] with Lipschitz derivative such that / \A = 0 and / \B = 1. For

such a pair of sets with d(A, B) = 4δ > 0 we may prove, applying the

result to A' = {x: d(x9 A) < δ} a n d £ r = {x: d(x9 A) > 2δ}, that in fact

/can be chosen with | |/ ' | | < oo and then/ e C^l(H).

The proof is completed by using the following modification of a well

known fact whose proof we omit (see [5], Ch. 7, Problem P): let M be a

metric space and L a linear subspace of CU(M). Suppose that for each

pair of closed subsets A9 B of M at positive distance and for each real

interval [a, b] there exists/ e L such that a < f < b,f \A = a and/ \B = b.

Then L is dense in Cu (M). D

LEMMA 3.5. Letf e C£]

L(H) and define

1 ^ " V " , yΦO,

Then {Lf(x, •): x ^ H) is equicontinuous at every y Φ 0 α«d uniformly

bounded.

LWe thank D. Herrero for many helpful conversations on this point and J. Eells, who

suggested that [7] might be relevant in a letter to A. de Acosta.
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THEOREM 3.6. Suppose that S = 0. Then C£l(H) c D and for every
f e Cu

αl( H) and each x&H

Af(x)=(xQ,f'{x))

J IMI

Proo/. Let/ e CU

(11(#); for / > 0 and x e /ί one has

Lf(x,-)dvt

(Lf as in Lemma 3.5).
By the preceding lemma and the fact that vt-*v and v({0}) = 0

(Corollary 2.9(b)) we may deduce that JLf(x, •) dvt -> JLf(x, •) ί/̂  uni-
formly in x as ί -> 0, which gives the theorem. The proof requires a slight
generalization of a result previously used: let M be a complete separable
metric space and {juα} a relatively compact net of positive finite measures
on (the Borel sets of) M, weakly convergent to μ. Then ii^is a set of
Borel functions from M to R which is uniformly bounded and
equicontinuous at each x G Λc, A being a closed set with μ(Λ) = 0, one
has

lim sup ffdμa-ffdμ = 0. D

For our final statement, let us recall the construction of the Hubert
space of a centered Gaussian measure γ on a separable Banach space E
(see [1], §5). Let L2(γ) be the^ Hubert space of (classes of) square
γ-integrable functions on E and E' be the closure in L2(γ) of E' endowed
with the L2(γ)-norm> denoted || ||L2 = ( , ))42. Define Hy as the linear
subspace of E of those h such that /*->/(Λ) is ZΛcontinuou^on E'. For
h e Hy the Riesz representation gives a unique φ(λ) e £ ' such that
/(A) = (φ(A),/)L2 for all / e £"; it is verified that φ: Jϊγ -> £ ' is an
algebraic isomorphism and Hy becomes a Hubert space isomorphic to E'
by defining (A, k)y = (φ(Λ), φ(k))Li (A, *;, e ^ ) . The norm || | |γ is
stronger than || || (the norm of E) on Hy and Hίj'" coincides with the
support of γ.

When E = H is a Hubert space with inner product ( , ), one has
(( , y)9 ( , y'))L2 = (S>, j r ) (y9 y\ e /f), where 5 is the covariance
operator of γ; A e /f iff _y *-> (x, .y) is continuous on H with respect to
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the bilinear form given by S and φ: Hy -» H' is characterized by (λ, >>) =
(φ(A), ( , ^>)L2 for h<ΞHv y*ΞH. Moreover S(H) = φ~\Hf) and
(Sx, Sx')γ = (5 1 / 2 x, S1/2;c') for x, JC', G //; by the density of S(H) in
Hy it follows that

(*) (Sx, h) = (x, h) for ĉ G if, h G JΪ.y

Given a real function/on the Banach space E, we say (as in [4]) that/
is twice Hy-differentiable at x e £ if the function g(h) = f(x + h), g:
Hy -> R is twice || ||γ-Frechet differentiable at 0; in this case, we denote
by D2f(x) the operator on i/γ associated with the second derivative of g
at 0. This notion is weaker than || ||-Frechet differentiability. If T e
L ( 1 )(i/γ) we denote its trace by trγ(Γ).

Now we can extend in the Hilbert space case Corollary 3.2 of [4].

COROLLARY 3.7. Let γ be the centered Gaussian measure with covari-
ance operator S. The class of functions f which satisfy the following condi-
tions is dense in CU{H).

(ii) for each x e H, f is twice Hy-differentiable at x and D2f(x)

y

(iii) D2f: H -> L(1) (Hy) is bounded and uniformly continuous,
(iv) / e D and

Preκ?/. The proof of Corollary 3.2 in [4] and Theorem 3.6 of the
present paper show that the set of functions f(x) = j^e~\Ttg)(x) dt,
with g G C^l(H) and {Γr} the semigroup of operators associated to γ, is
dense in CU{H) and satisfies properties (i)-(iv) (the results of [4] needed
are proved there only when H is dense in H, but the proofs remain valid
in general). D

REMARK. The class of functions defined in Corollary 3.7 contains
CM

(2)(//) and the expression for Af coincides with that of Theorem 3.1. In
fact, the following statement holds: if /: H -> R is a continuous function
with second || ||-Frechet derivative f"{x) at some point x G H then/is
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twice #γ-differentiable at x9 D2f(x) = Sf"{x)\H e L(l)(Hy) and
tvy(D2f(x)) = tr(S/"(x)).

To prove this, observe that we have the maps
i σ K / v r " 1

Hy-*H, H -> H' —> [HyY —> //γ,

σ and T being the Riesz representations for /f and i/γ, i the inclusion map,
which satisfies | | ι(*) | | < c||x||γ with c2 = j\\y\\2 y(dy)9 K the injection
which to every ψ e ί f ' associates its restriction to Hy. Using (*) we may
check that τ~ικσ = S.

If / is twice || ||-Frechet differentiable at x e H then it is twice
ifγ-differentiable at x and in fact D2f(x) = τ'ικσf"(x)ι = Sf"(x)ι. Take
now an orthonormal basis {en: n e iV} of H such that 5^^ = λnen with
λπ > 0 and put un = λ(y2)eπ forn<ΞN such that λπ > 0; (*) gives that
[un: n e iV with λΛ > 0} is an orthonormal basis of Hy. In order to
conclude that D2f(x) is of trace class on Hy note that S: H -* Hy is the
(Hilbertian) adjoint of ι\ Hy -> H, which is of Hilbert-Schmidt type (this
is well known: | |*(wj| |2 = λn).

To complete the proof, observe that by (*) we have

(D2f(x)un9 un)y = (f"(x)ιun9 un) = λn(f"(x)en9 en)

= (Sf"(x)en,en)

for every n e N such that λn > 0.
Thus we have for each semigroup {P,} a dense subspace of CU{H),

depending on the Gaussian part of μv on which we can describe the
infinitesimal generator of {Pt}. It is not known to us if in the infinite-di-
mensional case it is true that the intersection of the domains of the
generators of all such semigroups is dense in CU{H) (the finite-dimen-
sional case is solved by the cited result of Courrege, i.e. Theorem 3.1 for
H = Rπ). In view of Theorem 3.6, it seems that the Gaussian case must
provide the answer.
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