WHEN THE CONTINUUM HAS COFINALITY ω_1

ARNOLD W. MILLER AND KAREL PRIKRY

In this paper we consider models of set theory in which the continuum has cofinality ω_1 . We show that it is consistent with \neg CH that for any complete boolean algebra B of cardinality less than or equal to c (continuum) there exists an ω_1 -generated ideal J in $P(\omega)$ (power set of ω) such that B is isomorphic to $P(\omega) \mod J$. We also show that the existence of generalized Luzin sets for every ω_1 -saturated ideal in the Borel sets does not imply Martin's axiom.

Introduction. In §1 we prove our main result that it is consistent with \neg CH that every complete boolean algebra of cardinality $\leq c$ is isomorphic to $P(\omega) \mod J$ for some $J \omega_1$ -generated. We think of this as generalizing Kunen's theorem that it is consistent with \neg CH that there is an ω_1 generated nonprincipal ultrafilter on ω .

For *I* an ideal in the Borel subsets of the reals we say that a set of reals *X* is a κ -*I*-Luzin set iff *X* has cardinality κ and for every *A* in *I*, $A \cap X$ has cardinality less than κ . If *c* is regular, then it follows easily from Martin-Solovay [9] that MA is equivalent to the statement "for every ω_1 -saturated σ -ideal *I* in the Borels there is a *c*-*I*-Luzin set". In §2 we show that the regularity of *c* is necessary. This answers a question of Fremlin [5].

We also show that it is consistent with \neg CH that for every such *I* there exists an ω_1 -*I*-Luzin set. These results can be thought of as a weak form of the following conjecture.

Conjecture. It is consistent with \neg CH that for every c.c.c partial order **P** of cardinality $\leq c$ there exist $\langle G_{\alpha} : \alpha < \omega_1 \rangle$ an ω_1 -sequence of **P**-filters such that for every dense $D \subseteq \mathbf{P}$ all but countably many G_{α} meet D.

Note that this is a trivial consequence of CH.

Next we give a result of Kunen that some restriction of the cardinality of **P** (e.g. $(2^{\omega_1})^+$) is necessary in our conjecture. We also show that for every c.c.c. **P** of cardinality $\leq \omega_2$ we can force (without adding reals) the existence of **P**-filters $\langle G_{\alpha}: \alpha < \omega_1 \rangle$ eventually meeting each dense subset of **P**. 1. ω_1 -generated ideals in $P(\omega)$. Sikorski [12] showed that every complete boolean algebra of cardinality $\leq c$ is isomorphic to $P(\omega)/J$ for some ideal J. Kunen (see [7], p. 289) showed it is consistent with \neg CH that there exists a nonprincipal ω_1 -generated ultrafilter U on ω , i.e. $P(\omega)$ mod the dual of U is the two element boolean algebra.

THEOREM 1. It is consistent with ZFC + \neg CH that for every complete boolean algebra **B** of cardinality $\leq c$ there exists an ω_1 generated nonprincipal ideal I such that **B** is isomorphic to $P(\omega)/I$.

Proof. We begin by describing the model which will be used here and in the next section. Let M_0 be a countable transitive model of ZFC + GCH. Using the usual finite support forcing do an ω_1 iteration where at step $\alpha < \omega_1$ obtain $M_{\alpha+1}$ a model of MA + $c = \aleph_{\alpha+2}$. For $\alpha < \omega_1$ a limit, M_{α} just models $c = \aleph_{\alpha+1}$ but not MA. Finally M_{ω_1} models that $c = \aleph_{\omega_1}$ and is an ω_1 limit of models of MA. This model (or one very similar to it) was used by Steprańs [13] and Bell and Kunen [2]. A similar ω_1 -iteration (without increasing c) was done by van Douwen and Fleissner [4] and also Roitman [10].

We will need the following two lemmas of Sikorski:

LEMMA 1.1. (Sikorski [12] 33.1, p. 141). Suppose **B** is a complete boolean algebra, and C_0 is a subalgebra of a boolean algebra C (neither of which need be complete). Then any homomorphism from C_0 into **B** can be extended to a homomorphism of C into **B**.

LEMMA 1.2. (Sikorski [12] 12.2, p. 36). Suppose A_0 generates a Boolean algebra A and $h: A_0 \rightarrow B$ is an arbitrary map into a boolean algebra B. Then h extends to a homomorphism from A into B iff for every sequence a_1 , a_2, \ldots, a_n from A_0 and sequence $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ of signs +, -;

$$\epsilon_1 a_1 \wedge \cdots \wedge \epsilon_n a_n = 0 \Rightarrow \epsilon_1 h(a_1) \wedge \epsilon_2 h(a_2) \wedge \cdots \wedge \epsilon_n h(a_n) = 0.$$

We will be using the proof of the following lemma so we include it here.

LEMMA 1.3. (Sikorski) If **B** is any complete boolean algebra of cardinality $\leq c$, then there exists an ideal J in $P(\omega)$ such that **B** is isomorphic to $P(\omega)/J$. **Proof.** Let \mathscr{F} be a family of c independent subsets of ω (see Kunen [7], p. 257). that is given any finite sequences A_1, A_2, \ldots, A_n and $B_1, B_2, B_3, \ldots, B_n$ of distinct elements of \mathscr{F}

$$A_1 \cap A_2 \cap \cdots \cap A_n \cap (\omega \setminus B_1) \cap (\omega \setminus B_2) \cap \cdots \cap (\omega \setminus B_m)$$

is infinite. Let h be any map from \mathscr{F} onto **B**. By Lemma 1.2 h extends to the subalgebra of $P(\omega)$ generated by \mathscr{F} and by Lemma 1.1, h extends to $P(\omega)$. J is just the kernel of this extension.

LEMMA 1.4. (Martin-Solovay, Sikorski) Every c.c.c. complete boolean algebra of cardinality $\leq c$ is isomorphic to F/I where F is a σ -subfield of the Borel subsets of 2^{ω} and I is a c.c.c. σ -ideal.

Proof. Theorem 2.3, page 155 of Martin Solovay [9] states that every c.c.c. complete boolean algebra of cardinality $\leq c$ is a complete subalgebra of a countably generated complete boolean algebra satisfying the c.c.c. According to Sikorski [12], 31.6 page 136, every countably generated σ -boolean algebra is isomorphic to Borel $(2^{\omega})/I$ for some σ -ideal I. So the given algebra **B** is isomorphic to a subalgebra of Borel $(2^{\omega})/I$ for some I a c.c.c. σ -ideal. Now let F be a σ -subfield of Borel (2^{ω}) so that **B** is isomorphic to F/I.

Note that in the model M_{ω_1} , $2^{\omega_1} > c$ and so any complete boolean algebra of cardinality $\leq c$ must have the c.c.c.. For $\alpha < \omega_1$ let \Vdash_{α} denote the forcing which has the ground model M_{α} and as the generic extension M_{ω_1} . Let **B** be any complete boolean algebra of cardinality $\leq c$ in M_{ω_1} and suppose

For $\alpha < \omega_1$ define (in M_{α})

$$F_{\alpha} = \left\{ A \in \text{Borel}\left(2^{\omega}\right)^{M_{\alpha}} \colon \Vdash_{\alpha} A \in F^{"} \right\}$$

and

$$I_{\alpha} = \left\{ A \in \text{Borel}\left(2^{\omega}\right)^{M_{\alpha}} \colon \Vdash_{\alpha} A \in I^{"} \right\}.$$

LEMMA 1.5. (Kunen) (In M_{α}) F_{α}/I_{α} is complete and I_{α} has the c.c.c.

Proof. Clearly F_{α} is a σ -field and I_{α} is a σ -ideal so it suffices to show I_{α} has the c.c.c.. Suppose $\langle A_{\beta}: \beta < \omega_1 \rangle \in M_{\alpha}$ and for all $\beta \neq \gamma, A_{\beta} \cap A_{\gamma} \in I_{\alpha}$. Then since

$$\Vdash_{\alpha}$$
 "*I* is c.c.c.",

 $I_{\alpha} \subseteq I$, and \Vdash_{α} is c.c.c. forcing, for all but countably many β

$$\Vdash_{\alpha} ``A_{\beta} \in I "$$

and thus $A_{\beta} \in I_{\alpha}$.

Working in M_{ω_1} we build a sequence of functions

$$h_{\alpha}: P(\omega) \cap M_{\alpha} \to F_{\alpha}$$

with $h_{\alpha} \in M_{\alpha}$ and such that for $\alpha < \beta$, h_{β} is an extension of h_{α} . They also have the following properties:

(i) the map \hat{h}_{α} : $P(\omega) \cap M_{\alpha} \to F_{\alpha}/I_{\alpha}$ defined $\hat{h}_{\alpha}(A) = [h_{\alpha}(A)]_{I_{\alpha}}$ is a homomorphism;

(ii) for successor ordinals, $\alpha + 1$, $h_{\alpha+1}$ is onto $F_{\alpha+1}$; and

(iii) for successor ordinals, $\alpha + 1$, there exists X_{α} in the kernel of $\hat{h}_{\alpha+1}$ such that for all $A \in \text{kernel}(\hat{h}_{\alpha}) A \subseteq * X_{\alpha}$ (i.e. $A \setminus X_{\alpha}$ is finite).

Now suppose we already had the h_{α} and X_{α} as above and let us finish the proof of Theorem 1. Working in M_{ω_1} define

$$h: P(\omega) \to F$$

by $h = \bigcup_{\alpha < \omega_1} h_{\alpha}$ and let $\hat{h}: P(\omega) \to F/I$ be defined by $\hat{h}(A) = [h(A)]_I$. It follows from (i) that \hat{h} is a homomorphism. Since $F = \bigcup_{\alpha < \omega_1} F_{\alpha}$ it follows from (ii) that \hat{h} is onto. Since kernel $\hat{h} = \bigcup_{\alpha < \omega_1} \text{kernel}(h_{\alpha})$ and by (iii) it is ω_1 -generated. Hence F/I is isomorphic to $P(\omega)/J$ for $J \; \omega_1$ -generated. Now we indicate how to construct the h_{α} . Let h_0 by any map from $P(\omega) \cap M_0$ into F_0 such that \hat{h}_0 is a homomorphism from $P(\omega) \cap M_0$ into F_0/I_0 and the kernel of \hat{h}_0 contains the finite sets. E. g. let U be any nonprincipal ultrafilter in M_0 and define $h_0(A) = 2^{\omega}$ if $A \in U$ and $h_0(A) = \emptyset$ if $A \notin U$. Suppose $\alpha < \omega_1$ is a limit ordinal and $\langle h_{\beta}: \beta < \alpha \rangle$ $\in M_{\alpha}$. Let $Q = \bigcup_{\beta < \alpha} (P(\omega) \cap M_{\beta})$ and let $h: Q \to F_{\alpha}$ be defined by $h = \bigcup_{\beta < \alpha} h\beta$. Let $\hat{h}: Q \to F_{\alpha}/I_{\alpha}$ be defined by $\hat{h}(A) = [A]_{I_{\alpha}}$. Since $\bigcup_{\beta < \alpha} I_{\beta} \subseteq I_{\alpha}$, the I_{β} are increasing, and the \hat{h}_{β} are homomorphism, \hat{h} is also a homomorphism.

Working in M_{α} we see that by Lemma 1.5, F_{α}/I_{α} is complete, and by Lemma 1.1 there exists (in M_{α}) a homomorphism \hat{h}_{α} : $P(\omega) \cap M_{\alpha} \to F_{\alpha}/I_{\alpha}$ which extends \hat{h} . Since the I_{α} equivalence classes are bigger than the I_{β} for $\beta < \alpha$ we can pick a representing function h_{α} : $P(\omega) \cap M_{\alpha} \to F_{\alpha}$ for \hat{h}_{α}

which extends *h*. This does the limit case. Now we do the successor case. Suppose we have $h_{\alpha}: P(\omega) \cap M_{\alpha} \to F_{\alpha}$ with $h_{\alpha} \in M_{\alpha}$. Note that $|P(\omega) \cap M_{\alpha}| = \aleph_{\alpha+1}$ and $M_{\alpha+1}$ is a model of MA and $c = \aleph_{\alpha+2}$. Let *P* be the kernel of h_{α} , i.e. $P = h_{\alpha}^{-1}(I_{\alpha})$. Let $Q = (P(\omega) \cap M_{\alpha}) \setminus P$. Note that for any $B \in Q$ and finite $K \subseteq P$ we have that $B \cap (\cup K)$ is infinite. By Solovay's almost disjoint forcing (see Rudin [11]) in $M_{\alpha+1}$ there exists $Y \subseteq \omega$ such that for all $B \in Q$, $B \cap Y$ is infinite and for all $B \in P$, $B \cap Y$ is finite. Let $X_{\alpha} = \omega \setminus Y$. Note that for all *A* in the kernel of \hat{h}_{α} , $A \subseteq *X_{\alpha}$ and for all *B* not in the kernel $B \setminus X_{\alpha}$ is infinite. Define $\hat{h}: (P(\omega) \cap M_{\alpha}) \cup \{X_{\alpha}\} \to F_{\alpha}/I_{\alpha}$ by extending \hat{h}_{α} and letting $\hat{h}(X_{\alpha}) = 0$. Let us use Lemma 1.2 to check that \hat{h} extends to a homomorphism from $\mathscr{B} =$ smallest boolean algebra generated by $(P(\omega) \cap M_{\alpha}) \cup \{X_{\alpha}\}$ into F_{α}/I_{α} . Since $P(\omega) \cap M_{\alpha}$ is a boolean algebra it is enough to check for each $A \in P(\omega) \cap M_{\alpha}$:

(i) if $A \cap X_{\alpha} = \emptyset$, then $\hat{h}_{\alpha}(A) \wedge 0 = 0$; and

(ii) if $A \cap (\omega \setminus X_{\alpha}) = \emptyset$, then $\hat{h}_{\alpha}(A) \wedge \mathbf{1} = 0$.

But (i) is trivial and (ii) follows from the choice of X_{α} . Next we use the method of independent sets to make $\hat{h}_{\alpha+1}$ onto $F_{\alpha+1}/I_{\alpha+1}$. Using MA, in $M_{\alpha+1}$ there exists a family \mathscr{F} of cardinality $c = \aleph_{\alpha+2}$ of independent mod Q subsets of ω . That is, for any infinite $A \in Q$ and distinct $Y_1, Y_2, \ldots, Y_n, Z_1, Z_2, \ldots, Z_m$ from \mathscr{F}

$$A \cap Y_1 \cap Y_2 \cap \cdots \cap Y_n \cap (\omega \setminus Z_1) \cap (\omega \setminus Z_2) \cap \cdots \cap (\omega \setminus Z_m)$$

is infinite. Construct the family \mathscr{F} by induction using the easy consequence of MA that for any family H of infinite subsets of ω with |H| < c there exists $X \subseteq \omega$ such that for all $A \in H$, $A \cap X$ and $A \setminus X$ are both infinite. Choose $h: \mathscr{B} \to F_{\alpha}$ so that $\hat{h}(A) = [h(A)]_{I_{\alpha}}$ and h extends h_{α} . Let k: $\mathscr{B} \cup \mathscr{F} \to F_{\alpha+1}$ extend h and take \mathscr{F} onto $F_{\alpha+1}$. by Lemmas 1.1 and 1.2 there exists $h_{\alpha+1}: P(\omega) \cap M_{\alpha+1} \to F_{\alpha+1}$ which extends k and $\hat{h}_{\alpha+1}:$ $P(\omega) \cap M_{\alpha+1} \to F_{\alpha+1}/I_{\alpha+1}$ is a homomorphism. This concludes the construction of the h_{α} 's and thus the proof of Theorem 1.

One question we were unable to answer with this method is the following: Is it consistent with ZFC that there exists an ω_1 -generated ideal J in $P(\omega)$ such that $P(\omega_1)$ is isomorphic to $P(\omega)/J$?

Finally, we remark that in M_{ω_1} the measure algebra (the Borel sets modulo the sets of Lebesgue measure zero) has density ω_1 , i.e. there is a collection D of ω_1 sets of positive measure such that every set of positive measure contains one from D. This follows from the fact that under MA

given any collection F of sets of positive measure such that |F| < c, there exists a countable collection $\{C_n: n < \omega\}$ of sets of positive measure such that for every $A \in F$ there exists $n < \omega$ such that $C_n \subseteq A$. Thus in the model M_{ω_1} there exists an atomless finitely additive measure μ on $P(\omega)$ and a family $F \subseteq P(\omega)$ of cardinality ω_1 such that for all $X \subseteq \omega$ and $\varepsilon > 0$ there exists $X_0, X_1 \in F$ such that $X_0 \subseteq X \subseteq X_1$ and

$$\mu(X_1 \setminus X_0) < \varepsilon.$$

2. Luzin sets. Recall that for an ideal I in the Borel sets and a cardinal κ , a set of reals X is called κ -I-Luzin iff X has cardinality κ and every set in I meets X in a set of cardinality strictly less than κ .

THEOREM 2.1. In the model of ZFC, M_{ω_1} of §1 (in which the continuum, c, is \aleph_{ω_1}), for any nontrivial c.c.c. σ -ideal I in the Borel sets there are both c-I-Luzin sets and ω_1 -I-Luzin sets.

Proof. Letting $B_{\alpha} = \text{Borel}^{M_{\alpha}}$ and as before $I_{\alpha} = \{A \in B_{\alpha}: \Vdash_{\alpha} A \in I^{n}\}$ we know by Lemma 1.5 that in $M_{\alpha}, B_{\alpha}/I_{\alpha}$ has the c.c.c. Since each $M_{\alpha+1}$ is a model of MA, by Martin-Solovay [9] the union $\bigcup I_{\alpha}$ cannot cover the reals of $M_{\alpha+1}$ (since $I_{\alpha} \subseteq I_{\alpha+1}$ a c.c.c. ideal of $M_{\alpha+1}$). Consequently we can find X_{α} of cardinality $\aleph_{\alpha+2}$ in $M_{\alpha+1}$ with

$$X_{\alpha} \cap \bigcup I_{\alpha} = \emptyset$$

Then $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$ is *c*-*I*-Luzin in M_{ω_1} .

For **P** a partial order define $\langle G_{\alpha}: \alpha < \omega_1 \rangle$ a sequence of **P**-filters to be an ω_1 -generic sequence for **P** iff for all dense $D \subseteq \mathbf{P}$ all but countably many G_{α} meet D. This is motivated by van Douwen and Fleissner [4].

Question. In the model M_{ω_1} is it true that for all **P** c.c.c. of cardinality $\leq c$ there exists an ω_1 -generic sequence for **P**?

Note that by a result of Martin and Solovary [9] it is enough to prove the above for **P** of the form Borel/I for I a c.c.c. σ -ideal. The difficulty with the above arguments is that filters on B_{α}/I_{α} may not lift to filters on B/I since elements of B_{α}/I_{α} may turn out to be in I. When we were first considering this question it was not clear to us that any restriction of the cardinality of **P** is necessary. The following theorem of Kunen shows that there is. FIN(κ) is the partial order of functions whose domain is a finite subset of κ and whose range is $\{0, 1\}$.

404

THEOREM 2.2. (Kunen) If $\kappa \ge (2^{\omega_1})^+$ there is no ω_1 -generic sequence for FIN(κ).

Proof. Suppose $\langle G_{\alpha}: \alpha < \omega_1 \rangle$ is given with each $G_{\alpha}: \kappa \to 2$. For each $\lambda < \kappa$ define $H_{\lambda}: \omega_1 \to 2$ by $H_{\lambda}(\alpha) = G_{\alpha}(\lambda)$. Since $\kappa \ge (2^{\omega_1})^+$ there exists an infinite $\Sigma \subseteq \kappa$ such that $H_{\lambda} = H_{\lambda'}$ for each $\lambda, \lambda' \in \Sigma$. Now choose $i \in \{0, 1\}$ and an uncountable $\Gamma \subseteq \omega_1$ so that for each $\lambda \in \Sigma, H_{\lambda} \upharpoonright \Gamma$ is constantly *i*. But this means that for each $\alpha \in \Gamma, G_{\alpha} \upharpoonright \Sigma$ is constant. But then the G_{α} do not eventually meet the dense set $D = \{p \in \text{FIN}(\kappa): \exists \lambda \in \Sigma p(\lambda) \neq i\}$.

It is clear from the above proof that all we need is that

$$\begin{pmatrix} \boldsymbol{\kappa} \\ \boldsymbol{\omega}_1 \end{pmatrix} \rightarrow \begin{pmatrix} \boldsymbol{\omega} \\ \boldsymbol{\omega}_1 \end{pmatrix}_2^{1,1}$$

to see that there are no ω_1 -generic sequences for FIN(κ). This partition relation is known to be consistent with GCH for $\kappa = \omega_2$ (see Laver [8]) assuming the consistency of a huge cardinal.

Theorem 2.2 can be strengthened to: if $\kappa > 2^{\omega_1}$ there is no family $\langle G_{\alpha}: \alpha < \omega_1 \rangle$ of filters in FIN(κ) such that every dense set meets some G_{α} . This was pointed out by D. H. Fremlin. To see how to prove this let

$$G = \bigcup_{\alpha < \omega_1} G_{\alpha}$$

If for every $p \in FIN(\kappa)$ there is some $q \le p$ with $q \ne G$, then G misses some dense set. Consequently there is some condition in $FIN(\kappa)$ such that G contains everything beneath it. But it is well known that the compact space 2^{κ} has density $> \omega_1$ (see Juhasz [6] 6.8, p.68).

Our next theorem goes in the other direction.

THEOREM 2.3. Assume CH. Suppose that **P** is a c.c.c. partial order of cardinality ω_2 . Then there exists **Q** an ω_2 c.c. order which is countably closed and has the same cardinality as **P** which adds an ω_1 -generic sequence for **P**.

Proof. We can assume without loss of generality that P is a boolean algebra. Elements of Q have the form

$$\langle \langle H_{\alpha}: \alpha < \beta \rangle, \mathscr{D} \rangle$$

where $\beta < \omega_1, \mathcal{D}$ is a countable family of dense subsets of **P**, and each H_{α}

is a countably generated **P** filter. The order on **Q** is defined as follows:

$$\langle \langle \hat{H}_{\alpha} : \alpha < \hat{\beta} \rangle, \hat{\mathscr{D}} \rangle \leq \langle \langle H_{\alpha} : \alpha < \beta \rangle, \mathscr{D} \rangle$$

iff $\hat{\beta} \geq \beta$, $\hat{\mathscr{D}} \supset \mathscr{D}$, $\hat{H}_{\alpha} \supset H_{\alpha}$ for all $\alpha < \beta$, and for all γ with $\beta \leq \gamma < \hat{\beta}$ and $D \in \mathscr{D}$, $D \cap \hat{H}_{\gamma} \neq \emptyset$.

It is easy to check that Q is countably closed and that Q adds an ω_1 -generic sequence for **P**. Now let us see that it has the ω_2 chain condition. By an obvious argument it is enough to show that Q^* has ω_2 -c.c. where

 $Q^* = \{ \langle H_n : n < \omega \rangle : \text{ each } H_n \text{ is a countably generated } \mathbf{P}\text{-filter} \}$

ordered by

$$\langle \hat{H}_n : n < \omega \rangle \le \langle H_n : n < \omega \rangle$$
 iff for all $n, \hat{H}_n \supset H_n$.

Suppose { $P_{\alpha} = (H_n^{\alpha}: n < \omega): \alpha < \omega_2$ } are pairwise incompatible. And let for each *n* and α

$$H_n^{\alpha} = \{ q \in \mathbf{P} \colon \exists m < \omega \ q < p_m^{\alpha, n} \}$$

where $p_{m+1}^{\alpha,n} \leq p_m^{\alpha,n}$ is a descending sequence.

Thus for each $\alpha \neq \beta$ there exists *n* and *m* such that

$$p_m^{\alpha,n} \wedge p_m^{\beta,n} = 0$$

by the Erdos-Rado Theorem $(\omega_2 \to (\omega_1)_{\omega}^2)$ (see Kunen [7], p. 290) there exists n_0 and m_0 and $X \in [\omega_2]^{\omega_1}$ such that for all $\alpha \neq \beta \in X p_{m_0}^{\alpha, n_0} \wedge p_{m_0}^{\beta, n_0} = 0$. This contradicts the countable chain condition for **P**.

This forcing can probably be iterated to take care of all c.c.c. **P** of cardinality ω_2 . Unfortunately this would blow up 2^{ω_1} to ω_3 . A better way would be to try to deduce the existence of ω_1 -generic sequences from morasses with built-in \Diamond . The "black box" theorems of Velleman and Shelah-Stanley do not seem to apply because of the lack of homogeneity.

Question. In L does every c.c.c. partial order of cardinality ω_2 have an ω_1 -generic sequence?

References

- [1] J. Baumgartner, Sacks forcing and the total failure of Martin's axiom, (19) preprint.
- [2] M. Bell, and K. Kunen, On the pi-character of Ultrafilters, C.R. Math. Rep. Acad. Sci. Canada, III, (1981), 351–356.
- [3] T. Carlson, On ω_1 -Borel sets.

- [4] E. van Douwen and W. Fleissner, *The definable forcing axiom: An alternative to Martin's axiom*, (19) preprint.
- [5] D. Fremlin, Consequences of Martin's axiom, (19) to appear.
- [6] I. Juhasz, *Cardinal Functions in Topology*, Mathematical Centre Tracts 34, Amsterdam, (1971).
- [7] K. Kunen, Set Theory, Studies in Logic, vol. 102, (1980), North-Holland.
- [8] R. Laver, An $(\aleph_2, \aleph_2, \aleph_0)$ -saturated ideal on ω_1 , Logic Coll. 80, Prague North-Holland (1982), 173–180.
- [9] D. Martin, and R. Solovay, Internal Cohen extensions, Annals of Math. Logic, 2, (1970), 143-178.
- [10] J. Roitman, Forcing the failure of the c-Baire property, (19), preprint.
- [11] M. E. Rudin, *Martin's Axiom*, in the *Handbook of Mathematical Logic*, North-Holland, (1977), 419–502.
- [12] R. Sikorski, Boolean Algebras, (1962), Springer-Verlag.
- [13] J. Steprans, Cardinal arithmetic and \aleph_1 -Borel sets, Proc. Amer. Math. Soc., (1982).

Received March 17, 1983 and in revised form June 6, 1983. Authors partially supported by a National Science Foundation grant.

THE UNIVERSITY OF TEXAS AUSTIN, TX 78712

AND

THE UNIVERSITY OF MINNESOTA MINNEAPOLIS, MN 55455