ε-CONTINUITY AND MONOTONE OPERATIONS

WILLIAM JULIAN

We prove constructively in the sense of Bishop that a monotone, ε -continuous operation from [0,1] into a metric space is 2ε -uniformly continuous. We derive a suitable version of Brouwer's fan theorem.

1. Introduction. Zaslavskii [ABR, Theorem 7.3] gives an example of a real valued function on [0, 1] which is continuous at each computable point but which fails to be uniformly continuous. Zaslavskii [ABR, Theorem 7.14] and Mandelkern [MND1, MND2] show constructively in the Russian and Bishop sense, respectively, that a *monotone*, continuous, real valued function on [0, 1] is uniformly continuous. In this paper, we weaken the hypothesis of continuity to ε -continuity, generalize the definition of monotone so that the map can be into any metric space, and consider (non-extensional) operations instead of functions. We prove constructively [BSH] that a monotone, ε -continuous operation from [0, 1] into a metric space is 2ε -uniformly continuous. Delimiting examples show that the 2ε in the conclusion is best possible.

2. Valuated fans. The binary fan F consists of all finite or empty strings from $\{0, 1\}$. Denote a string $a \in F$ by $a_1a_2 \cdots a_n$ where $a_i \in \{0, 1\}$, and the empty string by \emptyset . The length |a| of a is the cardinality n of the string a. The descendants of string a are strings containing a as an initial segment. The immediate descendants of a are $a0 = a_1a_2 \cdots a_n0$ and $a1 = a_1a_2 \cdots a_n1$. Note $\emptyset 0 = 0$ and $\emptyset 1 = 1$. A branch B is the set of initial segments of a countable string $B_1B_2 \cdots$ from $\{0, 1\}$. We shall write $B \sim B_1B_2 \cdots$.

A valuated fan F is the binary fan together with a function V mapping F into the set N of non-negative integers. A valuation is sub-additive if $V(a) \ge V(a0) + V(a1)$, for all $a \in F$.

A valuation is *branch bounded* if for any branch B of F there is an integer n so that if $a \in B$ and $|a| \ge n$, then V(a) = 0. A valuation is *bounded* if there is an integer m so that if $a \in F$ and $|a| \ge m$, then V(a) = 0.

The valuated fan generated by $a \in F$ consists all descendents of a but with their initial segments a deleted; the valuation is the induced valuation.

WILLIAM JULIAN

We now arrive at a theorem implied by Brouwer's fan theorem [HTG] but that is valid in the sense of Bishop [BSH].

PROPOSITION 1. Every branch bounded, sub-additive valuation on the binary fan is bounded.

Proof. We induct on the value $V(\emptyset)$. If $V(\emptyset) = 0$ we are done, so let $V(\emptyset) > 0$. Construct a branch *B* starting at \emptyset by induction. If $a \in B$ and $V(a1) = V(\emptyset)$, then append al to *B*. Otherwise append a0. Since *F* is sub-additive, if $a \in F$ and $V(a) = V(\emptyset)$ then $a \in B$. Since *F* is branch bounded, there is an integer *n* so that if $|a| \ge n$ and $a \in B$, then $V(\emptyset) = 0$. Hence if $|a| \ge n$ then $V(a) < V(\emptyset)$. Construct the 2^n fans F_i generated by those $a \in F$ with |a| = n. In each, the induced value $V_i(\emptyset)$ is strictly less than $V(\emptyset)$ in *F*. By induction, each is bounded: There are integers m_i such that if $|b| \ge m_i$ and $b \in F_i$, then the induced value $V_i(b) = 0$. Hence if $a \in F$ and $|a| \ge n + \max\{m_i\}$, then V(a) = 0.

3. Assigning valuations. In this section we show how an operation from [0, 1] induces a valuation on the binary fan. To each $a = a_1 a_2 \cdots a_n \in F$ assign the diadic rationals

$$.a = \sum a_k 2^{-k} = .a_1 a_2 \cdots a_n$$
 (binary),
 $a^+ = .a + 2^{-|a|},$

and the interval $I(a) = [.a, .a^+]$. To each branch $B \sim B_1 B_2 \cdots$ assign the real number

$$B = \sum B_k 2^{-k} = B_1 B_2 \cdots \text{ (binary)}.$$

Note that if $a \in B$, then $B \in I(a)$.

DEFINITION. We denote two subsets of [0, 1] by

 $B[0,1] = \{x \in [0,1] | x \text{ has an explicit binary representation} \},\$

and

 $D[0,1] = \{x \in [0,1] | x \text{ has a terminating binary representation} \}.$

Note that $x \in B[0,1]$ iff $x \ge d$ or $x \le d$ for every diadic rational $d \in D[0,1]$.

DEFINITION. Let f be an operation on B[0, 1] into a metric space M, d and $\varepsilon > 0$. Fix one value of f(x) for each $x \in D[0, 1]$. A valuation on the

binary fan *induced by* f, ε is assigned so that

$$V(a) = P$$
 implies $P - 2^{-2|a|} < \rho(a) < P + 1 - 2^{-2|a|-1}$,

where $\rho(a) = e^{-1} d(f(.a^{+}), f(.a)).$

Note that if $\rho(a) > P - 2^{-2|a|-1}$, then $V(a) \ge P$, and if $\rho(a) < 1 - 2^{-2|a|}$, then V(a) = 0.

4. Monotone operations. In this section we consider what valuation is induced on the binary fan by a monotone operation into a metric space. The notion of "between" replaces "order" in the definition of monotone.

DEFINITION. Let M, d be a metric space. A point $x \in M$ is between a and $b \in M$ if

$$d(a, x) + d(x, b) = d(a, b).$$

In addition if x is distinct from a and b, then x is strictly between a and b. \Box

The notion of "between" has been discussed by Blumenthal [**BLM**]; his use of "between" corresponds to our usage of "strictly between". We distinguish the present notions of "between" and "strictly between" in the next definition:

DEFINITION. An operation f from a metric space M_1 to a metric space M_2 is *monotone* if whenever x is strictly between a and $b \in M_1$, then f(x) is between f(a) and f(b).

LEMMA 1. If x and y are between a and b then $d(x, y) \le d(a, b)$.

Proof. Let x and y be between a and b. Thus, adding

$$d(a, z) + d(z, b) = d(a, b)$$

for z equal to x and z equal to y, we obtain

$$2d(x, y) \le d(a, x) + d(a, y) + d(b, x) + d(b, y) = 2d(a, b). \quad \Box$$

The next lemmas and a counterexample stated without proof show how *order* and *between* are related on the real line.

LEMMA. If x is between distinct points a and b and not strictly between them, then x = a or x = b.

WILLIAM JULIAN

LEMMA. A real number x is (strictly) between a and $b \in R$ if (a < x < b) $a \le x \le b$, or if (a > x > b) $a \ge x \ge b$.

LEMMA. If x is strictly between a and $b \in R$, then a < x < b or b < x < a.

COUNTEREXAMPLE. If x between a and $b \in R$ implies $a \le x \le b$ or $a \ge x \ge b$, then for all $a \in R$, either $a \ge 0$ or $a \le 0$.

A real valued function which is monotone in the present sense need not be increasing or decreasing.

LEMMA. If f is a monotone operation on $S \subset R$ to a metric space M, d and $a \leq x < b$ are in S with d(f(a), f(x)) + d(f(x), f(b)) >d(f(a), f(b)), then x = a.

Next we show that a monotone operation on [0, 1] induces a sub-additive valuation on the binary fan.

PROPOSITION 2. If f is a monotone operation from B[0,1] to a metric space M, d and $\varepsilon > 0$, then the valuation induced by f, ε is sub-additive.

Proof. Now |a0| = |a1| = |a| + 1, so

 $V(a0) - 2^{-2|a|-2} < \rho(a0)$ and $V(a1) - 2^{-2|a|-2} < \rho(a1)$.

Noting that monotonicity of f implies that $\rho(a) = \rho(a0) + \rho(a1)$, we find

$$V(a0) + V(a1) - 2^{-2|a|-1} < \rho(a).$$

Hence $V(a) \ge V(a0) + V(a1)$ and the valuation is sub-additive. \Box

5. ε -continuous operations. In this section we turn our attention to what valuation on the binary fan is induced by an ε -continuous operation.

DEFINITION. An operation f from a metric space M_1 , d_1 to a metric space M_2 , d_2 is ε -continuous if for some $\varepsilon' < \varepsilon$ then for every $x \in M_1$ there is a $\delta > 0$ such that whenever $y \in M_1$ and $d_1(x, y) < \delta$, then $d_2(f(x), f(y)) < \varepsilon'$.

Note that if $\epsilon' < \epsilon'' < \epsilon$ then f is also ϵ'' -continuous. Furthermore if x = y then $d_2(f(x), f(y)) < \epsilon'$.

PROPOSITION 3. If f is an $\epsilon/2$ -continuous operation from B[0,1] to a metric space M, d then the valuation induced by f, ϵ is branch bounded.

Proof. Let *B* be a branch of the binary fan *F*. Choose $\varepsilon' < \varepsilon/2$ and $\delta > 0$ such that if $y \in B[0, 1]$ and $|y - .B| < \delta$, then $d(f(y), f(.B)) < \varepsilon'$. Pick *n* so that $2^{-n} < \delta$ and $2\varepsilon' < \varepsilon(1 - 2^{-2n})$, and let $a \in B$ with $|a| \ge n$. Now $.B \in I(a)$ so $|.a - .B| < \delta$ and $|.a^+ - .B| < \delta$. Hence

$$d(f(.a^+), f(.a)) \le d(f(.a^+), f(.B)) + d(f(.B), f(.a))$$

< $2\epsilon' < \epsilon(1 - 2^{-2|a|}),$

and thus V(a) = 0.

6. ε -uniformly continuous operations. In this section we prove that a monotone, ε -continuous operation on [0, 1] is 2ε -uniformly continuous.

DEFINITION. An operation f is ε -uniformly continuous from a metric space M_1 , d_1 to a metric space M_2 , d_2 if there is $\varepsilon' < \varepsilon$ and $\delta > 0$ such that whenever $x, y \in M_1$ and $d_1(x, y) < \delta$, then $d_2(f(x), f(y)) < \varepsilon'$.

THEOREM. If f is a monotone operation from [0, 1] into a metric space M, d and $\epsilon/2$ -continuous on B[0, 1] then f is ϵ -uniformly continuous on [0, 1].

Proof. Choose $\varepsilon' < \varepsilon$ so that f is also $\varepsilon'/2$ -continuous on B[0, 1]. Let the binary fan F have the valuation induced by f, ε' . By Proposition 3 the valuation is branch bounded, and by Propositions 1 and 2, the valuation is bounded. Hence, there is an m so that if $a \in F$ and $|a| \ge m$, then V(a) = 0.

Consider the finite set $S = \{1\} \cup \{.a \mid a \in F \text{ and } |a| = m\}$. By $\varepsilon'/2$ continuity, choose δ in $(0, 2^{-m})$ such that if $x \in [0, 1], z \in S$, and |x - z| $< \delta$, then $d(f(x), f(z)) < \varepsilon'/2$. Suppose that $x, y \in [0, 1]$ and $|x - y| < \delta/3$. Either $|x - z| < \delta/2$ for some $z \in S$, or $|x - z| > \delta/3$ for each $z \in S$. In the former case $|y - z| < 5\delta/6$, and

$$d(f(x), f(y)) \le d(f(x), f(z)) + d(f(z), f(y)) < \varepsilon' < \varepsilon.$$

In the latter case, pick $a \in F$ with |a| = m, such that x and y are strictly between .a and $.a^+$; then by Lemma 1 and V(a) = 0:

$$d(f(x), f(y)) \le d(f(.a), f(.a^+)) < \varepsilon' < \varepsilon. \qquad \Box$$

7. Delimiting examples. The theorem is valid with [0, 1] replaced by B[0, 1]. The first example shows that the result stated in the theorem is

WILLIAM JULIAN

sharp with regard to ε . There is no obvious constructive example, so we give a classical one.

EXAMPLE 1 (Classical). The classical function

$$f(x) = \begin{cases} \varepsilon'/2, & \text{for } x > 1/2, \\ 0, & \text{for } x = 1/2, \\ -\varepsilon'/2, & \text{for } x < 1/2 \end{cases}$$

is monotone and $\epsilon/2$ -continuous for all $\epsilon > \epsilon' > 0$, but is not ϵ' -uniformly continuous.

The next example shows that there are constructive ε -continuous operations which are neither continuous nor functions.

EXAMPLE 2 (Constructive). Let $x = .x_1x_2x_3 \cdots \in B[0, 1]$. The operation

$$g(x) = \varepsilon'(x_1 - 1/2)$$

is ε -continuous and ε -uniformly continuous on B[0, 1] for any $\varepsilon > \varepsilon' > 0$.

REFERENCES

- [ABR] O. Aberth, Computable Analysis, McGraw-Hill, NY, 1980.
- [BSH] E. A. Bishop, Foundations of Constructive Analysis, McGraw-Hill, NY 1967.
- [BLM] L. Blumenthal, *Theory and Applications of Distance Geometry*, Chelsea Publishing Company, Bronx, NY 1970.
- [HTG] A. Heyting, Intuitionism, an Introduction, 3rd ed., North-Holland Publishing Co., Amsterdam 1966.
- [MND1] M. Mandelkern, Continuity of monotone functions, Pacific J. Math., 99 (1982), 413-418.

[MND2] _____, Constructive continuity, Mem. Amer. Math. Soc., 42 (1983), 277.

Received April 28, 1983.

NEW MEXICO STATE UNIVERSITY LAS CRUCES, NM 88003